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ABSTRACT 

Decision support systems aim to improve the quality of 

services and help operators perform their duties faster, more 

accurately and more efficiently by providing an immense 

amount of knowledge. As human operators cannot convey 

their complete understanding of the situation to the system, 

decision support systems face the challenge of interpreting 

human intent based on operator inputs, which introduces a 

high level of uncertainty into the system. In this paper, a 

decision support system is used for determining system 

health status as a decision aid to the operator. The goal of 

this work is to supplement sensor data with human inputs in 

a prognostic health management environment while 

minimizing the effects of uncertainty and to provide 

situational awareness for the operator. 

1. INTRODUCTION 

Advanced data mining and machine learning techniques are 

evolving rapidly. With the advent of “Big Data” technology 

and highly sophisticated data indexing, retrieval, clustering 

and classification processes, automated decision support has 

become an integral part of industrial, commercial and 

medical applications. Yet, the operator is still a significant 

source of both information and uncertainty in these 

applications such as given in Yasar, et al. (2009). For 

example, diagnostic/prognostic decision support systems 

play an increasingly important role in medical practice. 

These computer systems are designed to assist physicians or 

other healthcare professionals in making clinical decisions. 

They can provide decision support for a particular 

diagnostic (e.g. decision tree) or recommend therapeutic 

options by interpreting pulmonary function tests, analyzing 

electrocardiograms (e.g. pattern classification), etc. In any 

given decision process, the patient provides the critical 

inputs and the physician interprets the decision outputs 

based on the domain knowledge and patient’s history. 

Therefore, while interacting with the decision support 

system, the patient and the healthcare professional provide 

possibly subjective information with high uncertainty.  

In a perfect world, a decision support system would be 

ubiquitous and omniscience. However, it is impossible to 

know or foresee all possible outcomes during the design of 

these systems. Therefore, passive decision support systems 

that depend on pre-defined strategies and models lead to 

sub-optimal solutions in most cases. Due to this apparent 

drawback, the decision support system turns to human 

operator to provide the context-specific domain knowledge. 

This is at the heart of “active learning.” Leveraging human 

inputs can enable achieving significant performance 

improvements as well as providing enough flexibility for 

contextual adaptation. However, such active learning 

schemes introduce a type of uncertainty that most machine 

learning techniques are not equipped for. As opposed to 

sensor data, human-generated information can become 

rather unstructured in general. Previous works in this area 

offer solutions based on constraining the interaction 

modality to limit the type of human inputs (Dasgupta & Hsu 

D, 2008). The idea is to extract implicit human intent to help 

make better decisions. 

The key word here is “implicit”. Since intent, by definition, 

is a function of state of mind, it is too complex to be 

captured explicitly, even if a free-text input can be provided 

by human operator. (Although text mining may provide 

contextually relevant information, it would still be 

incomplete.) By making intent extraction implicit, the goal 

is essentially to have the human operator self-classify the 

intent into a set of possible inputs. This somewhat artificial, 

but necessary, discretization helps the decision support 

system to enumerate the outcomes and compute the most 

likely one. Going back to the diagnostic/prognostic decision 

support system example, it is possible to understand why the 

diagnostic tool is built on binary or multiple choice answers 

rather than free-text. At each decision junction, the decision 

support system uses heuristics to identify the most-likely 

outcome. By discretizing the possible inputs, the system 

tries to elucidate the human intent, in this case the perceived 

health condition. In fact, chaining together these human 
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inputs creates a mathematical framework for modeling the 

decision making where outcomes become partially random 

and partially under the control of the human operator. 

In this paper, the issues that arise due to interaction of 

human operator with the decision support system are 

addressed. Specifically, the aim of this paper is to provide a 

reasonable solution for interpretation of self-classified 

operator inputs that carry high uncertainty while making 

sure that the sensor data corroborated those inputs. This 

paper proposes a multi-tiered approach, where on one hand 

decision support system tries to auto-classify the sensor data 

(i.e. clustering) without considering the operator inputs; on 

the other hand, computes the sensor data associations with 

the operator inputs using a mixed-data metric (i.e. 

correlation).  

This paper is organized in five sections including the present 

one. Section two elaborates the approach problem 

formulation for the proposed decision support environment 

and states the background definitions and assumptions. 

