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ABSTRACT

For safety-critical applications, safety diagnostics compo-
nents are an attractive safeguard for meeting some specified
safety requirements under operation. Like a monitor, such
a software artifact shall supervise a system under operation,
and furthermore, if needed, it overrides the system’s control
software in order to maintain safety. In this paper we con-
tribute to testing such a component, suggesting an approach
that draws on fault injection and, in order to enhance deploya-
bility, accommodates also needs in respect of business issues
like intellectual property disclosure and ressource efficiency.
The required testing oracle we directly obtain from the de-
fined and formalized functional safety requirements, for the
purpose of assessing that the safety diagnostic component in-
deed maintains safety also under faulty conditions.

1. INTRODUCTION

Scientific evolution has been allowing us to continuously step
ahead and develop solutions tackling problems that priorly
seemed intractable. Consequently, the technology to assess
and manage risks involved with our designs and their pos-
sibly faulty behavior has been facing constantly rising de-
mands. For instance, in respect of effectiveness in highly
dynamic environments, efficiency at handling complex de-
signs, and robustness in order to name just a few challenges.
For many a project, we seek to pro-actively address related
safety concerns, as is demanded by public regulations via
standards like IEC 615081 and its adaptation ISO 262622

(Automotive Safety Integrity Level (ASIL) as used in the au-
tomotive industry) on one side, and customers on the other
one. For instance, in electronic design automation industry,
logics like the Linear Temporal Logic LTL (Pnueli, 1977)
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or the Property Specification Language PSL (Eisner & Fis-
man, 2006) have been used to describe desired system re-
quirements (properties) to be used for automated verifica-
tion like model-checking (Clarke, Grumberg, & Peled, 1999).
Recent work assists designers in formalizing these require-
ments (Bloem, Cavada, Pill, Roveri, & Tchaltsev, 2007). Also
an AI-based diagnosis approach for diagnosing faults in such
formalized requirements has been proposed (Pill & Quar-
itsch, 2013).

For the design and operation of nuclear power plants, space
applications, or avionics, the importance of designing and sat-
isfying safety requirements is obvious to each and everyone
of us. However, also for more mundane systems like private
cars, such concerns and corresponding requirements are, and
have been, of utmost importance in their design and opera-
tion. Imagine, for instance, an automated parking brake. Cer-
tainly we would like it to be released only on a driver’s com-
mand (manual release, tipping the gas pedal, ...). The assis-
tance systems available in today’s car would take many vari-
ables into account for deciding about this (e.g. driver present,
doors closed, seatbelts fastened, ...), which makes it important
to clearly specify safety targets like the one above that have
to be met under all circumstancess. Such specific require-
ments to be verified during the design stages and monitored
under operation shall help that safety (or related functional-
ity aspects) are ensured, no matter the system’s complexity or
unexpected issues in ”live” real-world situations.

Diagnostic reasoning (de Kleer & Williams, 1987; Reiter,
1987) as explored by the Artificial Intelligence community
(i.e. the DX community) is a powerful asset for tackling re-
lated issues (Weber & Wotawa, 2010). That is, finding a fault
and identifying its root cause(s) certainly is an important and
essential step towards keeping a system operating as optimal

1e.g., http://www.iec.ch/functionalsafety/
2e.g., http://www.iso.org/iso/catalogue detail?csnumber=43464
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as possible. Complementing the theoretical and application-
specific research on solutions to the diagnosis problem itself,
in order to enhance deployability of corresponding solutions,
we also have to address the question of how to accommodate
diagnostic reasoning components in the system design pro-
cess.

For our current work, we consider this very question and fo-
cus on the specific issue of testing a diagnostic component’s
effectiveness. That is, we assume the scenario of a safety
diagnostic component SDC supervising some control soft-
ware CS (like a controller for the automated parking brake
of above) and that can even override it in case of the software
violating specified functional safety requirements. The task
we face is testing that, indeed, SDC maintains safety as de-
fined by the requirements, even if the control software would
show some potentially hazardous behavior.

