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ABSTRACT

Irregularly spaced measurements are a common quality prob-
lem in real data and preclude the use of several feature ex-
traction methods, which were developed for measurements
with constant sampling intervals. Feature extraction methods
based on nearest neighbors of embedded vectors are an exam-
ple of such methods. This paper proposes the use of a time-
based construction of embedded vectors and a weighted sim-
ilarity metric within nearest neighbor-based methods in order
to extend their applicability to irregularly sampled measure-
ments. The proposed idea is demonstrated within a method
of univariate detection of transient or spiky disturbances. The
result obtained with an irregularly sampled measurement is
benchmarked by the original regularly sampled measurement.
Although the method was originally implemented for off-line
analysis, the paper also discusses modifications to enable its
on-line implementation.

1. INTRODUCTION

One of the early steps in the PHM architecture is feature ex-
traction from raw sensor data. Feature extraction aims to re-
tain only the information that is relevant for classification and
diagnostics, thus reducing the dimensionality of the raw data
space and the risk of misclassification (Russell et al., 2000).
Examples of features extracted for classification and diagnos-
tics include the Hotelling T-square statistics, wavelet coeffi-
cients, non-linearity of the time series (Thornhill, 2005), and
occurence of spiky disturbances (Cecı́lio et al., 2014).

A common challenge to carry out feature extraction in real
systems is is the quality of the measurements available. A
usual quality problem is that the interval between samples in
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Figure 1. Example of a measurement with irregular sampling
intervals obtained from a real gas processing plant.

a measurement is not constant. Figure 1 shows an example of
such irregularity in a measurement from a real gas processing
plant. This irregularity may arise for instance from problems
with data communication. Another cause is data compres-
sion, which is done after sampling in order to save memory.
Compression is done either by eliminating samples or by sub-
stituting the values of the samples by a constant value, for
example, the average over a period.

Several methods for feature extraction were developed for
measurements with constant sampling intervals ∆t and are
not applicable to measurements such as those in Figure 1.
For instance, several methods obtain the spectral informa-
tion of the measurements from their Fourier transforms and
wavelet decomposition. However, both techniques assume
that the measurement samples are taken at regular intervals.
Applications of these in the process monitoring were given
by Thornhill et al. (2002); Choudhury et al. (2004); Tangi-
rala et al. (2007); Zang & Howell (2007); Babji & Tangi-
rala (2010). Methods that use cross-correlation, for example
to extract time lags (Bauer & Thornhill, 2008), also require
regularly-sampled data.

This paper focuses on feature extraction methods that use
nearest neighbors of embedded vectors. Embedded vectors
are segments of a time series. Nearest neighbors are the seg-
ments from a time series which are most similar to a ref-
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erence segment (Chandola et al., 2009). Nearest neighbor-
based methods have been used successfully to extract the non-
linearity of a time series (Thornhill, 2005), time lags (Stock-
mann et al., 2012), and the occurence of transient or spiky
disturbances (Cecı́lio et al., 2014). However, none of these
methods is directly applicable to irregularly sampled mea-
surements. The reason is that the nearest neighbors approach
implies measuring the similarity between embedded vectors.
The conventional similarity measures are defined between two
ordered sequences p and q which have the same number m of
samples and whose samples are synchronized. For example,
the Euclidean distance metric which is used in the references
mentioned above is defined as

d(p,q) =

√√√√ m∑
i=1

(pi − qi)2 . (1)

However, the segments represented by the embedded vectors
normally span a constant interval of time. Therefore, in ir-
regularly sampled measurements those segments will have
a varying number of samples and varying intervals between
samples. Hence, the conventional similarity measures are not
directly applicable.

The contribution of this paper is to reformulate the construc-
tion of embedded vectors and the computation of similarity
for the case of irregularly sampled measurements. As a re-
sult, the new formulation extends the applicability of methods
based on nearest neighbors of embedded vectors.

The paper is structured as follows. Section 2 provides back-
ground on the analysis of irregularly sampled time series and
time-based construction of embedded vectors. Section 3 ex-
plains the proposed techniques to construct embedded vec-
tors and to compute similarity in the case of a measurement
with irregular sampling rate. These techniques are applica-
ble in the context of any nearest neighbor-based method. For
brevity, section 4 demonstrates the techniques in one par-
ticular method, which detects and identifies transient distur-
bances (Cecı́lio et al., 2014). The demonstration uses the
same case study as Cecı́lio et al. (2014) in order to have a
benchmark for the results. Section 5 closes with conclusions.

2. BACKGROUND

2.1. Analysis of irregularly sampled time series

Research in irregularly sampled time series is commonly found
in domains such as astronomy (Scargle, 1989; Bos et al., 2002),
finance (Zumbach & Müller, 2001), and geophysics (Rehfeld
et al., 2011).

