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ABSTRACT 

Fault detection in planet bearings is difficult. This is 
particularly true in wind turbines, where the main rotor shaft 
is under 20 rpm, such that the planet fault frequency can be 
sub 1 Hz. This papers analyzes a missed fault on a wind 
turbine planet bearing, and discuses how changes in the 
analysis configuration then allowed this type of fault to be 
detected. Raw data from ten machines was collected. From 
this, a strategy for fault feature identification was 
developed, to include: the evaluation of window selection, 
biasing of the data set with faulted components, and the use 
of improve analysis techniques. This allowed meaningful 
and appropriate thresholds to be set. 

1. THE WIND TURBINE MARKET  

There are over 1000 utility scales wind energy projects, 
representing 74,000 megawatts of power production in the 
United States. This comprises over 52,000 installed wind 
turbines, most of then less than 10 years old (AWEA Fact 
Check, 2016). The vast majority of these machines do not 
have condition monitoring equipment installed. Because of 
higher than expected failure rate of these machines, the 
number of condition monitoring retrofit opportunities is 
increasing.  

While condition monitoring does not affect the overall 
reliability of the wind turbine, monitoring gives the operator 
improved information into the balance of plant operations. 
Improved information allows the operator to better marshal 
logistic assets, resulting in reduced unscheduled 
maintenance. Additionally, condition monitoring allows the 
operator to have the right personnel and replacement parts 
needed for a repair, reduce the time needed for the repair. In 
many cases, replacing a damaged component, such as a 

bearing in the high-speed section when indicated by a 
condition monitoring system (CMS), can greatly reduce the 
cost of maintenance. These type of actions are performed 
“up tower” vs. a “down tower”. Any “down tower” event 
will require marshaling a crane, and replacing the entire 
gearbox (perhaps $450,000 per event). This is compared to 
replacing a bearing up tower, which might cost $50,000.  

Recently, a number of 2.0 MW machines were retrofitted 
with a CMS. These machines had five years of operations 
and were assumed to be in a nominal state. Once every 10 
minutes data was collected by the CMS using a commercial 
system. The data was processed locally (on the wind 
turbine) and condition indicators (CIs) were sent to a central 
server. Configuration data was then used to map the CIs into 
a component health indicator (HI), (Figure 1).  

 
Figure 1. Planet Bearing Health on Ten Machines, Initial 

Thresholds 

Using the CI data from all of the machines, the initial 
thresholds suggested that all 10 machines were nominal. 
This was not unexpected, as these machines had only 
operated for five years. 
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2. CALCULATION OF THE PLANET BEARING HEALTH 
INDICATOR 

Because no single CI has been identified that works with all 
fault modes, the concept of fusing n number of CIs into a 
bearing HI was presented in (Bechhoefer, He, 2012). The HI 
provide decision-making tool for the end user on the status 
of the systems’ health. The HI consists of the integration of 
several CIs into one value that provides the health status of 
the component to the end user.  

Highlighted in (Bechhoefer et. al., 2007) are a number of 
advantages of the HI over CIs, such as: controlling false 
alarm rate, improved detection, and simplification of user 
display. This approach uses a well established statistical 
method. Further, it is a generalized process for threshold 
setting, where the HI is a function of distribution of CIs, 
regardless of the correlation between the CIs. 

To simplify presentation and knowledge creation for a user, 
a uniform meaning (e.g. a nomenclature) across all 
components in the monitored machine was developed. The 
measured CI statistics (e.g. PDFs) will be unique for each 
component type (due to different rates, materials, loads, 
etc.). This means that the critical values (thresholds) will be 
different for each monitored component. By using the HI 
one can normalize the CIs, such that the HI is independent 
of the component and have a common meaning across all 
components. 

The HI can be designed such that there are two alert levels: 
warning and alarm. This paradigm also provides a common 
nomenclature for the HI, such that: 

• The HI ranges from 0 to 1, where the probability of 
exceeding an HI of 0.5 for a nominal component 
(e.g. no damage) is the probability of false alarm 
(PFA). The nominal PFA is set to 10e-6. 

• A warning alert is generated when the HI is greater 
than or equal to 0.75.  