The testing concept that we propose easily integrates into an
overall system’s development process. Aiming to minimize
needed resources, we reuse the input parts of the test cases
available for the supervised component CS, since they were
already designed to exercise the system thoroughly (also cov-
ering a wide selection of interesting scenarios). Since our
test purpose is to assess whether SDC indeed lives up to our
expectations of maintaining compliance to some safety re-
quirements REQ, we use the concept of mutation testing in
order to inject faults and simulate control software faults to
be considered and dealt with by the diagnostic engine. The
product of the reused input sequences and designed fault sce-
narios (mutants) shall be used to evaluate SDC’s capabilities.
In this context, we judge safety conformance with a test or-
acle directly derived from the safety requirements REQ that
are specified (or need to be translated) in a concise logic in
order to support automated reasoning.

Before discussing our concept in Section 4 and related work
in Section 3, we introduce a motivating example in Section 2
where we elaborate also on our problem description. A dis-
cussion of our approach, as well as corresponding conclu-
sions and directions for future work are provided in Section 5.

2. A MOTIVATING SCENARIO AND TASK ANALYSIS

The basic task that the considered diagnostic component SDC
has to tackle is to ensure that some defined safety require-
ments are met even if the control software CS would show
some hazardous behavior. The latter could result either from
some fault(s) in the software design like forgotten corner
cases, faults in the implementation, some memory corruption
(e.g. due to (Kim et al., 2014)) or other hardware faults, com-
piler errors, and many other issues. Certainly software de-
signers add assertions and other sanity checks to their control
software, possibly complemented with some elaborate code
that aims at keeping the control software in a safe state (e.g.
fault tolerant control concepts).
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Figure 1. Integrating safety diagnostics

Now let us assume that we do have also some ”external”
SDC that sort of acts as last defense. As is illustrated in Fig-
ure 1, it supervises the control software CS in that it collects
all of CS’s relevant inputs I , its outputs O, and then decides
whether the I/O scenario complies with defined safety goals
REQ, using diagnostic reasoning to investigate encountered
issues. If necessary, it can override CS by altering the output
from O to O′ in order to maintain safety. The latter (depicted
by an abstract selection function SELFCT in Fig. 1), obvi-
ously, can be implemented in many ways. One option would
be a dedicated component on the main bus, another one the
use of individual priority signal lines to the final actuators
controlled by CS (like a gear box or a clutch). In practice, the
choice of implementation might also be made individually for
each isolated signal or component controlled by CS.

Definition 1 A Safety Diagnostics Component (SDC) (see
also Figure 1) observes the inputs I and outputs O of the
supervised system CS, monitors for given requirements REQ
the property of I ∪ O ∪ REQ being consistent (satisfiable),
and for a violation designs a new output O′ delivered
via a given component SELFCT such that I ∪ O′ ∪
REQ is consistent (satisfiable)

Let us discuss this concept in the context of a simple
WUMPUS-like scenario. The main character in this sce-
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Figure 2. Move from A1 to C3 in a small world with walls
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nario is a small robot that explores a grid-based world with
walls. It may rotate 90-degree-wise in both directions, shift
gears to forward, backward, or neutral, can move step-wise
by one grid-element (see Figure 2 for an example world),
and the drive unit can be shut off. The corresponding com-
mands at control software level would be RL / RR to rotate
left or right, SGF / SGB / SGN to shift the gearbox, M to
move, and CP for cutting the drive unit’s power. Let us
assume that the robot can sense its position, and that the
current task is to move from A1 to C3 in the world de-
picted in Figure 2. Assuming the robot is oriented towards
the east, a possible command sequence to achieve this is
SGF, M, M, M, M, SGF, RR, SGF, M, SGN, RR, SGF, M, M,
SGN, RL, SGF, M (,CP). Now let us assume that for some
reason, like a bit flip or memory corruption, for the first com-
mand SGF, the gearbox changes to backward instead. De-
pending on where the exact fault occurred, besides assertions
that check position, orientation, and other available internal
knowledge, the robot might not be aware of the fact that when
set in motion it will not proceed to A2, but hit the western
wall in A1. Thus, when the robot executes the next activity
M, without some interference it would actually hit a wall.