Weighting methods are one of the type of methods to analyse
irregularly sampled time series. They generalize measures,
such as distance and correlation, which are conventionally de-
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(a) Conventional implementation: only pairs of aligned samples.
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(b) Weighting method exemplified for samples p10 and q6: all pos-
sible pairs of samples, with each pair weighted according to time
misalignment. Larger weights are represented by darker tones.

Figure 2. Pairs of differences (represented by arrows) used
in assessing the distance between segments p (black line and
markers) and q (grey line and markers).

fined for pairs of aligned samples (Rehfeld et al., 2011). This
paper uses a weighting method because nearest neighbors-
based techniques require a similarity measure.

The conventional implementation of distance and correlation
measures is illustrated in Figure 2a. For the case of the dis-
tance measure, the arrows in the figure indicate that only dif-
ferences between aligned samples are considered. Instead,
the weighting method calculate differences between all pos-
sible pairs of samples, and weights each difference accord-
ing to the time misalignment between the pair (Rehfeld et al.,
2011). This idea is illustrated in Figure 2b for sample p10 and
sample q6. Larger weights are represented in the figure by
darker tones on the arrows. The weighting function is such
that the more aligned samples are, the more their difference
counts towards the distance metric.

The weighted version of the Euclidean distance metric is de-
fined as

d(p,q, w) =

√√√√ np∑
i=1

nq∑
j=1

wi,j(pi − qj)2 (2)

where wi,j is the weight atributed to the difference between
sample pi of time series p and sample qj of time series q.
Examples of weight functions w found in the literature are
sinc and Gaussian functions (Rehfeld et al., 2011). In partic-
ular, the Gaussian function (equation (3)) is a positive func-
tion which decays smoothly to zero, and is symmetric with
relation to the time misalignment (ti − tj) between samples
pi and qj .
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wi,j = w(ti, tj) =
1√
2πL

exp

(
−(ti − tj)

2

2L2

)
(3)

Since a distance metric should be non-negative and symmet-
ric, the Gaussian function is a relevant alternative for a weight-
ing function. The Gaussian weighting function has a width
parameter L which determines the rate of decay of the weight
values wi,j with the time misalignment between the two sam-
ples.

Other methods to analyse irregularly sampled time series in-
clude: (i) reconstruction methods, (ii) spectral transforms,
and (iii) ARMA model fitting (Rehfeld et al., 2011).

Reconstruction methods resample the time series into a regu-
lar time grid and then apply existing methods developed for
regularly sampled time series. Common techniques of resam-
pling include linear and spline interpolation, regression, and
approximation by the value of the sample closest in time (Lall
& Sharma, 1996).

A common spectral transform for irregularly sampled time
series is the Lomb-Scargle Fourier transform (Scargle, 1989).
It determines the spectrum of a measurement from a least
squares fit of sine curves to the time series of the measure-
ment. It is suitable for measurements with periodic compo-
nents and no outliers (Stoica et al., 2009). The wavelet trans-
form can also be computed for irregularly sampled time series
if implemented through the lifting scheme (Sweldens, 1998).

Fitting autoregressive-moving-average (ARMA) models to a
time series involves determining the coefficients of the ARMA
model. To determine the coefficients from irregularly sam-
pled time series, research focuses on adapting estimation al-
gorithms such as maximum-likelihood estimation (Isaksson,
1993) and the Burg algorithm (Bos et al., 2002).

2.2. Time-based construction of embedded vectors

Embedded vectors were originally defined for regularly sam-
pled time series (Kantz & Schreiber, 2003). They refer to
segments from a time series with a fixed number m of sam-
ples, with each embedded vector lagging the previous by δ
samples (Kantz & Schreiber, 2003). Figure 3a illustrates the
selection of three embedded vectors from a symbolical time
series represented by dots, with m = 5 and δ = 2. Embedded
vectors are commonly used in the analysis of nonlinear time
series.

Cecı́lio et al. (2015) proposed an alternative approach to the
construction of embedded vectors motivated by the integrated
analysis of measurements with fast and slow sampling rates.
That paper imposed the same time span M for all embedded
vectors and a lag of a constant number ∆ of time units for the
different measurements. This way, the embedded vectors of
the different measurements would be synchronized.

time

x1 x2 x3

(a) Time series X is regularly sampled. Embedded vectors have
m = 5 and δ = 2.

M

∆

x1 x2 x3

time

(b) Time series X is irregularly sampled. Each embedded vector
spans M time units and lags the previous by ∆ time units.

Figure 3. Representations of a time series X and the con-
struction of first three embedded vectors.