• An alarm alert is generated when the HI is greater 
than or equal to 1.0. Continued operations could 
cause collateral damage. 

Note that this nomenclature does not define a probability of 
failure for the component, or that the component fails when 
the HI is 1.0. Rather, it suggests a change in operator 
behavior to a proactive maintenance policy: perform 
maintenance opportunistically to reduce down time. 

2.1. Controlling for the Correlation Between CIs 

All CIs have a probability distribution function (PDF). Any 
operation on the CI to form a health indicator (HI) is then a 
function of distributions. For the CMS, the HI function is 
taken as the norm of n CIs (energy). In general, the 
correlation between CIs is non-zero. This correlation 
implies that for a given function of distributions to have a 

threshold that operationally meets the design PFA, the CIs 
must be whitened (e.g. de-correlated). Fukunaga presented a 
whitening transform using the Eigenvector matrix 
multiplied by the square root of the Eigenvalues (diagonal 
matrix) of the covariance of the CIs:  

Α = Λ! !Φ!     (1) 

where Φ! is the transpose of the Eigenvector matrix and Λ 
is the Eigenvalue matrix. The transform is not orthonormal 
as the Euclidean distances are not preserved in the 
transform. While ideal for maximizing the distance 
(separation) between classes (such as in a Bayesian 
classifier), the distribution of the original CI is not 
preserved. This property of the transform makes it 
inappropriate for threshold setting. 

If the CIs represented a metric, such as bearing energy, then 
a HI can be constructed which is the square of the 
normalized power (e.g. square root of the squared 
acceleration). A generalized whitening solution can be 
found using Cholesky decomposition (Becchoefer, 2011). 
The Cholesky decomposition of a Hermitian, positive 
definite matrix results in A = LL*, where L is a lower 
triangular, and L* is its conjugate transpose. By definition, 
the inverse covariance is a positive definite Hermitian.  By 
construction:  

𝑳𝑳∗ =  𝚺!!               (2) 

and 

 𝒀 = 𝑳×𝑪𝑰!             (3) 

The vector CI is the correlated CIs used for the HI 
calculation, and Y is 1 to n independent CIs with unit 
variance (one CI representing the trivial case). The 
Cholesky decomposition, in effect, creates the square root of 
the inverse covariance. This in turn is analogous to dividing 
the CIs by their standard deviations (the trivial case of one 
CI). This creates the necessary independent and identical 
distributions required to calculate the critical values for a 
function of distributions. 

2.2. HI Based on the Rayleigh PDF 

The CIs for bearing energy (assuming nominal bearings) 
have Rayleigh like PDFs (e.g. heavily tailed). Consequently, 
the HI function was designed using the Rayleigh 
distribution. The PDF for the Rayleigh distribution uses a 
single parameter, β, defining the mean: 

𝜇 = 𝛽 𝜋 2 ! !    (4) 

and variance  

𝜎! = 2 − 𝜋 2 𝛽!   (5) 

When applying (3) as a whitening process, the PDF of the 
CIs are independent and identical (CIs are IID), with 
variance of 1. The value β reduces to:  
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𝛽 = 1 2 − 𝜋 2 ! !   (6) 

The HI function using the norm of n CIs can be shown to 
define a Nakagami PDF (Bechhoefer, 2007). The statistics 
for the Nakagami are η = n, and ω = β2 *2*n, where n is the 
number CIs used in the calculation of Y. The critical value 
for the HI, given 4 CIs where used (cage, ball, inner and 
outer race energy), such that: η = 4, and ω = 18.64. For a 
PFA of 10-6, the threshold 9.97, with the HI function 
calculated as:  

𝐻𝐼 = !.!
!.!"

𝒀𝒀!           (7) 

The 0.5 value normalized the HI, such that the probability of 
a HI being greater than 0.5 for a nominal bearing is 10e-6, 
as defined by the HI nomenclature.  

3. THE MISSED DETECTION 

Subsequently, oil debris analysis suggested that machine 8 
had a damaged bearing. A borescope confirmed damaged 
planet bearings (Figures 2 and 3). Clearly, there is a large 
amount of inner and outer race spalling. The damage is 
heavily distributed. As an aside, many researchers have 
noted that the fault frequency energy can drop one the 
bearing fault becomes distributed. 

