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ABSTRACT

Due to the increasing complexity of technical systems, ac-
curate fault identification is crucial in order to reduce main-
tenance costs and system downtime. Model-based diagno-
sis has been proposed as an approach to improve fault local-
ization. By utilizing a system model, possible causes, i.e.
defects, for observable anomalies can be computed. Even
though model-based diagnosis rests on solid theoretical back-
ground, it has not been widely adopted in practice. The rea-
sons are twofold: on the one hand it requires an initial mod-
eling effort and on the other hand a high computational com-
plexity is associated with the diagnosis task in general. In
this paper we address these issues by proposing a process
for abductive model-based diagnosis in an industrial setting.
Suitable models are created automatically from failure assess-
ments available. Further, the compiled system descriptions
reside within a tractable space of abductive diagnosis. In or-
der to convey the feasibility of the approach we present re-
sults of an empirical evaluation based on several failure as-
sessments.

1. INTRODUCTION

Fault diagnosis of technical systems has gained attention on
account of safety and economic considerations in various
fields such as artificial intelligence or fault detection and iso-
lation (FDI). In order to improve diagnostic reasoning, the no-
tion and foundations of model-based diagnosis have been in-
vestigated (Reiter, 1987; de Kleer & Williams, 1987). Model-
based diagnosis as part of artificial intelligence rests on a for-
mal description of the system to be diagnosed and derives root
causes from observable anomalies. Within the last decades a
solid theoretical background has been established with two
approaches emerging: consistency-based and abductive diag-
nosis. The former depends on knowledge of the correct sys-
tem behavior and infers diagnoses via inconsistencies (Reiter,
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1987; de Kleer & Williams, 1987). In contrast, the abduc-
tive technique is based on models representing faults and their
manifestations. It exploits the concept of entailment to com-
pute abductive explanations for given observations (Console,
Dupré, & Torasso, 1989). Although building upon different
ideas, the close relationship between the two approaches has
been proven (Console, Dupre, & Torasso, 1991). Cordier
et al. (2004) have bridged the gap between the FDI and the
consistency-based approach by investigating their relations
and developing a unified framework.

Over the years there have been applications in various do-
mains, such as space probes (Williams & Nayak, 1996),
the automotive industry (Struss, Malik, & Sachenbacher,
1996), or environmental decision support systems (Wotawa,
Rodriguez-Roda, & Comas, 2010). Several projects have
been engaged in developing methods to integrate model-
based diagnosis into industrial processes (Milde, Gucken-
biehl, Malik, Neumann, & Struss, 2000; Fleischanderl,
Havelka, Schreiner, Stumptner, & Wotawa, 2001). These
efforts, however, mostly focus on the consistency-based
method. In general, the model-based approach has not been
accepted in practice, mainly due to the initial modeling and
the computational complexity (Console & Dressler, 1999;
Zoeteweij, Pietersma, Abreu, Feldman, & Van Gemund,
2008).

In this context we propose a process that relies first on Fail-
ure Mode Effect Analysis (FMEA) in order to develop system
models while keeping knowledge acquisition affordable and
second uses restricted logical formalisms where abduction
is still tractable (Eiter & Gottlob, 1995; Nordh & Zanuttini,
2008). FMEA as a reliability analysis tool is growing in im-
portance as it has been established as a mandatory task in cer-
tain industries, especially for systems that require a detailed
safety assessment (Catelani, Ciani, & Luongo, 2010). An
FMEA is a systematic analysis of possible component faults
and the consequences said faults have on the system behav-
ior and function (Hawkins & Woollons, 1998). Since it rep-
resents a clear causal dependency from specific fault modes
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to symptoms, an FMEA provides information needed for ab-
ductive reasoning (Wotawa, 2014). Model-based diagnosis
research has been concerned with the automatic creation of
FMEAs based on models (Price & Taylor, 2002; Struss &
Fraracci, 2012), however, we are considering the reverse pro-
cess, utilizing FMEAs already available to develop suitable
system descriptions.

This paper describes a process for applying abductive model-
based diagnosis to an industrial setting. The remainder is
structured as follows. After defining the abduction problem
and presenting one algorithm capable of computing abduc-
tive explanations, we outline our suggested process in Sec-
tion 3. In particular, we focus on the modeling methodology
from FMEAs, show that the generated models exhibit a cer-
tain topology resulting in a manageable computational com-
plexity, and discuss possibilities to improve the initial diag-
nosis results. Section 4 covers an empirical evaluation of the
abductive diagnosis algorithm for models derived from mul-
tiple FMEAs. Section 5 completes the paper and argues in
favor of the process’ feasibility.