Section three describes the type of analysis that can be 

performed on mixed data modalities that enable automated 

decision making under uncertainty. In section four, the 

results for the developed analysis techniques on an 

anonymized dataset are presented. The paper is summarized 

and concluded in section five. 

2. PROBLEM FORMULATION OF DECISION SUPPORT 

ENVIRONMENT 

2.1. Definitions and Assumptions 

First, we define the space for the decision support 

environment. Many different approaches can be found in the 

literature, among which the Markov Decision Processes 

seems to be a popular one. In this study, an industrial 

system is being considered where the overall decision 

support mechanism for diagnostics and prognostic health 

management is seen in Figure 1. 

 
Figure 1. The information flow diagram for the decision 

support environment. 

 

Assume that a controlled industrial process is being 

monitored by a human operator with the aid of a decision 

support system. Using the general system notation, {𝑢, 𝑦} 

represents the inputs and outputs of the process and 𝑥𝑐 is the 

controller states. Only some (discrete) process state 

information, 𝑞, is available to the operator, whereas process 

outputs and controller states are partially observable by the 

decision support system, which is denoted by (•̂). Further 

assume that the decision support system interacts with the 

human operator to interpret operator decision state, Σ ⊆ Δ, 

where 𝜎 ∈ Σ is a set of possible decisions that may be taken 

by the operator that is known to the decision support system 

(which is, in general a subset of operator decisions, Δ.) This 

is where the uncertainty is introduced into the system. The 

decision support system produces a most likely process 

status, �̃�. Note that �̃� could be an estimation of process state, 

i.e. �̃� = 𝑞|max(𝑃𝑟(𝑞|σ))  however, in general �̃�  is a 

distribution over a superset of 𝑞 . (•̃)  notation is used to 

explicitly specify estimates. 

As mentioned before, the decision support system has two 

functionalities: 

1. Clustering the process data to determine the possible 
process status that the data indicates 

2. Correlating the human operator inputs and the process 
data to evaluate the operator inputs against the process 
status 

Therefore, process status estimates of the decision support 

system evolve according to the equation: 

�̃� = 𝑓(�̂�𝑐 , �̂�, 𝑔) 

where f is the functional representation of the decision 

support system. 

2.2. Data Types and Relationships 

Beyond the assumptions stated earlier, the decision support 

problem is further complicated by the fact that different 

types of data are available for analysis. Although the terms 

“mixed data” and “heterogeneous data” have been used 

interchangeably in the literature, the mixed data term is 

preferred in this paper. At a very high level, what this means 

is that the data processed by the decision support system 

consist of continuous, discrete, transactional and categorical 

variables. 

One of the biggest challenges for mixed data analysis is 

determining the structure of mixed data to perform semantic 

analysis (e.g. clustering, classification) to identify relevant 

patterns (Yasar et al. 2010 and Sarkar et al., 2014). 

Specifically, the associations between mixed data types 

require a quantitative measure of the strength of a 

phenomenon, which is called the effect size. Examples 

range from the correlation coefficient to the mean difference 

to information theoretic metrics such as neighborhood 

mutual information (Scheaffer, 1999 and Hu, 2011). In this 
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work, rather than focusing on development of a new metric 

for the entire mixed data space, the aim was application of 

some of the better known clustering and classification 

methods in this new framework (Pages, 2014). It should be 

emphasized that the proposed decision support environment 

is flexible enough to accommodate applications both with 

and without the known ground truth. 

In Figure 1, the controller states and process observables 

can be discrete (usually binary), continuous or categorical 

(e.g. state of a finite machine used in supervisory control).  

On the other hand, the operator decision states are almost 

invariable categorical. This is due to the fact that human-

machine interaction is preferred to be enumerable (based on 

the discussion in Section 1). What is reducing the 

complexity in this framework is that there is no need to 

make any further assumptions on the type and availability of 

other data points given in Figure 1, since only the 

relationships between the process and the decision support, 

and the operator and the decision support are of interest. 

3. BACKGROUND FOR CLUSTERING AND CORRELATION 

ANALYSIS 

3.1. Clustering 

Data clustering is a data exploration technique that is used 

for features with similar characteristics to be grouped 

together, or partitioning data into dissimilar subsets. 

Therefore, clustering is usually associated with the idea of 

unsupervised learning. In the decision support system, 

clustering is used as a means to partition the mixed data 

generated by the controlled process into discrete partitions 

in order to further analyze against the discrete decisions 

made by the operator. 