However, a safety requirement any designer would definitely
derive for this application scenario is that the robot should
never hit a wall. The safety diagnostics component imple-
menting REQ then most likely would monitor continuously
the robot’s proximity to obstacles, and, e.g., in two violation
levels could first shift the gearbox to neutral and if this does
not suffice (gearbox malfunction) could even cut the power
from the drive. An elaborate reasoning engine might try to de-
termine (diagnose) the detailed reason for the violation (e.g.
a second moving robot vs. a wall) in order to derive the best
course (like triggering an emergency protocol in CS for flee-
ing from another swarm robot that seems out of control) and
degrade task performance in a sensible way.

Even the simple WUMPUS-like scenario shows why having
an external component supervising the main software could
be of advantage. For instance,

• it can consider information at a different level of abstrac-
tion or at different frequencies.

• while the main software’s complexity could ask for state-
of-the-art components, the diagnostic engine could run
on special, e.g. radiation-hardened, hardware that has
been showing reliability in the designated environment in
the past (concerning special demands in respect of heat,
humidity, radiation, electric/magnetic fields,...).

• for SDC′s development, conceptional details from the
main software (data handling, operation frequencies,
real-time issues) represent no restrictions, so that one can
concentrate on a requirements-based development (fo-
cusing on REQ) vs. a system-design oriented adaption
of relevant functionality in CS.

• flexibility is offered also in the direction of collecting I
and O. That is, we could possibly grab signal values
from the software itself, or also at some location in the
hardware lines so that a malfunction in the lines would
also be covered.

Obviously, an SDC offers many advantages, best combined
with afore-mentioned functionalities in the control software
itself. For actual deployment, confidence in SDC’s capabil-
ities is however of utmost importance. The specific chal-
lenge we consider in this paper is related to this very issue,
in that we propose a testing concept for the purpose of as-
sessing whether SDC actually lives up to the task of avoiding
violations of specified safety requirements REQ, even if the
control software would malfunction. More formally, we aim
to test whether SDC conforms to REQ as of Def. 2.

Definition 2 Let SDC be a safety diagnostics component
as of Definition 1 which supervises some system CS. Then
for some given requirements REQ and possible fault modes
FAULTS of CS, SDC conforms to REQ if and only if for all
inputs I , we have that REQ ∪ I ∪ O′ is consistent (is satisfi-
able).

Obviously, a formal proof of such a conformance would be
optimal, but is not a likely scenario since (a) the system
is most likely too complex to apply techniques like model-
checking (Clarke et al., 1999), and (b) we cannot assume the
system to be a white box for us. Furthermore, considering a
model only, would not support us in finally checking the very
implementation “live” on actual hardware and in the actual
environment (relevant e.g. in respect of radiation or other
straining effects that could possibly affect timings, memory
contents, and other electronics). Thus, we propose to im-
plement a testing concept for evaluating the desired confor-
mance. This concept then can be implemented at various ab-
straction levels (from specification level to the final product).

Aside academic questions like those regarding test design and
coverage, for deployment in industry, e.g., for an automotive
application, we have to consider also issues and restrictions
originating from business issues to be faced in the develop-
ment process. For instance, the availability of detailed system
information (white vs. grey vs. black box) certainly is of an
issue for such an automotive scenario. Thus it is also unlikely
that we can inject faults for purposefully exercising SDC at
will (see Sec. 3 for a discussion of mutation testing) or have
access to all the internal models for imagining and deriving
test cases. However, we can assume that a function enabling
specific faults in the software can be made available, since
this suits also testing the individual components themselves.
Also the safety requirements to be enforced should be avail-
able (although not necessarily in a formal syntax), since they
are essential for the design of the system.
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To this end, in Section 4 we outline an approach for testing
SDC in the exemplary context of an automotive application,
which takes also business-related issues into account and ad-
dresses the conformance problem as of Definition 2. The un-
derlying concept is to execute the system under test (SUT)
using the test inputs originally designed for testing CS (or the
overall system). We inject faults f ∈ FAULTS into CS using
provided fault injection functions, and then record the result-
ing outputs O′. A test oracle derived from the given (safety)
requirements REQ then classifies the input and recorded out-
put in respect of conformance to REQ as of Definition 2.