2. PRELIMINARIES

We assume standard definitions for propositional logic
throughout this section (Chang & Lee, 2014). Abductive
inference generates plausible explanations for a given set of
observations by relying on the notion of entailment (Poole,
Goebel, & Aleliunas, 1987). A set of premises ψ logically
entails a conclusion φ if and only if for any interpretation in
which ψ is true φ is also true. We write this relation as ψ |= φ
and call φ a logical consequence of ψ. To utilize this type
of reasoning, the abductive model-based diagnosis approach
depends on a formalization of the relationship between faults
and discoverable manifestations to derive causes for observed
symptoms.

In general, abduction is an intractable problem, i.e. it cannot
be solved by a polynomial-time algorithm. However, there
are tractable subsets of logic, such as propositional definite
Horn theory (Nordh & Zanuttini, 2008). We draw upon these
findings and consider the propositional Horn clause abduc-
tion problem (PHCAP) as defined by Friedrich et al. (1990).
A PHCAP links causes to effects via propositional Horn sen-
tences. Let HC be the set of Horn clauses. Along similar
lines as Friedrich et al. (1990), we define a knowledge base
as a set of Horn clauses from HC over a finite set of proposi-
tional variables.

Definition 1 A knowledge base (KB) is a tuple (A,Hyp,Th)
where A denotes the set of propositional variables, Hyp ⊆ A
the set of hypotheses, and Th ⊆ HC the set of Horn clause
sentences over A.

The set of hypotheses denotes the propositional variables
which are possible causes and that we can assume to either
be true or false. Later in our modeling methodology these

hypotheses refer to component-based fault modes. Th repre-
sents the theory which contains rules describing the connec-
tions between hypotheses and their effects. In order to form
an abduction problem, a set of observations, i.e. discovered
effects, has to be considered for which explanations are to be
computed.

Definition 2 Given a knowledge base (A,Hyp,Th) and a set
of observations Obs⊆ A then the tuple (A,Hyp,Th,Obs) forms
a propositional Horn clause abduction problem (PHCAP).

Definition 3 Given a PHCAP (A,Hyp,Th,Obs). A set ∆ ⊆
Hyp is a solution if and only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|=
⊥. A solution ∆ is parsimonious or minimal if and only if no
set ∆′ ⊂∆ is a solution.

A solution to a PHCAP is a set of hypotheses which logically
entails the observations together with the background theory,
i.e. ∆ ∪ Th |= Obs. In addition, we require ∆ ∪ Th to be
consistent, as from inconsistencies anything can be inferred.
Considering that a solution comprises a set of hypotheses ex-
plaining the observations it is equivalent to an abductive di-
agnosis. While Definition 3 does not impose the limitation
on the diagnosis to be minimal, in most practical applications
only parsimonious solutions are of interest. Therefore, if not
specified otherwise, we refer to minimal diagnoses simply as
diagnoses. Notice that finding solutions to a given PHCAP
is an NP-complete problem. We refer the interested reader to
Friedrich, Gottlob, and Nejdl (1990) for a proof.

While there are several abductive reasoning systems, such
as Theorist (Poole et al., 1987), it is well known that
Assumption-Based Truth Maintenance Systems (ATMS) (de
Kleer, 1986a, 1986b) are capable of deriving abductive expla-
nations as well. The ATMS employs a graph structure where
hypotheses, observations, and contradiction are represented
as nodes. Implications determine the directed edges in the
graph. Each node has a label assigned which contains the set
of hypotheses said node can be inferred from. By updating
the labels, the ATMS retains consistency. In case a single ef-
fect is observed, the label of the corresponding proposition
already contains the abductive explanations. To handle mul-
tiple observations, a single rule is added, comprising a con-
junction of the observations on the left hand side and a new
proposition on the right hand side, i.e. o1∧o2 . . .∧on → obs.
Every set contained in the label of obs constitutes a solution
to the particular PHCAP. Wotawa, Rodriguez-Roda, and Co-
mas (2009) propose Algorithm 1 employing an ATMS and
returning consistent abductive explanations.