The most popular clustering algorithms include k-means and 

hierarchical clustering. For a review of clustering methods, 

the authors refer to Duda et al (2000) and Guyon & Elisseeff 

(2003). As clearly demonstrated, clustering methods are 

based on optimization of a numeric criterion defined from a 

distance or from a dissimilarity measure. 

For categorical data, k-means algorithm has been used on 

binary data obtained after conversion of multiple category 

attributes into binary attributes. It is also possible to work 

on the categorical data directly with same optimization 

criterion. Several researchers developed k-means type 

approaches specifically for categorical data; these include k-

modes and k-medoids algorithms (Jollois & Nadif, 2002).  

The appeal of k-means algorithm is due to its simplicity. In 

essence, it partitions n observations into k clusters in which 

each observation belongs to the cluster with the nearest 

mean, serving as a prototype of the cluster.  

𝐷 = ∑ ∑ 𝑑(𝑥𝑗 , 𝜇𝑖)
𝑗∈ℂ𝑖

𝑘

𝑖=1
 

where 𝑑  is a distance function and 𝜇𝑖  are the means of 

clusters ℂ𝑖. K-means algorithm tries to find 𝜇𝑖 by optimizing 

minℂ 𝐷. 

A key aspect of k-means algorithm is 𝑘 being user defined. 

Although there are many methods of determining k, in this 

paper, an analytical approach to determine 𝑘 is unnecessary. 

This is due to the fact that operator’s decision states, Σ, are 

known by the decision support system and therefore simply 

𝑘 = |Σ|. 

3.2. Correlation 

Strength of association, also known as effect size, between 

mixed data types has been studied extensively in statistics. 

Some examples of effect sizes include the correlation 

between two variables, the regression coefficient in a 

regression, the mean difference, and the risk associated with 

an event (Wilson & Martinez, 1997). 

The most basic idea of correlation is “as one variable 

increases, does the other variable increase (positive 

correlation), decrease (negative correlation), or stay the 

same (no correlation)”. For example, Pearson correlation, 

also known as Pearson’s 𝑟, uses population variances of two 

variables. Spearman correlation is similar, but uses the ranks 

to determine the association between ordinal variables. Yet 

another metric, Kendall's correlation, uses concordant (or 

discordant) ranks between all pairs of observations. Given 

two variables 𝑥 and 𝑦,  Pearson’s 𝑟 can be computed as 

𝑟 =
∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝜇𝑥)2𝑛
𝑖=1

√∑ (𝑦𝑖 − 𝜇𝑦)
2𝑛

𝑖=1

 

where 𝑛 is the number of data points. 

If the data has mixed types, (e.g. one variable is nominal 

and the other one is continuous) then it is meaningless to 

ask “what happens to the continuous variable as nominal 

variable increases (decreases)”. However, there are 

measures of strength of association that can be used that are 

somewhat analogous. For example, by converting the 

nominal variable to binary format it is conceivable to 

perform a multiple regression. Part of the output of 

regression is the coefficient of determination, 𝑅2 . One 

interpretation of 𝑅2 is that the model explains that much of 

the variance in the continuous variable. Another 

interpretation of 𝑅2  is that by taking the square-root, it is 

possible to determine the multiple correlation coefficient, 𝑅. 

That is equivalent to the Pearson coefficient, 𝑟, between the 

observations and the predictions by the model. Although, it 

might be uncommon to use (multiple) regression for a 

categorical independent variable, it is in fact analogous to 

one-way ANOVA approach. The equivalent of 𝑅2 , the 

proportion of variance explained for multiple regression, in 

ANOVA is 𝜂2. Therefore, 𝜂 could be used as an analogous 
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measure of association between a categorical variable and a 

continuous variable and can be computed as 

𝜂 = √
∑ (𝑦′

𝑖
− 𝜇𝑦′)

2𝑛
𝑖=1

∑ (𝑦′
𝑖

− 𝜇𝑦′)
2𝑛

𝑖=1 + ∑ (𝑦𝑖 − 𝜇𝑦)𝑛
𝑖=1

 

A good starting point to determine the association between 

categorical variables is Pearson's chi-squared ( 𝜒2) test. It is 

a statistical test to evaluate the likelihood that any observed 

difference between the categories arose by chance. A 

commonly used measure of association for the 𝜒2 test is the 

Cramér’s 𝑉. What is important in using Cramér’s 𝑉 for data 

association is that it can be used with variables having more 

than two categories. Cramér’s 𝑉 can be computed as 

𝑉 = √
𝜒2

𝑛⁄

min(𝑐, 𝑟) − 1
 

where 𝑐  and 𝑟  are the number of columns and rows of a 

contingency table, respectively. 