This paper uses the same idea because if a fixed number m of
samples were imposed to an irregularly sampled time series,
then the embedded vectors would not span the same duration
of time. If the same step δ were imposed, then embedded vec-
tors of different measurements would not be aligned. The dif-
ference to the problem in Cecı́lio et al. (2015) is that with ir-
regular sampling rates, the use of a constant time span M im-
plies that the embedded vectors of a single measurement may
have different numbers of samples. The weighted Euclidean
distance metric discussed previously is able to compute dis-
tances between embedded vectors with these sampling char-
acteristics.

3. METHODS

This section explains the techniques to construct embedded
vectors and to compute similarity in the case of a measure-
ment with irregular sampling rate. These techniques extend
the applicability of time series analysis methods based on
nearest neighbors of embedded vectors.

3.1. Embedded vectors

Consider a time series X of sample values x(ti) (equation
(4a)) which are ordered according to the time sequence T of
strictly increasing sampling instants ti (equation (4b)).

X = {x(t1), x(t2), · · · , x(tn)} : t1 < t2 < · · · < tn (4a)

T = {t1, t2, · · · , tn} : t1 < t2 < · · · < tn (4b)

An embedded vector xr is defined as a segment of the time
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series X which spans M time units. The number of samples
is variable and is here denoted as mr. Furthermore, embed-
ded vector xr lags the previous xr−1 by a constant number ∆
of time units. The construction of embedded vectors from X
is represented in Figure 3b.

Additionally, for each embedded vector xr, a time vector tr
should be created to arrange the time instants of each sample
in xr, that is, tr = {tr,1, tr,2, · · · , tr,mr

}.

It should be noted that the embedded vectors of a measure-
ment cannot be arranged in an embedding matrix, as conven-
tionally done with regularly sampled measurements (Thorn-
hill, 2005; Cecı́lio et al., 2014). This is due to the different
number of samples in each embedded vector, as illustrated in
Figure 3b.

3.2. Similarity

Each pair of embedded vectors xr and xs is then compared
using the weighted Euclidean distance metric

d(xr,xs, w)
s =

√
mr∑
i=1

ms∑
j=1

wi,j(xr,i − xs,j)2√
mr∑
i=1

ms∑
j=1

wi,j

(5)

where i and j represent the indices of the samples in xr and
xs, respectively. This equation is a scaled version of the
weighted Euclidean distance metric presented in equation (2).
The aim of scaling is to have a metric d(xr,xs, w)

s which is
independent of the number of samples in xr and xs.

The weighting function wi,j = w(tr,i − ts,j) is defined as in
equation (3), and depends on the time instants of the samples
of xr and xs. The width parameter L may be optimized or
used as suggested in (Rehfeld et al., 2011), that is,

L =
∆̄t

4
(6)

where ∆̄t is the mean value of the sampling intervals in mea-
surement X .

4. APPLICATION TO UNIVARIATE DETECTION OF TRAN-
SIENT DISTURBANCES

This section demonstrates the proposed formulation of em-
bedded vectors and similarity measure within a method for
extracting the moment of occurrence as well as intensity of
transient disturbances (Cecı́lio et al., 2014). In electrical cir-
cuits, transient disturbances include voltage spikes, which can
be an indication of unbalanced power grid as well as a cause
of degradation of sensitive electronics (Bevrani, 2009). In
rotating tools, transient disturbances can indicate abnormal
shock and vibration levels.

4.1. Univariate detection of transient disturbances

In Cecı́lio et al. (2014), transient disturbances were formally
defined as infrequent and short-lasting deviations of a mea-
surement from its underlying trend. The extraction of the
moment of occurrence and intensity of these features was for-
mulated as an anomaly detection problem, and solved using
nearest neighbors of embedded vectors.

The implementation of the method can be summarized in the
following steps.

1. Embedded vectors with a fixed number m of samples and
δ samples of lag are generated from a time series X .

2. Each embedded vector is then compared to every other
embedded vector, using the Euclidean distance metric.

3. An anomaly index ai is then attributed to each embedded
vector xr as the kth smallest distance between xr and
every other embedded vector. This is denoted by dk , the
distance to its kth nearest neighbor.

4. An anomaly index vector ai is formed by the sequence
of anomaly indices ai of each embedded vector.

5. A threshold based on the statistics of ai distinguishes
embedded vectors which capture the transients from em-
bedded vectors which capture periods of normal opera-
tion.

In the following, the two initial steps of the method will be
replaced by the alternative formulation of embedded vectors
and similarity proposed in section 3. With this formulation
the method of univariate detection of transient disturbances
can now be applied to irregularly sampled time series.