3. PROCESS

Intercalating abductive diagnosis into real-world applications
faces two major issues: constructing the domain model and
the complexity of diagnosis. In this regard we define a pro-
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Figure 1. Process for incorporating abductive model-based diagnosis in an industrial setting.

Algorithm 1 abductiveExplanations

procedure ABDUCTIVEEXPLANATIONS
(A,Hyp, Th,Obs)

Add Th to ATMS
Add

∧
o∈Obs o→ obs to ATMS . obs /∈ A

return the label of obs.
end procedure

cess to address these problems that takes advantage of infor-
mation available and the structure of the resulting system de-
scriptions. We divide the process into three main steps, as can
be seen in Figure 1:

1. Model Development

2. Fault Detection

3. Fault Identification

We give a short overview of the stages and subsequently elab-
orate on certain parts in the following sections.

1. Model Development. As mentioned earlier abductive
model-based diagnosis relies on an explicit description
of the system behavior in presence of a fault. Our model-
ing methodology utilizes FMEAs available. As these as-
sessments capture knowledge on failures and their symp-
toms, the mapping to a corresponding abductive knowl-
edge base (KB), as defined in the previous section, is
straightforward.
Since abductive diagnosis depends on the premise of
model completeness, we assume that all significant fault
modes for each contributing part of the system are be-
ing considered in the analysis. Furthermore, our map-
ping approach expects consistent effect descriptions, i.e.
a symptom is described in a uniform way throughout
the FMEA. Since FMEAs usually consider single faults
the resulting diagnostic system holds the single fault as-
sumption. Note that the model can be compiled automat-
ically offline.

2. Fault Detection. Abductive diagnosis derives possible
explanations for observed anomalies, hence to initiate
the diagnosis process, the presence of a fault has to be

detected. Within our process, we assume the manifesta-
tion of a fault is discovered by a monitoring system and
therefore do not consider the data acquisition or analysis
in detail.

3. Fault Identification. Once the presence of a disturbance
has been established, the possible causes associated with
the observations are to be computed. Due to the knowl-
edge represented in FMEAs, abductive diagnosis poses
an intuitive approach for fault identification. We already
discussed one possible algorithm capable of computing
abductive diagnoses in the previous section. The process,
however, is not limited to the use of this exact procedure
(Koitz & Wotawa, 2015a).

In the course of this paper we explain further improvements
to the initial set of solutions. In particular, we show a simple
diagnoses ranking according to probability theory and how
to determine the next probing point in order to diminish the
number of solutions.

3.1. Model Development

The initial construction of the system description related to
model-based diagnosis hinders a widespread industrial adop-
tion. To automate this task, we propose a mapping function
associating entries from an FMEA with propositional Horn
clauses. Even though there are several possible representa-
tion languages suitable for diagnosis, logics provide a precise
semantic of entailment necessary for abductive diagnosis.

Formally, we create a knowledge baseKB. To avoid some of
the inefficiencies due to complexity, we focus on a subset of
logics, namely definite propositional Horn clauses. This does
not impose a restriction in our case, as this representation is
specific enough to capture the information contained in the
FMEAs.

3.1.1. Running Example

The converter of an industrial wind turbine will act as our
running example to illustrate the modeling process. Since
the converter allows operation at variable speed whilst con-
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Table 1. Excerpt of the FMEA of the converter.

Component Fault Mode Effect
Fan - Pin Corrosion T cabinet, P turbine

Fan - Bearing Running Surface Thermo-mechanical fatigue (TMF) T cabinet, P turbine
Buck Boost - Electrolyte Capacitor Electrical chemical aging T power cabinet, P turbine, Equivalent series resistance (>)
Buck Boost - Electrolyte Capacitor Electrical chemical aging T power cabinet, P turbine, Alarm code (over voltage, link), Equivalent

series resistance (<), Electrolyte trace
IGBT - Wire Bonding High-cycle fatigue (HCF) T inverter cabinet, T nacelle, P turbine

necting the turbine to a constant frequency grid, it is a fun-
damental part of a modern industrial wind turbine. Table 1
depicts a portion of the corresponding FMEA omitting all
parts concerned with reliability analysis, e.g. severity ratings.
Each record contains information on a component’s possible
fault mode and the failure’s effects. For example, P turbine
refers to a deviation between expected and measured turbine
power output and T cabinet indicates a higher than predicted
temperature in the inverter cabinet (Gray, Koitz, Psutka, &
Wotawa, 2015). Notice that the effect descriptions in the third
column are consistent throughout the example.