4. RESULTS OF CLUSTERING AND CORRELATION 

ANALYSIS FOR AN INDUSTRIAL PROCESS 

Consider an industrial controlled process under the 

monitoring of a human operator who tries to determine the 

health status and a correct diagnosis for the system. The 

system consists of many components and subsystems and 

controlled by a digital controller. Various data streams are 

logged within the digital controller’s memory and also via a 

data logger. An existing monitoring system is primarily 

used for transmitting the data to a central data server. 

Now, consider a decision support system that computes �̃�𝑡 

which is an estimation of the system status, where 𝑡 is an 

asynchronous event index. The decision support system uses 

clustering to determine an operator agnostic decision for 

each event �̃�𝑡 = ℂ𝑡|𝜇𝑖  ∀𝑖 = 1 … 𝑘 , where ℂ𝑡  is the 

determined cluster label at t given the static cluster centers 

𝜇𝑖. 

The data used for clustering consists of discrete input/output 

of the digital controller, and discrete and continuous states 

of the system. There are total 76 variables. During operation 

the operator has four possible decision states (i.e. System 

inoperable, Normal operation, System in test, Unknown) to 

choose from. It is assumed that not all decision states are 

known by the decision support system, therefore Σ ⊆ Δ; and 

“Unknown” state is a catch-all condition for all other 

operator decisions. There are 277 events that have the 

associated data available.  

The data is clustered using k-means algorithm and 

Hamming distance into four clusters to match the available 

number of decision states. The four-class clustering results 

are shown in Figure 2. While the y-axis shows the 

individual events, x-axis illustrates the variables that 

constitute the data.  

 
Figure 2. Four-class clustering results using Hamming 

distance on the process data. 

 

It is possible to use the clustering results for feature 

selection. Features being the variables themselves, the goal 

is to find a subset of variables that would give the same 

clustering as the full dataset.  

Consider Shannon entropy: ℎ = − ∑ 𝑝𝑘 log(𝑝𝑘)𝑛
𝑘=1 .  

Proposition: Given an initial cluster label ℂ𝑖  where 

𝜇𝑖 ∈ ℝ𝑚 are obtained by clustering 𝑚 variables; there exists 

an 𝜀  such that ℂ̂𝑖 = ℂ𝑖  and �̂�𝑖 ∈ ℝ𝑙  are obtained with 𝑙 
variables that satisfy ℎ > 𝜀 and where 𝑙 ≤ 𝑚. 

For a chosen 𝜀 = 0.1, there are 34 variables that satisfied 

this criterion and these were used for obtaining the same 

clustering as the original 76 variables. The results are shown 

in Fig. 3. 

 
Figure 3. Four-class clustering results using Hamming 

distance on the reduced data set. 
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Figure 4. Operator decisions for the recorded events. 

  

For the second stage of the decision support system, 

correlation and classification methods are utilized. The 

operator decisions,  𝜎 ∈ Σ, for each event constituted the 

class labels. The operator decisions are given in Figure 4 for 

each recorded event. It can be seen that most events 

correspond to conditions when the system is either 

inoperable or under testing, whereas a small sample of 

normal operating conditions are present. This is due to the 

fact that events are generated by the system controller to 

indicate potential failures of the system and the operator’s 

role in this setting is to determine if there is an actual failure 

or not. Therefore, most of the events are expected to be 

either real failures or testing of the system.  

The decision support system uses correlations between the 

process data and operator decisions to learn the strength of 

association, and then uses the learned model for 

classification of the process data to make a decision for each 

event �̃�𝑡 = ℂ𝑡|𝑚𝑖(𝜎𝑡) ∀𝑖 = 1 … 𝑘 , where ℂ𝑡  is the 

determined class label at t and 𝑚𝑖 is the association metric 

between the i
th

 variable and the operator decision state 𝜎. 