Please note that our testing concept is independent from the
concepts used for developing and implementing the SDC. De-
pending on the actual system and requirements (and their
structure), one might be able to implement individual mon-
itors for the requirements that then trigger some signal that
per construction results in a safe system state. More so-
phisticated solutions that perform some abstract model-based
diagnosis (de Kleer & Williams, 1987; Reiter, 1987) rea-
soning and/or try to alter the system to degrade in a grace-
ful way (maintaining the best possible functional perfor-
mance) (Weber & Wotawa, 2010) can also be implemented,
which we account for in using the term SDC.

3. RELATED RESEARCH

In automated software testing, we can distinguish between
two different kinds of methods: active testing and passive
testing. Active testing (see (Broy, Jonsson, Katoen, Leucker,
& Pretschner, 2005)) is a method that makes use of a SUT’s
model for deriving test suites and a corresponding oracle. The
model represents a formalization of the SUT’s essential be-
havior, from which tests, i.e., the required input and the ex-
pected output, can be obtained more or less directly. This
usually results in abstract test cases, requiring a transforma-
tion into executable ones where parameters and actions are
mapped to concrete values and actions.

Passive testing (Arnedo, Cavalli, & Nunez, 2003), or monitor-
ing, is a testing methodology that mainly applies in situations
where a SUT is at least not supposed to be fully controlled.
The input then solely comes from users or the environment,
and from real scenarios at that. Corresponding traces for these
interactions are monitored. The passive tester then takes a
system specification as reference model, and evaluates the
collected traces with respect to this model in order to qualify
a certain trace as correct or incorrect. Since we do not derive
new test cases but reuse existing ones (possibly extended by
a full live operation where we do not provide any inputs at
all) and classify the results according to an abstract (safety)
requirements specification, rather than checking the detailed
functionality, our work could be classified as passive testing
approach with an active “touch”. Obviously, also the con-

cepts for the SDC component have to tackle many challenges
of passive testing.

A method central to our approach is fault injection. Software
fault injection (Voas & McGraw, 1999) is a common tech-
nique used in software testing as a modality to verify the ap-
plication’s robustness and also tolerance of selected faults.
This technique assumes the availability of a selection of op-
erators that inject faults into the application. Among fault in-
jection techniques commonly used for software applications,
mutation testing is the oldest one, being introduced for the
first time in 1971 (DeMillo, Lipton, & Sayward, 1978). Dif-
ferent types of software systems may use the benefits of mu-
tation testing, since it can be successfully applied to different
levels of testing and for different programming environments.
In the context of mutation testing, we evaluate the quality of
a test suite, i.e., a set of test cases, by injecting small soft-
ware changes, i.e., mutations, at source code or byte code
level, and then we verify whether there is some anomalous
response. That is, the generated test suite is run against all
the mutants generated (the altered software versions), and we
investigate whether there is some test case in the suite s.t. the
output differs for the original program and a mutant. The mu-
tation score (i.e., the percentage of mutants for which the test
suite offers such a test case) serves as metric for assessing a
test suite’s quality.

