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ABSTRACT

The key goal in prognostics is to predict the remaining use-
ful life (RUL) of engineering systems in order to guide dif-
ferent types of decision-making activities such as path plan-
ning, fault mitigation, etc. The remaining useful life of an
engineering component/system is defined as the first future
time-instant in which a set of safety threshold conditions are
violated. The violation of these conditions may render the
system inoperable or even lead to catastrophic failure. This
paper develops a computational methodology to analyze the
aforementioned set of safety threshold conditions, calculate
the probability of failure, and in turn, proposes a new hy-
pothesis to mathematically connect such probability to the re-
maining useful life prediction. A significant advantage of the
proposed methodology is that it is possible to learn important
properties of the remaining useful life, without simulating the
system until the occurrence of failure; this feature renders the
proposed approach unique in comparison with existing direct-
RUL-prediction approaches. The methodology also provides
a systematic way of treating the different sources of uncer-
tainty that may arise from imprecisely known future operating
conditions, inaccurate state-of-health state estimates, use of
imperfect models, etc. The proposed approach is developed
using a model-based framework prognostics using principles
of probability, and illustrated using a numerical example.

1. MOTIVATION

1.1. Introduction

The prediction of remaining useful life (RUL) is, perhaps, the
central component of a prognostics and health management
(PHM) system (Vaidya & Rausand, 2011). In order to predict
the RUL, it is necessary to thoroughly understand the func-
tioning of the engineering system under consideration, esti-
mate the state-of-health, analyze possible failure modes, pre-
dict damage growth using degradation models, and identify
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the future time-instant at which it is not possible to continue
operating the system (Engel, Gilmartin, Bongort, & Hess,
2000). The aforementioned time-instant is referred to as the
end-of-life (EOL), and it is possible to check whether EOL
has been reached by evaluating a binary threshold constraint
(referred to as the EOL-threshold function). Typically, safety
constraints and serviceability constraints are used to formu-
late the EOL-threshold function.

1.2. Uncertainty in Prognostics

An important aspect of prognostics is that future predic-
tion intrinsically needs to account for the various sources
of uncertainty that affect the future behavior of the sys-
tem (Orchard, Kacprzynski, Goebel, Saha, & Vachtsevanos,
2008). As a result, the EOL and RUL predictions become un-
certain (Sankararaman & Goebel, 2013); in fact, at any future
time-instant, there is a probability that the EOL-threshold is
violated/satisfied.

To begin with, it is practically impossible to estimate the
state of health because (1) it is rarely possible to measure
health directly, and it may be necessary to infer health from
system output measurements; and (2) such measurements
are obtained from sensors that may not be accurate due to
noise, gain, bias, etc. Techniques such as Kalman filter-
ing (Swanson, 2001) and particle filtering (Zio & Peloni,
2011) are used to estimate the state-of-health. Starting from
an arbitrary state of health, it is necessary to predict damage
growth using a degradation model. Damage growth is a func-
tion of usage/operating conditions, loading conditions, etc.,
all of which may be uncertain, and therefore, render damage
growth uncertain. The degradation model used for damage
growth prediction may also uncertain, and model uncertainty
is represented through uncertain model parameters and model
form errors (usually, approximated using process noise). It is
important to systematically account for these sources of un-
certainty in prognostics, and estimate the overall uncertainty
in the RUL prediction.
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1.3. Previous Work

Previous work in this context has focused on posing RUL pre-
diction as an uncertainty propagation problem (Sankararaman
& Goebel, 2013).

The RUL is expressed as a “black-box function” of all other
uncertain quantities; for every realization of these uncer-
tain quantities, the future behavior of the system is simu-
lated until EOL is reached. The aforementioned “black-
box function” is a combination of (1) damage degradation
model (Luo, Pattipati, Qiao, & Chigusa, 2008), usually ex-
pressed as a state-space model (Sun, Zuo, Wang, & Pecht,
2012); and (2) the EOL-threshold. Then, the uncertainty in
the RUL prediction is computed by propagating the differ-
ent sources of uncertainty through the so-called black-box
function. Such propagation can be accomplished through a
variety of sampling-based (Daigle, Saxena, & Goebel, 2012;
Sankararaman, 2015) and analytical methods (Sankararaman,
Daigle, & Goebel, 2014). These methods have been applied
to a variety of applications such as pumps (Daigle & Goebel,
2013), valves (Daigle & Goebel, 2011), batteries (Chen &
Rincon-Mora, 2006), structural crack growth damage prog-
nosis (Farrar & Lieven, 2007), capacitors (Kulkarni, Celaya,
Goebel, & Biswas, 2013) etc.