4.2. Case study

The proposed method uses a measurement from Cecı́lio et al.
(2014) in order to have a benchmark for the results. The mea-
surement represents the shaft speed of a compressor during 20
seconds, and was obtain from a gas compressor rig located
at ABB Corporate Research Center, Kraków, Poland. The
shaft speed was measured at a regular rate of 1 kHz, there-
fore its measurement had to be manipulated in order to have
an irregularly sampled time series for illustration of the pro-
posed method. This was done by randomly eliminating sam-
ples from the original measurement, which also resulted in a
decrease in the total number of samples from 20,000 samples
to approximately 400. The time instants of the retained sam-
ples were stored. Figure 4 shows the speed measurement after
this manipulation. Figure 5 shows a close-up to highlight the
irregular spacing between samples.

Two step changes, around 5 and 11 s, were imposed in the
drive of the compressor by changing its speed set-point, re-
sulting in the two transients seen in the figure. The objective
of the proposed method is to detect those transients.
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Figure 4. Compressor speed measurement from (Cecı́lio et
al., 2014). The measurement was manipulated in order to
have an irregularly sampled time series. The values are nor-
malized by the initial value.
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Figure 5. Close-up on the compressor speed measurement to
highlight the irregular spacing between samples.

4.3. Results

Figure 6a shows the anomaly index vector ai computed from
the measurement in Figure 4. As in Cecı́lio et al. (2014), ai
was normalized by its median so that ai = 1 now approxi-
mates the average anomaly index of non-anomalous embed-
ded vectors.

The positive detection of the two transients is indicated by
the fact that the embedded vectors which correspond to tran-
sient disturbances have anomaly indices above the detection
threshold, which is represented by the dashed line in Fig-
ure 6a. The figure shows that the construction of embedded
vectors and similarity measure suggested in section 3 are able
to cope with the sampling irregularity and achieve the desired
detection.

Figure 6b shows the result obtained by Cecı́lio et al. (2014)
with the original regularly sampled measurement. The figure
clearly shows the similarity between the two results. This
demonstrates the potential of the proposed formulation for
the analysis of irregularly sampled time series with nearest
neighbor-based methods.

4.4. Comment on the use of the method for real-time mon-
itoring

The techniques proposed in this paper to construct embed-
ded vectors and to compute similarity are applicable in both
on-line and off-line analysis methods. In section 4, the tech-
niques were demonstrated as part of an off-line analysis be-
cause the transients detection method proposed in Cecı́lio et
al. (2014) was originally implemented in that way. How-
ever, the concept of transients detection with nearest neigh-
bors is amenable to on-line implementation, and this section
discusses possible approaches.

The crucial point for on-line implementation is the computa-
tional cost of comparing every embedded vector to all other
embedded vectors.

One way to reduce this cost is the following. When new
samples arrives and a new embedded vector is formed, that
embedded vector is compared against a finite number NH of
past embedded vectors. This amounts to NH computations of
distance between two vectors. The anomaly index ai of that
embedded vector comes from one search operation amongst
those NH distances.

The efficiency of the distance computations can also be im-
proved. The anomaly index ai only uses one piece of infor-
mation out of the NH distances calculated for each embed-
ded vector. However, these NH distances can also be used
to identify tight clusters of embedded vectors. As a result,
every time a new embedded vector is formed it needs only
be compared to the centroid of each cluster instead of all the
embedded vectors that form that cluster.

These modifications in the implementation should enable the
on-line implementation of the transients detection, which is
better suited for PHM applications.

5. CONCLUSIONS

This paper presented an adaptation to methods based on near-
est neighbors to enable their application to measurements with
irregular sampling rates. The first two steps of these meth-
ods normally involve the construction of embedded vectors
and a similarity assessment. With irregular sampling rates the
conventional construction of embedded vectors and similarity
measure cannot be applied. The proposed techniques com-
prise a time-based formulation for embedded vectors, and a
weighted distance metric to assess the similarity between the
embedded vectors. These techniques can substitute the first
two steps of conventional nearest neighbors methods.

The new techniques were demonstrated within a method of
detection of transient or spiky disturbances, which had been
developed for regularly sampled measurements. The case
study showed that the new formulation achieves results in an
irregularly sampled time series on a par with the results ob-
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(a) Obtained with the irregularly sampled measurement and the method proposed.
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(b) Obtained with the regularly sampled measurement and the original method.

Figure 6. Normalized anomaly index vector. The dashed line indicates the detection threshold.

tained with the original regularly sampled measurement. This
supports the research potential of the idea proposed in this pa-
per.

Open questions about the proposed idea include:

• studying if, and under which conditions, the weighted
Euclidean metric converges to conventional Euclidean
metric,

• determining the statistical behaviour of the anomaly in-
dex vectors in order to attribute a confidence level to the
selected threshold, in the case of the detection methods,

• optimizing the width parameter L, and re-evaluating the
parameter optimisation done for methods with regularly
sampled measurements, and

• analysing the sensitivity of the methods to the distribu-
tion of samples in the measurement.

The paper also discussed possible modifications to enable the
on-line implementation of the techniques.
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