 
Figure 2. Borescope view of planet bearing 

 
This level of damage, and the fact the health of machine 8 
was 0.22, indicates failure of the threshold setting process 
and the need to determine a strategy to set appropriate 
thresholds: Machine 8 health should be > 1, as the bearing is 
heavily damage. The CMS should have indicated an alarm 
state. 

 
Figure 3. Borescope of Damaged Bearings 

3.1. Background Configuration 

The gearbox was a typical, 3 stage gearbox with: 

• Ring Gear: 87 teeth 

• Planet Gear: 33 teeth 

• Sun Gear: 18 teeth 

• Intermediate Gear: 74 teeth (the notation is that a 
gear drives a pinion) 

• Intermediate Pinion: 18 teeth 

• High Speed Gear: 99 teeth and a  

• High Speed Pinion: 20 teeth 

The tachometer was on the output of the high speed shaft, 
typically with a shaft rate of 30.4 Hz. The overall gearbox 
ratio is 118.7:1, or (1+87/18) x (74/18) x (99/20). The planet 
shaft rate was calculated as: 87/33 or 2.64 from the main 
shaft. Note: the planet shaft is affixed to the carrier. The 
apparent rate of the planet shaft to the bearing is 3.64, as 
there is one extra “turn” of the shaft relative to the bearing 
because of the rotating carrier. The bearing fault rates were 
given as: 

• Cage, 0.316  

• Ball, 4.89 

• Inner Race, 8.69 and 

• Outer Race, 6.54. 

Given the 30.4 Hz output shaft rate, the planetary shaft rate 
relative to the bearings is: 30.4/118.71 x 3.64  = .935 Hz. 
The shaft rate multiplied by the bearing fault rates, give the 
bearing bearing fault frequencies: .935 x [0.326 4.89 8.69 
6.54] of 0.29, 4.56, 8.1 and 6.1 Hz, respectively: The low 
frequency of the cage will be important. 
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4. BEARING ANALYSIS TECHNIQUES 

The bearing fault signal is characterized by signals whose 
statistical properties change periodically with time (Antoni, 
2009). While quasi-periodic and random in nature, these 
signals are the result of a periodic phenomenon. In the time 
domain, these signals exhibit periodic variation of statistical 
descriptors, such as the instantaneous power, or auto-
correlation. 

By defining a cyclostationary signal (CS) X[n] with n as the 
temporal index, the signal will have a joint probability 
density function which is quasi periodic function of time. 
This implies that the ensemble statistics are stationary and 
ergodic. For the purposes of bearing analysis, one can model 
the CS as periodically modulated white noise:  

𝑋 𝑛 = 𝑝 𝑛 ∙𝑊 𝑛                            (8) 

Where  p[n] = p[n + N] is a N periodic function and W[n] 
is strictly Gaussian noise. This model accounts for random 
process including slippage of the bearing elements (e.g. no 
Hertzian contact of the roller element with the inner/outer 
race, see [8]).  

The second order statistics, which of the instantaneous auto 
correlation function (as per [7]) is: 

ℛ!! 𝑛, 𝜏 = 𝐸 𝑋 𝑛 + 𝛽𝜏 𝑋 𝑛 − 𝛽𝜏
∗

   (9) 

where 𝛽 + 𝛽  = 1, with β = ½ for the symmetric 
instantaneous auto-correlation function. The random signal 
from the bearing impact will then have a periodic 
instantaneous auto-correlation function of:  

ℛ!! 𝑛, 𝜏 =  ℛ!! 𝑛 + 𝑁, 𝜏         (10) 

This defines the signal as a second order CS.  

By definition, the instantaneous auto-correlation function of 
CS has a Fourier representation 

 ℛ!! 𝑛, 𝜏 = ℛ!! 𝜏;𝛼! 𝑒!!!!!!!!!∈𝒜   (11) 

over the spectrum 𝒜 = 𝛼!  of cyclic frequencies 𝛼!, where 
Δ denotes the sampling period. 