1.4. Proposed Approach

In general, the computation of the black-box function may
be computationally intensive since it requires simulation un-
til EOL is reached. The present paper explores an alterna-
tive method, where RUL can be predicted without simulat-
ing the system until EOL. This can be achieved by eval-
uating the likelihood of system failure, and the relation-
ship between such likelihood and the RUL can be mathe-
matically proved. The likelihood of system failure can be
calculated analytically, based on methods developed by re-
searchers in the field of “model-based reliability analysis”. It
is important not to confuse this terminology with reliability-
based life-prediction or testing-based life-prediction (Saxena,
Sankararaman, & Goebel, 2014) that focus on fleet-wide
prognostics; the present paper deals only with condition-
based prognostics by focusing on the operation of one partic-
ular unit at the component-level or system-level, as the case
maybe (Sankararaman, 2015). The proposed method is ap-
plicable for all scenarios where the state-of-health of the sys-
tem is monotonically decreasing (there may be some special
scenarios such as crack closure where the state-of-health im-
proves, and such cases are not considered in this paper).

1.5. Organization of the Paper

The rest of this paper is organized as follows. Section 2
presents the model-based framework for prognostics and
mathematically defines the remaining useful life of an engi-
neering system. Section 3 develops the new computational

System 1. Estimation 

Check EOL Threshold 2. Prediction 

3. RUL Computation 

Continue future state prediction until failure 

u(t) y(t) x(tP) 

x(t) 

t > tP 

Figure 1. Model-Based Prognostics Architecture

approach that connects the prediction of remaining useful life
with failure probability calculation. Section 4 illustrates the
proposed methodology using a numerical example, and fi-
nally, Section 5 concludes the paper.

2. REMAINING USEFUL LIFE IN PROGNOSTICS

This section describes a framework for model-based prog-
nostics, and mathematically defines the remaining useful life,
which in turn is based on the definition of end-of-life thresh-
old function.

Suppose that it is desired to perform prognostics and predict
the RUL at a generic time-instant tP . Consider the archi-
tecture shown in Fig. 1, where the whole problem of prog-
nostics can be considered to consist of the following three
sub-problems:

1. Present state estimation

2. Future state prediction

3. RUL computation

2.1. State Estimation

The first step of estimating the state at tP serves as the pre-
cursor to prognosis and RUL computation. Consider the state
space model that is used to continuously predict the state of
the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈
Rnv is the process noise vector, and f is the state equation.
As stated earlier, the state of the system uniquely defines the
amount of damage in the system.

The state vector at time tP , i.e., x(t) (and the parameters θ(t),
if they are unknown) is (are) estimated using output data col-
lected until tP . Let y(t) ∈ Rny , n(t) ∈ Rnn , and h de-
note the output vector, measurement noise vector, and output
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equation respectively. Then,

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

Typically, filtering approaches such as Kalman filtering, par-
ticle filtering, etc. may be used for such state estimation.

2.2. Future State Prediction

Having estimated the state at time tP , the next step is to pre-
dict the future states of the component/system. Note that,
since the focus is predicting future, no data is available, and it
is necessary to completely rely and use Eq. 1 for this purpose.
This differential equation can be discretized and used to pre-
dict the states at any future time instant t > tP , as a function
of the states at time tP .

2.3. RUL Computation

RUL computation is concerned with the performance of the
component that lies outside a given region of acceptable be-
havior. The desired performance is expressed through a set of
nc constraints, CEOL = {ci}nci=1, where ci : Rnx × Rnθ ×
Rnu → B maps a given point in the joint state-parameter
space given the current inputs, (x(t),θ(t),u(t)), to the
Boolean domain B , [0, 1], where ci(x(t),θ(t),u(t)) = 1 if
the constraint is satisfied, and 0 otherwise (Daigle & Goebel,
2013).

These individual constraints may be combined into a single
threshold function TEOL : Rnx × Rnθ × Rnu → B, defined
as:

TEOL(x(t),θ(t),u(t)) =

{
1, 0 ∈ {ci(x(t),θ(t),u(t))}nci=1

0, otherwise.
(3)

For the sake of simplicity, the above equation can be simply
written as:

TEOL(t) = TEOL(x(t),θ(t),u(t)) (4)

The above notation is valid and simpler to use because all the
arguments of TEOL in Eq. 3 can be calculated as a function of
t, and hence, TEOL(t) can be easily represented as a function
of only t.