We assume an FMEA comprises a set of components
COMP , their potential fault modes MODES, and the
set of effects which we define as a subset of the set of
propositional variables PROPS.

Definition 4 An FMEA is a set of tuples (C,M,E) where
C ∈ COMP is a component, M ∈ MODES is a fault
mode, and E ⊆ PROPS is a set of effects.

Since the FMEA already represents the relation between de-
fects and their manifestations the conversion to a suitable
abductive model is straightforward. The mapping function
M : 2FMEA 7→ HC generates corresponding propositional
Horn clauses for each entry of the FMEA, i.e. rules describ-
ing the connections between a component-based fault mode
and its effects.

Definition 5 Given an FMEA, the function M is defined as
follows:

M(FMEA) =def

⋃
t∈FMEA

M(t) (1)

where

M(C,M,E) =def {mode(C,M)→ e |e ∈ E } (2)

Hypotheses, hence all propositional variables allowed to
contribute as a cause, are represented as the proposition
mode(C,M), where C and M relate to the corresponding
component and fault mode, respectively. Equation. (3) de-
fines Hyp in this modeling context.

Hyp =def

⋃
(C,M,E)∈FMEA

{mode(C,M)} (3)

Considering the running example. We would obtain the fol-

lowing elements for the set of hypotheses:

Hyp =


mode(Fan Pin,Corrosion),

mode(Fan Bearing Running Surface,
Thermo mechanical fatigue (TMF )),

. . .


Equation (4) defines the set of propositional variables as the
union of all effects and hypotheses stored in the FMEA.

A =def

⋃
(C,M,E)∈FMEA

E ∪ {mode(C,M)} (4)

Continuing our converter example:

A =

{
mode(Fan Pin,Corrosion),
T cabinet, P turbine, . . .

}
Applying M results in the following theory Th completing
the KBConverter:

Th =



mode(Fan Pin,Corrosion)→ T cabinet,
mode(Fan Pin,Corrosion)→ P turbine,
mode(Fan Bearing Running Surface,
Thermo mechanical fatigue (TMF ))

→ T cabinet,
. . .


It is worth noticing that Th constructed from an FMEA
via M features bijunctive definite Horn clauses. To en-
sure that contradicting observations are omitted during di-
agnosis, additional Horn clauses are created in Th, stat-
ing that an effect and its complement cannot occur at
the same time, i.e. e ∧ ¬e → ⊥. For example, we
would include the rule Equivalent series resistance (<
) ∧ Equivalent series resistance (>)→ ⊥ in the theory.

3.1.2. One Single Fault Diagnosis Property

The appropriateness of the models obtained from the FMEA
is yet to be examined. Due to the fact that abductive explana-
tions are consistent by definition and complete given an ex-
haustive search, suitability refers to the characteristic of the
model that given all necessary information a single diagnosis
can be computed. We refer to this feature as the One Single
Fault Diagnosis Property (OSFDP).

Definition 6 Given a KB (A,Hyp, Th). KB fulfills the
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OSFDP if the following hold:

∀m ∈ Hyp : ∃Obs ⊆ A : {m} is a diagnosis of (A,Hyp,
Th,Obs) and ¬∃m′ ∈ Hyp : m′ 6= m such that{m’} is a
diagnosis for the same PHCAP.

The property can be checked by computing for each h ∈ Hyp
the set of propositions δ(h), such that {h} ∪ Th |= δ(h). In
case {h} ∪ Th leads to a contradiction, δ(h) equals ∅. If
for any two hypotheses the derived propositions are the same,
the OSFDP is not satisfiable. Besides determining whether
single fault diagnoses can be computed, the absence of the
property indicates that KB is not complete, i.e. information
is missing. In the case of FMEAs this can signal that internal
variables or observations have not been contemplated during
the analysis. A polynomial time algorithm for testing whether
the property is satisfied can be found in Wotawa (2014).