As noted, the instantaneous autocorrelation function 
ℛ!! 𝑛, 𝜏  is a function of the time variables n and τ. For 
analysis, the frequency domain representation allows the 
identification of α, the cyclic frequency (e.g. the bearing 
material response) and f, the bearing fault frequency (0.29, 
4.56, 8.1 and 6.1 Hz). The frequency domain is a 2D Fourier 
transform of the two frequency variables α and f: 

ℜ!! 𝛼, 𝑓 = ∆! ℛ!! 𝜏;𝛼! 𝑒!!!!"#!𝑒!!!!"#!!
!!!!

!
!!!!  

(12)               

This is the spectral correlation of the power distribution of 
the signal with respects to the spectral frequency f (the 
bearing fault rate) and the cyclic frequency α (the cyclic 
evolution of the waveform as a result of the bearing material 

response to f). For a more detailed analysis (Antoni, 2009). 
Figure 4 is the spectral correlation of the planet bearing for 
machine 8. There is structural resonance (α) at 600 and 
1200 Hz (the sample rate was 3052 sps: there may be higher 
harmonics above Nyquist).  A number of spectral 
frequencies are seen below 2 Hz (cage and 1/rev “tick”) and 
at 6.5Hz, associated with the outer race. 

4.1. Envelope Analysis vs. Cyclostationarity 

The spectral correlation is the 2D Fourier transform of 
spectral frequency f (the bearing fault rate) and the cyclic 
frequency α. Fixing α to a given frequency, the spectrum is 
the envelope analysis of the signal. Defining the envelope 
for a signal instance of α greatly reduces the computational 
burden and allows for more automated/embedded 
diagnostics. The implementation of the embedded 
diagnostic system then requires proper window selection 
(Ganeriawala, 2006), which holds constant the cyclic 
frequency α. 

 
Figure 4. Cyclostationary Signal of Machine 8 Planet 

Bearing 

Then for each fault frequency (Eq 1 – Eq 4, 0.29, 4.56, 8.1 
and 6.1 Hz), the energy associated with the frequency 
spectrum is the fault condition indicator.  Eq 8 then reduces 
to: 

ℜ!! 𝑓 = ∆! ℛ!! 𝜏 𝑒!!!!"#!𝑒!!!!"#!!
!!!!        (13) 

The pseudo code for this is simply: 

𝑦 = 𝑦 × exp −𝑖2𝜋𝛼𝑡  

Υ = ℑ 𝑦  

𝑆𝑝𝑒𝑐𝑡𝑢𝑟𝑚(𝑓) = Υ × Υ∗                  (14) 

as per definition 𝑡 = 𝑛Δ.  
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Figure 5. Envelope Analysis of the Planet Bearing, Machine 
8 

Window selection (e.g. α) greatly affects the performance of 
analysis. The initial analysis configuration set α to 1325 Hz, 
and with a bandwidth 225 Hz. The spectrum window length 
was 8192 point. The data was resample using the 
tachometer data (Bechhoefer, 2010) to control for changes 
in shaft speed over the 2 minute acquisition at 3052 sps. The 
resolution of the analysis is 0.113 Hz, Figure 5. 

Clearly, the envelope identifies an outer race and 1/Rev 
issue. A 6.2 Hz outer race features is easily detected: why 
did the initial analysis fail? 

5. STRATEGY OF CORRECTED ANALYSIS 

The missed detection suggests that some of the entering 
assumptions are incorrect. With the initial threshold setting, 
it was assumed that all the machines are nominal. 
Additionally, one needs to identify a feature present in the 
faulted machine that is not present in the nominal machines. 
In an examination of the 10 machines, it was found that 
there were bearing/shaft artifacts in the envelope for all 
machines. 

All lines after the first line of each entry should be indented 
one-quarter inch from the left margin. This is called hanging 
indentation. 