TEOL is equal to 1 when EOL-threshold constraint is vio-
lated. Then, the End of Life (EOL, denoted by E) at any time
instant tP is then defined as the earliest time point at which
the value of TEOL becomes equal to one. Therefore,

E(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(t) = 1}. (5)

The Remaining Useful Life (RUL, denoted by R) at time in-
stant tP is expressed as:

R(tP ) , E(tP )− tP . (6)

Note that the output equation (Eq. 2) or output data (y(t)) is

not used in the prediction stage, and EOL and RUL are depen-
dent only on the state estimates at time tP ; though these state
estimates are obtained using the output data, the output data
is not used for EOL/RUL calculation after state estimation.

For the purpose of implentation, f in Eq. 1 is transformed
into the corresponding discrete-time version. Discrete time
is indexed by k, and there is a one-to-one relation between t
and k depending on the discretization level. While the time at
which prediction needs to be performed is denoted at tP , the
corresponding index is denoted by kP . Similar let kE denote
the time index that corresponds to the end of life. Thus, it is
clear that RUL predicted at time tP , i.e., R(tP ) depends on

1. Present state estimate (x(kP )); using the present state
estimate and the state space equations in Eq. 1, the future
states (x(kP ), x(kP + 1), x(kP + 2), ..., x(kE)) can be
calculated.

2. Future loading (u(kP ), u(kP +1), u(kP +2), ..., u(kE));
these values are needed to calculate the future state val-
ues using the state space equations.

3. Parameter values from time-index kP until time-index
kE (denoted by θ(kP ), θ(kP + 1), ..., θ(kE)).

4. Process noise (v(kP ), v(kP +1), v(kP +2), ..., v(kE)).

For the purpose of RUL prediction, all of the above quan-
tities are independent quantities and hence, RUL becomes a
dependent quantity. Let X = {X1, X2, ...Xi, ...Xn} denote
the vector of all the above dependent quantities, where n is
the length of the vector X , and therefore the number of un-
certain quantities that influence the RUL prediction. Then the
calculation of RUL (denoted by R) can be expressed in terms
of a function, as:

R = G(X) (7)

The above functional relation in Eq. 7 can be graphically ex-
plained, as shown in Fig. 2. Knowing the values of X , it
is possible to compute the corresponding value of R, using
Fig. 2 that is equivalently represented by Eq. 7. The quantities
contained inX are uncertain, and the focus in prognostics to
compute their combined effect on the RUL prediction, and
thereby compute the probability distribution of R. The prob-
lem of estimating the uncertainty in R is equivalent to propa-
gating the uncertainty in X through G, and researchers have
investigated different types of methods for this purpose. The
most commonly used methodology for this purpose is Monte
Carlo sampling, using which multiple realizations of R can
be obtained from multiple realizations of uncertain quanti-
ties. This approach is referred to as the direct-RUL-prediction
approach in this paper, and this is not pursued. An alterna-
tive statistical methodology is developed and the direct-RUL-
prediction approach will be used as a benchmark to compare
results from the newly proposed methodology.
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Figure 2. Definition of G

3. FAILURE PROBABILITY AND RUL

The proposed methodology is based on evaluating the likeli-
hood of satisfying the EOL-threshold constraint, and relating
this likelihood to the RUL prediction.

Consider the time of prediction tP , all time-instants t > tP .
As per Eq. 3, the system is said to be safe and operable so
long as “TEOL(t) = 0”, and the first future time-instant tE at
which TEOL(tE) becomes equal to one is said to be equal to
the EOL. For the sake of illustration and terminology descrip-
tion, assume that failure corresponds to TEOL = 1. Consider
the following probability that calculates the likelihood of fail-
ure:

Pf (t|tP ) = P (TEOL(t) = 1|tP ) (8)

Note that the above probability is calculated at the time of
prediction tP , but for a generic future time-instant t.

If it can be assumed the amount of damage/fault is non-
decreasing, then it can be easily visualized that the function
Pf (t|tP ) is non-decreasing with respect to time t. While
this does seem to be a reasonable assumption, it is not uni-
versally true. For example, in structural damage prognosis,
crack closure is a widely studied phenomena, and can lead to
an “improvement in the health state” (since crack closure can
result in an increased stiffness). The rest of this paper only
focuses on scenarios in which the amount of damage/fault
is non-decreasing, and therefore, Pf (t|tP ) is non-decreasing
with respect to time t.