There are two major drawbacks with mutation testing. For
one, there are time complexity issues in respect of the
ressources needed to run all the tests for all the mutants,
specifically if we include many mutation operators. The other
issue is related to interpreting the mutation score. That is,
since, most likely, the functional equivalence between a mu-
tant and its original program is not investigated beforehand,
we run into the problem of identifying those mutants for
which the test suite does not offer a killing test case, but which
are functionally (semantically) equivalent to the original pro-
gram (and thus represent an alternative correct implementa-
tion). If this cumbersome process is not executed, such equiv-
alent mutants result in a lower mutation score, which has to
be taken into account. There are many tools available for mu-
tation testing, e.g.: FIAT (Fault Injection-based Automated
Testing) (Segall et al., 1988), PROTEUM (Delamaro, 1993;
Agrawal et al., 1989; Ghosh, 2000) tools for C source code
mutation testing, MUJAVA (Ma, Offutt, & Kwon, 2006) a
Java based mutation tool, and SQLMutation (Tuya, Suárez-
Cabal, & la Riva, 2007) and JDAMA (Zhou & Frankl, 2009)
for SQL. In this paper we assume that there is such a mutation
testing tool for the desired development environment, that in
turn allows us to inject faults into the control software.

4. TESTING THE SAFETY DIAGNOSTICS COMPONENT

In Sec. 2, we formalized the purpose of a safety diagnostics
component in Def. 1 (see also Fig. 1). Informally, its task is
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to monitor all the supervised system CS’s activities, and, if it
detects hazardous behavior (such that the safety requirements
would not be met), actions shall be taken in order to maintain
safety. To this end, the SDC collects all the inputs I as con-
sidered by the control software, as well as CS’s outputO, and,
if needed, issues special signals overriding O and resulting in
output O′ s.t. the scenario I/O′ actually implements REQ.
The obvious question then is whether SDC indeed lives up to
this task and actually conforms to REQ as of Def. 2.

For practical purposes, rather than considering a completely
unrestrained fault model, we included in Def. 2 also a set of
faults FAULTS that should be considered for our conformance
tests. For those faults f ∈ FAULTS, we can derive faulty mu-
tants as of Definition 3 in order to exercise SDC. A relevant
fault mode for the WUMPUS example could be that a gear
switch would result in the wrong gear, and for the parking
brake a bit-flip in the derived wheel blocking signal such that
the wheels would be released without the driver requesting it.

Definition 3 For some program CS, a mutant CS′ is an al-
tered version of the original program. A mutant is equivalent
to CS if and only if they do not differ in their behavior.

An advantage of our setting is that the identification of equiv-
alence in the traditional sense is not of importance in respect
of achieved scores. Since SDC shall remedy the effects of
a mutation (at the least in respect of the requirements REQ,
but possibly also concerning graceful degradation), we have
the situation that the original program and all the mutants are
even expected to be equivalent in respect of conformance to
REQ. Verifying whether all the mutants’ behavior, as de-
scribed by I/O′ scenarios, implements REQ thus directly
translates to addressing our question.

For judging whether some I/O′ scenario actually implements
REQ, we can directly take the requirements’ formalization
and use a SAT or constraint solver to implement an oracle
and check the satisfiability of I ∪O′ ∪ REQ as of Def. 2.

This leaves us with the question of which inputs to use. Ob-
viously, an exhaustive solution is impractical. The motivation
to effectively and efficiently exercise CS with our input sce-
narios is however shared with those test cases that were de-
signed for functionally evaluating CS itself. Thus we propose
to actively exploit this and reuse those inputs in our context,
minimizing test design efforts.

Now that we have established the basic concepts for our ap-
proach, let us briefly consider possible deployment issues to
be faced in industrial applications. An automotive applica-
tion, for instance, certainly qualifies for implementing some
SDC due to the complexity of related products (like cars) and
designated operating environments, and it is a domain sen-
sitive to safety concerns. There, for business and complex-
ity reasons, we cannot assume, for instance, the system to

be available to us as a white box, but rather a box with sub-
boxes, interfaces, and intellectual property cores in varying
shades of grey. Furthermore, an easy integration into existing
and proven development concepts is essential in order for an
approach to be attractive enough for actual deployment. In
order to accommodate such concerns, we make the following
assumptions in respect of the data available to us.