Its evident that there is low frequency content associated 
with Cage and 1/Rev and Outer Race. Recall that the Cage 
frequency is 0.29 Hz, and the bin width was 0.11 Hz: the 
bin resolution is not fine enough to resolve the low 
frequency content below 1 Hz. In order to resolve these 
lower frequencies, the analysis needs more resolution. 
Further, from cyclostationary analysis, it is seen that the 
gearbox resonance (alpha) is closer to 1200 Hz than 1325 
Hz. By increasing the spectrum window length to 16384 and 
reducing the envelope bandwidth to 100 (which better 
matches the bandwidth of alpha, see Figure 4), the spectrum 
bin bandwidth is reduced to 0.026 Hz. 

 
Figure 6. Envelope Features for Planet Bearings on nine 

machines 

From Figure 6 it is seen that every machine exhibited a 
1/Rev impact at 0.68 Hz. This is sometime associated with a 
gear failure, although there were nothing to indicate gear 
fault. Also, for almost every machine there is an indication 
of an outer race feature. This may be due to actually 
damage, but it should not be ruled out that this is a design 
issue. For example, it is usual practice in gearbox design 
that: 2 x the planet gear teeth  + the sun gear teeth are equal 
to the number of ring gear teeth. For a standard gearbox 
design the ring gear would be 84 teeth. In this gearbox, the 
ring gear has 87 teeth. This design, as a result, may have 
mechanical looseness, which is the cause of the 1/Rev 
impact.  

Updating configuration, the envelope analysis for all ten 
machines was run. Each machine had from eight to twelve 
acquisitions, which at gives some idea of the distribution of 
the CIs for the Cage, Ball, Inner ant Outer race energy. For 
the damage machine, 8, the improved resolution shows 
multiple Cage frequency harmonics, Figure 7. 

 
Figure 7. Envelope analysis after updating configuration 
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The boxplot of the bearing CIs gives further insight into the 
features that are indicative of bearing fault for this machine, 
Figure 8. 

The cage, inner race, and outer race energies are all elevated 
for machine 8. The most prominent feature is the cage. The 
boxplot also gives a good indication as which machines are 
best: 1, 3, 4, 6 and 10.  Warning (Yellow) and Alarm (Red) 
thresholds for each individual CI have been shown as a 
reference. These thresholds are calculated as part of the 
output of the HI threshold seeing process. 

 
Figure 8. Boxplot for Bearing CIs for machine 1 through 10 
 

Observe that when fusing the CIs into an HI, there is an 
improvement in the ability of the system to detect the fault 
(e.g. machine 8 cage energy is in warning, but the HI is > 
1). The new thresholds were based on the covariance 
calculated from machines 1, 3, 4, 6 and 10.  The machine 
HIs are now calculated using equation 3, in Figure 9. 

 
Figure 9. Planet bearing Health Index, Machine 8 is bad 

Machine 8 now had a median HI of 1.05, and is in Alarm.  

6. CONCLUSION 

After retrofitting ten, five year old machines with a CMS 
and setting the threshold, it was found that one machine had 
a bad planet bearing. Machine 8 was verified via borescope 
(Figure 2 and 3) that the planet bearing was damage. This is 
a problem for the asset owner, as they want to be assured 
that the thresholds on the monitored machines are set 
appropriately. The question is, what failure in process 
occurred such so that the bearing fault was missed?  

Upon investigation, a number of relatively minor errors can 
be attributed to the incorrect thresholds to include:  

• Poor frequency resolution: 0.11 Hz bin for analysis 
of a 0.29 Hz feature, which was resolved by  

o Improving the selection of the analysis 
envelope frequency and bandwidth  

o Increasing the length of the window 
spectrum  

• Assuming that all the machines were 
health/nominal.  

By reviewing the distribution of the machine condition 
indicators for Cage, Ball, Inner and Outer Race energy, it 
was apparent that some machines were better than others. 
Reprocessing the vibration data with the new envelope 
window and spectral length, and removing the CI data from 
those machines that were deemed in poor health, more 
appropriate thresholds were developed. These new threshold 
allowed the identification of machine 8 of having damaged 
planet bearing.  

The wind site will be continued to be monitoring, and over 
time it will be made clear if the current thresholds are 
appropriate.  

NOMENCLATURE 

CIs condition indicators 
CMS condition monitoring system 
CS cyclostationary signal 
HI health indicator 
PDF probability density funciton 
PFA  probability of false alarm 
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