A simple procedure to enforce the OSFDP treats indistin-
guishable faults as a unit. Hence, each set of indistinguishable
hypotheses {h1, h2, . . . hn} is replaced by a new hypothesis
h′. We proceed with these substitutions until the OSFDP is
fulfilled. Algorithm 2 ensures that after termination the given
KB satisfies the property. It assumes that for each hypothesis
in Hyp the set δ(h) has already been computed. Due to the
finite number of hypotheses as well as possible effects con-
tained in δ(h), the procedure must halt. Further, the complex-
ity of the algorithm is determined by the three nested loops,
hence O(|Hyp|2 + |A−Hyp|).

Enforcing the OSFDP has a practical rational: Since the in-
distinguishable faults cannot be differentiated, all compo-
nents have to be repaired or replaced in case they are part
of the diagnosis. Thus, treating them as a single unit during
diagnosis does not influence the result; however, it does have
an effect on the computational effort because it reduces the
number of possible hypotheses to consider.

Our running example of the converter does not ful-
fill the OSFDP, since mode(Fan Pin,Corrosion) and
mode(Fan Bearing Running Surface, Thermo mech
anical fatigue (TMF )) are not distinguishable. By
removing both hypotheses and introducing h′ =
mode((Fan Pin, Fan Bearing Running Surface), (Co
rrosion, Thermo mechanical fatigue (TMF ))) the
property is fulfilled.

3.2. Fault Identification

Since the modeling methodology generates definite Horn the-
ories, abductive reasoning is tractable (Nordh & Zanuttini,
2008). Due to the structure of the FMEAs, the resulting
system descriptions are acyclic and contain solely bijunctive
clauses. There are two exceptions: the formulae generated
to account for contradicting observations and the implication
mapping all observed effects to the proposition obs. Further

Algorithm 2 distinguishHypotheses

procedure DISTINGUISHHYPOTHESES
(KB(A,Hyp, Th))

Ψ[|Hyp|]← Hyp
for all h1 ∈ Ψ do

for all h2 ∈ Ψ do
if h1 6= h2 then

if δ(h1) = δ(h2) and δ(h1) 6= ∅ then
Create new hypothesis h′

. h′ /∈ Hyp
Add h′ to Ψ
Add h′ to A
for all e ∈ δ(h1) do

Add (h′ → e) to Th
Remove (h1 → e) from Th
Remove (h2 → e) from Th

end for
Remove h1 ∧ h2 from Ψ
Remove h1 ∧ h2 from A

end if
end if

end for
end for
return KB(A,Ψ, Th)

end procedure

the intersection of the set of hypotheses and effects is empty.
These features of the model all reduce the computation com-
plexity in regard to the abduction problem. In particular, ab-
ductive diagnosis requires polynomial time in our case. For
a more detailed discussion we refer the interested reader to
Koitz and Wotawa (2015b).

3.2.1. Observation Discrimination

Generally, there might be an exponential number of diag-
noses. In a real world context, however, a single solution
is preferred. Probe selection has been proposed as a way
to minimize the number of results. While other approaches
assume an interleaved process between diagnosis and repair
(Friedrich et al., 1990), Wotawa (2011) suggests computing
all solutions and subsequently adding new symptoms which
allow to discriminate diagnoses. A discriminating observa-
tion is a measurement not yet considered, which decreases
the number of possible faults.

Definition 7 Given a PHCAP (A,Hyp,Th,Obs) and two di-
agnoses ∆1 and ∆2. A new observation o ∈ A \ Obs dis-
criminates two diagnoses if and only if ∆1 is a diagnosis for
(A,Hyp,Th,Obs ∪ {o}) but ∆2 is not.

According to information theory, the observation with the
highest entropy H(o) (Eq. (5)) provides the best probing
point (de Kleer & Williams, 1987).

H(o) = −p(o) · log2 p(o)− (1− p(o)) · log2(1− p(o)) (5)

p(o) denotes the probability of observation o and is defined
in Eq. (6).
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Table 2. Features of the FMEAs and experimental results. For each component we conducted the experiment using the original
model as well as a model fulfilling the OSFDP. The last three columns display the maximum number of single faults, double
faults, and triple faults, respectively.