• First, the requirements REQ to be monitored and en-
forced by SDC have to be available. If we have to con-
vert their informal characterization into a formal syntax
(as accessible by automated tools) first, research like (Pill
& Quaritsch, 2013) can identify mistakes in this process
and provides the means to investigate unexpected results
- but is out of the scope of this paper. The formalized
requirements REQ will be used to asses whether an in-
dividual test scenario passes or fails our expectations in
that it complies with REQ or not. Please remember that
the requirements, most likely, implement abstract safety
requirements and do not encode the system’s detailed
functionality (if the latter is taken to the extreme, SDC
could become redundant to CS). That is, some safety
requirement like that a robot should never hit a wall, or
that an automated parking brake should never block the
wheels when the car is still moving (i.e. at high velocity).

• Second, we assume that the control software CS offers us
controls to inject / simulate / enable faults f ∈ FAULTS
via a function µ(CS, f). Thus secrecy about detailed in-
tellectual property can be maintained, and the developers
working on the very components and system aggregation
can integrate the best fault injection (mutation) opera-
tors for the individual context. What is needed, however,
is (a) some guidelines in order to assist these designers
in providing meaningful faults (b) a full list FAULTS of
available fault models, and (c) a guideline for interpret-
ing the impact of each fault f ∈ FAULTS so that we, on
one hand, gain confidence in the results, and on the other
hand can act on encountered issues (e.g., when a test case
produces unexpected results - see also the discussion of
Algorithm 2).

• Third, we assume the availability of the test cases de-
signed for CS (or the overall system). This test suite TS
was derived in order to extensively exercise the system
and ensure its correctness, so that there is no need to
come up with entirely new input scenarios. We, how-
ever, are interested only in the input part of these test
cases, since the evaluation of the system’s response is
done with respect to the abstract system safety require-
ments REQ instead of the original functional or perfor-
mance concerns. To this end, the formalized and thus
executable requirements are used as testing oracle in or-
der to classify the test output.

Now let us propose an easily integrable testing approach.
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The underlying concept of the algorithm as depicted in Al-
gorithm 1 is as follows. For any fault f ∈ FAULTS, we create
a corresponding mutant SUT′ using the injection function µ.
Then, for any test case t ∈ TS we execute the mutant for the
corresponding inputs of t, and record the trace of this execu-
tion. This trace is checked for compliance with the require-
ments REQ and classified accordingly. Naturally, this raises
the question of whether to include also the unmodified pro-
gram in the tests, which we allow the test engineers to answer
for Algorithm 1 such that they can include a corresponding
fault ε in FAULTS that results in an unaltered program.

Note that our concept is orthogonal to the decision of whether
the system/environment (or possibly a mock-up) is part of a
SUT’s model or not - which might depend on the test setup
and design stage. Thus, while the SUT might contain it, we
will omit it in our algorithmic presentations.

Algorithm 1 TEST-SDC(SUT,FAULTS, µ,REQ,TS)

Input: The system under test SUT (CS + SDC + SELFCT),
the set FAULTS of faults to be considered, the fault injection
function µ, the safety requirements REQ, and the original
test suite TS for CS (or S).
Output: PASS if the system under test behaves as demanded
by the given requirements REQ, and FAIL otherwise.

1: for all f ∈ FAULTS do
2: SUT′ = µ(CS, f) + SDC + SELFCT
3: for all t ∈ TS do
4: res := EXECUTE(SUT′, input(t))
5: if res ∪ input(t) ∪ REQ |= ⊥ then
6: return FAIL
7: end if
8: end for
9: end for

10: return PASS

Algorithm 1 answers the most basic question of whether there
was a scenario (a combination of a test case t and an injected
fault f ) that violated the safety requirements, or if we have
that all the scenarios complied with REQ. A viable alteration
to the algorithm would be to return for an encountered failed
scenario, both the test case t and the injected fault f . Another
variant could run all the tests (archiving the results) instead of
stopping on the first unveiled violating scenario.