In this study, events with “Unknown” decision state were 

filtered out from the learning process (i.e. before performing 

correlation analysis). The question to answer here is “what 

are the correlations between the process data and decision 

states?” To answer that, first an appropriate metric for 

categorical data association and continuous data correlation 

was developed as described in Section 3. The results for the 

mixed-data correlations are presented in Figure 5. Note that 

out of 76 variables, only the ones that have an association 

metric greater than 0.4 are shown.  

After the correlations were determined, top five indicators 

were chosen: Emergency operation input, Lower zone 

sensor, Upper zone sensor, Safe to operate, and Event 

condition. Using the model learned with these five 

indicators, classification was performed on the process data 

corresponding to events with “Unknown” decision state. 

The aim was to classify these events as one of “System 

inoperable”, “Normal operation”, “System in test” decision 

states. The re-classification results are given in Figure 6.  

 
Figure 5. Correlations between process data and decision 

states. 

 

Figure 6. The classification of “Unknown” decisions to one 

of “System inoperable”, “Normal operation”, “System in 

test” decision states 

As can be seen in Figure 6, the classification results indicate 

that those events with “Unknown” decision state were 

potentially either “Normal operation” or “System in test”, 

and none were classified as an inoperable condition based 

on the observed patterns of the associated process data. 

Although it may seem counter-intuitive, the results are not 

totally unexpected since system failures are easier to be 

identified by the operators; therefore it is likely that they 

were not classified as “Unknown” by the operator when an 

event is generated.  

Based on the correlation and classification analysis 

conducted, it can be concluded that it is very important to 

find appropriate metrics for correlation and classification 

analysis. That is the reason to develop a heterogeneous 
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metric that enables automated identification of strong 

indicators in the process data. This method also provides the 

classification of events based on the learned model of 

operator decision state and re-classification of “Unknown” 

decisions. However, this technique is only applicable to 

univariate statistics, and does not account for combined 

effects (patterns) of process data on the decision state. Also 

only the linear relationships were captured in data 

association metrics of this study. As such, some features 

with significant nonlinear effect on the system status may be 

inaccurately excluded. It is possible to use mutual 

information based metrics to alleviate this problem which is 

under investigation. 

5. CONCLUSION 

This paper addressed how to use several well-established 

data analytics techniques to process system and controller 

data as a decision support tool. The decision support system 

is developed in the context of an industrial controlled 

process operating under the monitoring of a human operator. 

While the human operator only had access to high-level 

information about the system, the decision support was 

assumed to have more data sources available to it and 

therefore help reduce the uncertainty around the decision. 

Specifically, clustering and correlation techniques were 

established to provide better situational awareness for the 

human operator. 

The main advantage of using a combination of clustering, 

correlation, and classification instead of performing a direct 

classification analysis with operator labeled event data is to 

address the sparsity of labels compared to the number of 

features. Both the classification and correlation has been 

used for feature selection to reduce the dimensionality of the 

feature space (from 76 to 5). A direct multi-class 

classification algorithm (even an ensemble method such as 

boosted decision trees) would be susceptible to overfitting if 

not preceded with feature selection. Another reason for not 

using a direct approach is that it would require balanced 

class labels or weighted priors. Since the labels are the 

primary source of uncertainty, introducing additional 

arbitrary weighing to class labels might have amplified the 

effects of uncertainty, therefore reducing the class 

separability.  

Although, the main goal of this effort was to develop a 

decision aid for the human operator, the existing data and 

advanced machine learning methods can be used to create 

system performance and health condition metrics. Further, 

big data technology stacks can be used to manage larger 

data sets and execute parallel complex analytics. 

In a future state, this work can also enable a few human 

operators to continually monitor thousands of systems with 

higher operational efficiency and situational awareness. A 

great example is air traffic controllers who help pilots keep 

aircraft safely separated from other aircraft or obstacles 

while in flight or on the ground. They monitor a large 

number of airplanes at any given time. This sheer number 

makes it prohibitive for the air traffic control to respond to 

unusual emergencies in a timely manner. For example, if an 

aircraft deviates from the planned route, it takes time to 

respond and the results can be catastrophic such as Malaysia 

Airlines flight 370 and Germanwings flight 9525.  

Furthermore, service technicians for the industrial systems 

can use this type of decision support systems to get an 

accurate and complete picture of system health problems, 

which may enable improved service efficiency and 

correctness. 
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