Model Structure Runtime [in ms] #Diagnoses
Component #Hyp #Effects #Rules MIN MAX AVG MED MAX AVG SF DF TF

Electrical circuit Original 32 17 52 < 1 994 48.04 2 792 191.61 11 22 44
OSFDP 15 17 35 < 1 40 0.99 1 1 1 1 1 1

Ford connector Original 17 17 56 < 1 204 2.08 1 18 3.14 6 18 18
system OSFDP 15 17 49 < 1 172 1.37 1 18 2.85 6 12 18

HIFI - FPU Original 17 11 35 < 1 214 5.17 1 189 8.21 7 21 27
OSFDP 9 11 27 < 1 18 0.83 1 12 1.59 3 6 6

MiTS1 Original 17 21 47 < 1 307 7.59 1 12 5.40 3 3 6
OSFDP 13 21 43 < 1 312 5.38 1 1 1.00 1 1 1

MiTS 2 Original 22 15 48 < 1 191 6.60 2 288 37.44 8 24 24
OSFDP 14 15 37 < 1 23 1.04 1 10 1.96 5 10 10

PCB Original 10 11 24 < 1 140 1.29 0 2 1.55 2 2 2
OSFDP 9 11 23 < 1 140 0.87 0 1 1.00 1 1 1

ACD Original 13 16 52 < 1 210 4.47 1 15 2.44 5 8 15
OSFDP 12 16 39 < 1 199 3.51 1 10 1.77 5 5 10

Inverter Original 29 38 165 < 1 4830 34.80 10 1280 33.00 19 57 76
OSFDP 23 38 124 < 1 331 9.91 4 144 6.04 13 39 26

Rectifier Original 20 17 93 < 1 53 3.80 3 160 10.76 15 40 64
OSFDP 14 17 66 < 1 176 4.11 2 30 3.50 9 18 24

Transformer Original 4 8 22 < 1 70 0.73 0 4 1.17 4 2 2
OSFDP 4 8 22 < 1 153 1.05 0 4 1.17 4 2 2

Backup Original 25 30 114 < 1 856 14.77 5 864 25.08 9 42 210
components OSFDP 19 30 95 < 1 172 3.67 3 90 3.53 7 30 72

Main bearing Original 3 5 20 < 1 191 1.68 0 3 2.41 3 0 0
OSFDP 2 5 15 < 1 184 0.84 0 2 1.41 2 0 0

p(o) =
|{∆|∆ ∈ ∆-Set,∆ ∪ Th |= {o}}|

|∆-Set|
(6)

∆-Set is the set of diagnoses obtained as a solution to the PH-
CAP. Once the next best probing point has been selected and
the additional measurements have been taken, the probing re-
sults are passed on to the diagnosis engine as observations
and the fault identification process is restarted.

3.2.2. Fault Ranking

We assume independence amongst faults. Hence, the proba-
bility of a diagnosis ∆, derived from the knowledge baseKB
and given observations Obs, can be computed by Eq. (7).

p(∆) =
∏
h∈∆

p(h)
∏
h/∈∆

(1− p(h)) (7)

p(h) represents the a-prior probability of the fault h. We pre-
sume that the fault probabilities are known, e.g. from the
manufacturer or fault history analysis. Given a PHCAP we
compute p(∆) for all diagnoses in ∆-Set and subsequently
assign ranks correspondingly.

4. EMPIRICAL EVALUATION

In this section we report on our test scenarios and results. We
obtained several publicly available as well as project inter-
nal FMEAs considering diverse technical systems and sub-
systems. Subsequently, we created corresponding abductive
knowledge bases KB from the analyses via the mapping
function M. The FMEAs cover electrical circuits, a connec-
tor system by Ford, the Focal Plane Unit (FPU) of the Het-
erodyne Instrument for the Far Infrared (HIFI) built for the
Herschel Space Observatory, printed circuit boards (PCB),
the Anticoincidence Detector (ACD) mounted on the Large
Area Telescope of the Fermi Gamma-ray Space Telescope,
the Maritim ITStandard (MiTS), as well as rectifier, inverter,
transformer, main bearing, and backup components of an in-
dustrial wind turbine. As can be seen from Table 2 these
FMEAs vary in the number of components and faults (i.e.
hypotheses), observations (i.e. effects), as well as connec-
tions between faults and effects (i.e. rules). Note that the
numbers referred to in the table correspond to the underly-
ing FMEAs and not to the abductive model. We tested each
FMEA for the OSFDP and as Table 2 reveals none, except
of the model resulting from the transformer’s failure assess-
ment, of the original models satisfies the property. To gener-
ate models which fulfill the OSFDP, each set of indistinguish-
able hypotheses was exchanged with a new single hypothesis
representing said set. Thus, the number of hypotheses and
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(a) Original models (b) Adapted models fulfilling the OSFDP

Figure 2. Box-and-whisker plots of the underlying statistical distributions of the log runtimes.

rules diminishes for the adapted models. We do not report on
the computation time of the mapping, as model generation is
executed offline and the conversions we have computed so far
took less than a second.