Reusing the test cases that were designed to extensively exer-
cise CS, for one, allows us to compare and connect test results
for CS (or the overall system S = system/environment + CS)
with our special purpose tests of S+ = CS + SDC (or
S′ = S+ + system/environment) for evaluating the effective-
ness of SDC, and furthermore we do not require additional
ressources for test design (not counting the mutation function
µ). Comparing the evaluation of testing CS and our special
tests for S+, however, is not as simple as it might sound,
since the testing purposes (and thus the oracles for classify-
ing the results) differ significantly. That is, when we test the

safety diagnostics component SDC, the focus is solely on the
safety requirements, while for testing CS such concerns are
mingled with others like functionality and performance. In
other words, regardless of whether a test scenario in TS was
originally intended to meet or fail some other goal, REQ is
to be met anyhow. Nevertheless, reusing the test inputs helps
us in making the connections when interpreting the results in
more detail.

While Algorithm 1 focuses on verifying whether SDC lives
up to the expectations encoded in REQ, it shall be noted that
it does not aim at verifying whether adding SDC to the sys-
tem would result in degraded functionality or performance
(in some respect other than conformance to the safety require-
ments REQ). To this end, a system integration test could be of
interest also for S+ (S′). Also there it makes sense to reuse
the test cases generated for S, and even to reuse the same
evaluation principles (oracle). That the runs for these system
integration tests and our testing purpose could be executed in
unison (with multiple or varying evaluations/oracles) is most
evident and implemented by Algorithm 2.

Algorithm 2 TEST-SDC-EXT(SUT,FAULTS, µ,REQ,TS)

Input: The system under test SUT (CS + SDC + SELFCT),
the set of faults to be considered FAULTS, the fault injection
function µ, the safety requirements REQ, and the original
test suite TS for CS (or S).
Output: The test results TR, which is a list of tuples
{t, f, res, r} such that t ∈ TS, f ∈ {0 ∪ FAULTS} tells us
the injected fault f (0 indicates that we did not inject a fault),
res is the output obtained when executing the scenario (the
combination of t and f ), and r ∈ {REQPASS,REQFAIL}
indicates whether for the described scenario the requirements
REQ are violated or not.

1: TR← ∅
2: for all t ∈ TS do
3: res := EXECUTE(SUT, input(t))
4: if res ∪ input(t) ∪ REQ |= ⊥ then
5: TR = TR ∪ {t, 0, res,REQFAIL}
6: else
7: TR = TR ∪ {t, 0, res,REQPASS}
8: end if
9: for all f ∈ FAULTS do

10: SUT′ = µ(CS, f) + SDC + SELFCT
11: res := EXECUTE(SUT′, input(t))
12: if res ∪ input(t) ∪ REQ |= ⊥ then
13: TR = TR ∪ {t, f, res,REQFAIL}
14: else
15: TR = TR ∪ {t, f, res,REQPASS}
16: end if
17: end for
18: end for
19: return TR

Each test case is executed for the correct SUT as well as all the
mutated versions SUT′ obtained by injecting the individual
faults f ∈ FAULTS. Then the obtained outputs as well as the
verdict whether the outputs satisfy or contradict the given re-
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quirements REQ are archived. Please note that one could eas-
ily add to the archived tuple also any further functional/non-
functional evaluation results. With Algorithm 2, we thus can
directly compare the results for the unmodified SUT S+ (S′)
(including the SDC) with those for the original system (ex-
cluding the SDC) in order to assess the impact of SDC on the
performance. Furthermore, we do store also the outputs for
the test scenarios with injected faults, to the end of supporting
later inspections of further aspects.