The hypothesis proposed in this paper, is that Pf (t|tP ) is ex-
actly equal to the “probability that the end of life is less than

or equal to time t”. In mathematical terms:

Pf (t|tP ) = P (TE ≤ t|tP ) (9)

Note that the right hand side of the above equation is exactly
equal to the cumulative distribution function of the End-of-
Life.

Recall from Section 2 that the End-of-Life is an uncertain
quantity and needs to be expressed using a probability dis-
tribution. If TE denotes the random variable, and tE an in-
stance of this variables, then the probability density function
(PDF) and the cumulative distribution function (CDF) of this
variable are denoted by fTE (tE) and FTE (tE) respectively.
Therefore, Eq. 9 can be extended as:

Pf (t|tP ) = P (TE ≤ t|tP ) = FTE (tE) (10)

In order to prove the above hypothesis, consider “N” differ-
ent, random system paths starting from the time of predic-
tion tP . Consider a generic future time-instant t, by which
“m” paths have already reached the end-of-life. Therefore,
by mere definition of the CDF, it can be written that:

P (TE ≤ t|tP ) = FTE (tE) =
m

N
(11)

At the particular time t, there are now a total of “N” states out
of which “m” states “fall in” the zone of failure. Therefore,
it also follows that:

Pf (t|tP ) =
m

N
(12)

Therefore, by comparing Eq. 11, and Eq. 12, the proposed
hypothesis is therefore proved.
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This hypothesis provides a fundamentally different way of
calculating EOL and therefore, the RUL. Once EOL is ob-
tained, RUL can be easily calculated using Eq. 6. The ma-
jor advantage of the proposed methodology is that, in or-
der to calculate Pf (t|tP ), it is not necessary to simulate the
system until failure; nevertheless, this probability, through
Eq. 10, can provide the cumulative distribution function of the
EOL. The CDF value of EOL is critical in assigning credible-
intervals for the EOL, which are useful for decision-making,
and hence, it is believed that the proposed methodology will
be of immense value in this regard.

The computation of failure probability has been discussed by
several researchers, particular in the field of model-based re-
liability analysis. The most simplest method (simple to build
and code, but expensive to implement) is Monte Carlo sam-
pling (Robert & Casella, 2004). There are several advanced
sampling methods such as importance sampling (Glynn &
Iglehart, 1989), adaptive sampling (Bucher, 1988), strati-
fied sampling (Caflisch, 1998), etc., which can improve upon
the efficiency of basic Monte Carlo sampling. Alternatively,
there are also analytical methods developed by structural
reliability engineers; these include the first-order reliability
methods (Haldar & Mahadevan, 2000), second-order reliabil-
ity method (Der Kiureghian, Lin, & Hwang, 1987), etc. The
focus of the present paper is not on testing the applicability of
this methods, but on developing and proving the hypothesis
in Eq. 9, as applicable to condition-based prognostics. As this
hypothesis has been mathemtically proved in this section, it
is illustrated using a numerical example in the following sec-
tion.

4. NUMERICAL EXAMPLE

In order to illustrate the proposed methodology, consider the
problem of crack growth prognosis in a simple plate. This
plate is subjected to cyclic, uniform uniaxial stress (S), and
Paris’ law is used for crack growth analysis. Paris law calcu-
lates the increment in crack size per cycle of loading, in terms
of crack growth parameters (C and n), threshold stress inten-
sity factor (∆Kth), and load stress intensity factor (∆K):

da

dN
= C(∆K)n(1− ∆K

∆Kth
)p (13)

The stress intensity factor (∆K), for the sake of illustration,
is assumed to be available in closed form, as:

∆K = S
√
πa (14)

For the sake of this numerical example, “the 7075-T6” alu-
minum alloy is considered. The quantities S ∼ LN(100, 40),
C ∼ LN(6.54 × 10−13, 4.0 × 10−13), and ∆Kth ∼
LN(5.66 × 106, 0.268 × 106) are chosen to be lognormal
random variables. The quantities in parentheses above indi-
cate the mean and standard deviation of the random variables
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Figure 3. Crack Growth Behavior (No Uncertainty)

(all numerical values are in SI units). The exponents “n” and
“p” are assumed to 3.89 and 0.75 (no unit) respectively.