After model compilation, we examined the performance of a
Java implementation of Algorithm 1 on the generated KBs.
The evaluation was performed on an Intel Core i7-4700MQ
processor (2.60 GHz) with 8 GB RAM on Windows 7 Enter-
prise (64-bit). Note that our implementation utilizes an unfo-
cussed ATMS (Forbus & de Kleer, 1988). For each FMEA
we ran the algorithm for |obs| from 1 to maximum number of
effects possible. The observation set was generated randomly,
however, we utilized the same observations for the original as
well as for the adapted model. The results reported in Table 2
have been obtained from 100 trials. Unsurprisingly, the run-
time increases with the number of rules to consider. As the
results show while there are maximum computation times of
around five seconds, the median of the distributions is located
around and below ten milliseconds. Comparing the original
model to the OSFDP variant, we see a performance advantage
of the latter for the majority of examples. It is worth noticing
that even though the transformer example already satisfied the
OSFDP, the runtimes deviate. These discrepancies can be at-
tributed to the small unit of measurement in the millisecond
range.

Figure 2 depicts the underlying statistical distribution of the
performance for the original and the adapted models. In order
to determine whether the adapted models are superior in re-
gard to the diagnosis performance, we used an adaptation of
the sign test as described by Stumptner and Wotawa (2001).
Suppose paired runtime data (x1, y1), (x2, y2), . . . , (xn, yn)
from the original and adapted models, respectively. We pro-
pose the hypothesis H0 : mX = mY , stating a median dif-
ference of zero. H1 : md > 0 is our alternative hypothesis,
where md denotes the median of X − Y . Let Z be the sum

of pairs, where xi > yi. Given H0 is true, the test statistic
Z ∼ B0.5,n has to be binomial distributed. We refute H0 and
accept H1 if the critical value zα is smaller than the z value
from the sample. Since there is a large number of samples
in our evaluation, the critical values for the sign test are not
based directly on the binomial distribution, but rather on a
normal approximation. For α = 0.05 we accepted H1, i.e.
the runtime performance for the adapted models is superior
to the original ones.

5. CONCLUSION

In the course of the presented research, we proposed a process
to facilitate the adoption of abductive model-based diagnosis
in industrial practice. FMEAs contain information suitable
for abductive system descriptions and allow us to automati-
cally generate models offline. Exploiting failure assessments
is a feasible approach, as on the one hand this sort of analy-
ses is becoming increasingly important and on the other hand
the abduction problem corresponding to the contents of these
documents is computationally feasible. We evaluated the re-
sulting models on an implementation of an abductive diagno-
sis algorithm to identify corresponding performance trends.
The results indicate that the computation times are on aver-
age under half a second. We argue that the automated model-
ing based on FMEAs allows for immediate reuse of informa-
tion and thus provides a convenient way to employ abductive
model-based diagnosis without the associated modeling ef-
fort.
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NOMENCLATURE

α significance level
A set of propositional variables
ACD Anticoincidence Detector
ATMS Assumption-Based Truth Maintenance

System
C component
COMP set of components
δ(h) propositions entailed by hypothesis h
∆ diagnosis
∆-Set set containing all diagnoses
DF double fault
E set of effects
FDI fault detection and isolation
FMEA Failure Mode Effect Analysis
H entropy
HC set of Horn clauses
HIFI-FPU Focal Plane Unit of the Heterodyne

Instrument for the Far Infrared built
for the Herschel Space Observatory

Hyp set of hypotheses
KB Knowledge Base
m median value
M fault mode
M mapping function
MiTS Maritim ITStandard
MODES set of fault modes
obs set of observations
Obs set of all possible observations
OSFDP One Single Fault Diagnosis Property
p probability
PCB Printed Circuit Boards
PHCAP Propositional Horn Clause Abduction

Problem
PROPS set of propositional variables
SF single fault
Th theory
TF triple fault
X,Y random variables
Z test statistic
zα critical value
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