While the two algorithms offer varying details to the user,
the main question addressed is whether the SDC component
is indeed able to keep the overall system for the test scenar-
ios within the boundaries defined by REQ. If this is not the
case, there is the obvious question of how to debug this sit-
uation. While answering this question is not in the scope
of this paper, dynamic slicing techniques (Korel & Rilling,
1998; Zhang, He, Gupta, & Gupta, 2005) could certainly
be of help if we start from the signals involved in the vio-
lated requirement and reason backwards to the inputs. An
urgent question for every failed scenario will be whether the
SDC did not catch the issue at all, s.t. its monitoring capa-
bilities are insufficient, or whether its response to the situa-
tion was inadequate. For an enhanced automated support of
debugging which individual parts of the requirements were
involved in their violation, adopting the work on require-
ments/specification diagnosis presented in (Pill & Quaritsch,
2013) could be of interest.

5. DISCUSSION AND CONCLUSIONS

In this paper, we propose a testing concept tailored towards
gaining confidence that a functional safety diagnostic com-
ponent indeed lives up to our expectations of monitoring a
system at an abstract level and maintaining safety for mal-
functions in the more detailed and highly complex main con-
trol system. We depict an initial attempt at such an approach
that does neither demand for the design of additional tests,
nor requires us to entirely restructure our testing efforts in the
given development cycle. Instead, we reuse the input part of
those test cases designed for the monitored system, and the
oracle is implemented directly from the given formalized re-
quirements. Thus we minimize needed resources and efforts.

The only thing we have to rely on is a fault injection function
for the main control software that allows us to inject faults
so that we can effectively trigger actions from the safety di-
agnostics component. This accommodates also business con-
cerns related to intellectual property rights and the availabil-
ity of detailed system models, such that designers only have
to add corresponding functionality that they can also use for
their testing of the individual components. In the worst case
of having no such function, we could revert to simple muta-
tions on the software’s output signals. We outline two algo-

rithms that (1) offer a quick search for a scenario violating
the requirements, or (2) run the complete test suite for the un-
modified SUT as well as all the mutated versions achievable
via the given fault injection function, storing all the obtained
results. While the first offers us some quick check whether
everything is fine in respect of compliance to the safety re-
quirements, the second variant is more tailored towards a full
inspection where the obtained data are also stored for future
evaluation in respect of other aspects.

Future work will have to show the practical viability of our
concept. While the reuse of tests does have its advantages
as discussed, we will also explore ideas for (additional) tests
solely derived for testing an SDC and their impact on general
fault detection performance. A specific aspect of this research
will be to isolate means that can help us in selecting test sce-
narios (combinations of faults and test inputs). That is, while
we showed with Algorithm 2 that our work can be integrated
easily into the system integration tests that we certainly would
like to run, the available testing resources might not suffice to
run all the combinations of mutated SUT variants and input
sequences in the test suite. Identifying an effective prioritiza-
tion scheme would then certainly be of interest.

Also the process of identifying an effective selection of mu-
tation operators/functions to be used for some project will be
a target of our future research. That is, mutation testing relies
on the Competent Programer Hypothesis and the Coupling
Effect, which assume that (a) a faulty program is close to the
correct one and suggest that (b) a test suite that catches simple
mutations is also effective at catching more complex faults
(see e.g. the discussion in (Offutt, 1992)). Newer findings
like the discussion in (Gopinath, Jensen, & Groce, 2014) in-
vestigate the impact of the selection of mutation operators on
the performance for a specific project, and suggest that for a
specific project, further empirical data should provide a solid
empirical footing for the underlying hypotheses’ validity. In
this context, we limit our algorithms currently to injecting
single faults, where the accommodation of multiple faults for
more complex scenarios is subject to future work. In the latter
respect, combinatorial testing like it was used in (Wotawa &
Pill, 2014) for configuration testing in an automotive context
will be of interest.

Enhancing the support for a user debugging those scenarios
that violated the requirements, adopting the work on spec-
ification/requirements diagnosis in (Pill & Quaritsch, 2013)
could provide interesting stimuli, as could the work for di-
agnosing failed test cases for service-oriented software archi-
tectures (Hofer, Jehan, Pill, & Wotawa, 2014).

Last but not least, we currently consider functional safety re-
quirements only. In the future, also SDC solutions for non-
functional requirements should profit from an improved con-
cept accommodating also non-functional requirements.
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