An important challenge in crack growth analysis, is that the
initial crack size is not known. A rigorous approach to fa-
tigue life would account for crack growth starting from the
actual initial flaw, accounting for imperfections, voids and
non-metallic inclusions. This procedure is cumbersome be-
cause small crack growth propagation is anomalous in nature
and hence not completely understood. On the other hand,
there are several crack growth models (Paris law (Pugno,
Ciavarella, Cornetti, & Carpinteri, 2006), AFGROW (Harter,
1999), etc.) in the long crack regime which are used to
study long crack growth behavior. Equivalent initial flaw
size is a fictitious quantity which was introduced to bypass
small crack growth calculations and make direct use of a long
crack growth law in order to make fatigue life prediction; the
EIFS must be chosen in such a way that when the long crack
growth law is used with EIFS as the initial value, it yields
crack growth results that match with observed crack growth
data (Liu & Mahadevan, 2009). Since EIFS is fictitious and
hence, not measurable, it needs to be estimated based on ob-
served data on crack size. There have been several studies on
how to estimate the equivalent initial flaw size (EIFS), and
the value reported by Liu and Mahadevan (Liu & Mahade-
van, 2009) is used in the analysis below; EIFS is assumed
to follow a lognormal distribution with mean and standard
deviation equal to 0.23mm and 0.05mm respectively. If aver-
age values are assumed for all the quantities (i.e., without any
uncertainty in them), then the crack growth behavior can be
obtained as shown in Fig. 3.

The failure threshold limit is set to be the time-instant when
the crack size exceeds 0.75mm. It can be easily seen that,
after this crack size, the rate of increase in crack size is phe-
nomenally high.

Including the different sources of uncertainty, the probability
density function of RUL is first computed using the direct-
RUL-prediction approach. Monte Carlo sampling is used for
the purpose of illustration, and the resulting probability den-
sity function is shown in Fig. 4. For this particular analysis,
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Figure 5. Failure Probability vs. Time

1000 Monte Carlo samples were used, and the resultant RUL
samples were converted into a probability density function
using principles of kernel density estimation.

Note that Fig. 4 is calculated using “G” in Eq. 2, whereas
the proposed approach only calculates P (TEOL(t) = 1),
which is equivalent to P (a > 0.75), where “a” represents the
crack size in this numerical example. As per the proposed ap-
proach, Pf (t|t0) is plotted as a function of time t (where the
time of prediction is denoted by t0, the initial time), as shown
in Fig. 5. Here, Monte Carlo analysis is used for the calcu-
lation of failure probability (note that Monte Carlo analysis
was previously used for direct-RUL-prediction, and required
simulation until failure), only for the purpose of illustration;
other advanced failure probability computation methods will
be investigated in future.

In order to demonstrate the proposed methodology, and il-
lustrate the comparison in Eq. 9, it is necessary to compare
(1) the cumulative distribution function corresponding to the
PDF in Fig. 4; and (2) the “failure probability versus time”
plot in Fig. 5. This comparison is shown in Fig. 6. Note
that, in this example, the time of prediction is considered as
“tP = 0”, and therefore the EOL and RUL are identical.

It can be seen from Fig. 6 that the two plots compare very
well, thereby illustrating the hypothesis proposed in Eq. 9.
While the direct-RUL-prediction approach requires simulat-
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Figure 6. Proof of Proposed Methodology

ing every sample until failure to obtain the prediction of EOL,
the proposed approach based on failure probability compu-
tation does not require this. In fact, the proposed approach
requires a much easier computation in comparison with the
direct-RUL-prediction approach, and also provides a system-
atic way of handling uncertainty, analogous to the direct-
RUL-prediction approach.

5. CONCLUSION

This paper presented a new computational methodology for
remaining useful life estimation in prognostics. While RUL
has been traditionally calculated by forecasting the state-of-
health degradation, the proposed approach calculates the like-
lihood of system failure and mathematically connects such
likelihood to the remaining useful life. The major advantage
of the proposed approach is that it is possible to learn about
the properties of RUL even without simulating until failure or
the end-of-life. The proposed approach was developed in the
context of model-based, condition-based prognostics, using
fundamentals of probabilistic analysis. This method is ap-
plicable to scenarios where the degradation is monotonically
decreasing (there may be some scenarios such as crack clo-
sure where the state of health improves). Finally, the method
was illustrated using a simple numerical example, consisting
of component-level remaining useful life prediction

It is further necessary to investigate the applicability of the
proposed approach to complicated EOL-threshold functions
and extend this approach to larger, practical engineering sys-
tems and applications.
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