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ABSTRACT

This paper examines the development of a data-driven
anomaly detection methodology for servo-actuated hydraulic
valves installed in a gas turbine fuel delivery system. De-
graded operation of these valves is a leading cause of un-
availability for gas turbine driven power plants. Nearly
eighty potential features were generated from the limited raw
sensors and control system signals through a combination of
domain expertise, statistical feature extraction, and insight
gains from prior physics-based simulations. Important fea-
tures were down-selected by examining the behavior of the
features using several years of operating data in conjunction
with known field failures. Univariate statistical techniques
were used to eliminate candidate features with limited ca-
pability to distinguish healthy from abnormal operation. A
final machine learning model was generated using a process
of recursive feature elimination. This paper will also touch
on the practical implications of deploying a machine learning
model in a real-time production environment.

1. INTRODUCTION

This document has been developed to accompany the data
analysis completed during development of an anomaly detec-
tion analytic for hydraulic gas control valves used in heavy-
duty gas turbines. Gas control valves are a component of the
gas fuel delivery system in which each valve controls fuel de-
livery to a separate manifold supplying the combustion sys-
tem fuel nozzles. For Dry Low NOx (DLN) 2.6 and greater
fuel systems, this consists of regulating the distribution of fuel
delivered to the Primary (PM1), Secondary (PM2), Tertiary
(PM3), and Quaternary (QUAT) fuel systems, as shown in
Figure 1. The fuel flow distribution to each combustion fuel
system is a function of combustion reference temperature and
Inlet Guide Vane (IGV) temperature control mode. The com-
plete gas fuel system consists of the gas fuel Stop/Ratio Valve
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Figure 1. DLN2.6 Gas Fuel System.

(SRV), Primary Gas Control Valve (GCV1), Secondary Gas
Control Valve (GCV2), Tertiary Gas Control Valve (GCV3),
and Quaternary Gas Control Valve (GCV4). The SRV is de-
signed to maintain a predetermined pressure at the control
valve inlet. The GCVs are in place to regulate the desired
gas fuel flow delivered to the turbine in response to the fuel
command from the control system (Davis, 1996).

1.1. Commercial Implications

Gas turbine hydraulic GCV failures are one of the leading
causes of gas turbine trips and failed start-up. As opposed to
an operator initiated shutdown sequence, which is a gradual
decrease in load and turbine speed, a trip is initiated by the
safety protective logic within the control system by instantly
stopping fuel flow to the gas turbine. The thermal shock of a
gas turbine trip, especially a trip during base-load operation,
causes increased degradation of gas turbine performance and
hot gas path parts life (Bernstein & Allen, 1992) and (Ravi,
Pandey, & Jammu, 2010). Similar thermal stresses are seen
during start-ups as many hot gas path parts are commonly
life-limited by the number of start cycles to which they are
subjected to in service, rather than by the hours of service
(Carter, 2005). A false start-up occurs when a start-up is ini-
tiated by the operator, however the control system will trip
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Figure 2. Hydraulic Servo-Valve Cross-Section.

the gas turbine during the start-up due to safety protective
constraints.

1.2. Hydraulic-Valve Degradation

All subsequent hydralic-valve degradation modes can be ref-
erenced with Figure 2. As identified by (Macaluso, 2016) and
(Mornacchi, Vachtsevanos, & Jacazio, 2015), possible GCV
degradation modes include the following:

1. Reduction in torque from the respective torque motors.
This leads to a progressively slower response of the
servo-valve.

2. Contamination within the fuel nozzles. As dirt and debris
accumulate within the fuel nozzles, this leads to a slower
response of the GCV.

3. Stiffness variation of internal feedback spring of the
GCV, which is generally caused by yield in strength due
to excessive loads or to normal aging of the component;
involves hysteresis phenomena and instability.

4. Increase of the backlash at the mechanical interface be-
tween the internal feedback spring and spool. This is the
result of a wear due to the relative movement between
these two parts giving rise to an increasing hysteresis in
the servo-valve response, which leads to an instability.

5. Variation of the friction force between spool and sleeve.
This is due to a silting effect associated either with debris

entrained by the hydraulic fluid or to the decay of the
hydraulic fluid additives which tend to polymerize when
the fluid is subjected to large shear stresses.

6. Increase of the radial clearance between spool and sleeve
and change of the shape of the corners of the spool lands
due to wear between these two moving parts.

The aforementioned GCV degradation modes will eventually
lead to a gas turbine trip and potentially an uplanned outage.
Typical mitigation techniques involve the utility company to
actuate the GCV during the outage and/or servicing the GCV.

1.3. Gas Control Valve Instrumentation

Each GCV has limited instrumentation, including a current
applied by the control system and a position indication sup-
plied from a Linear Voltage Distance Transducer (LVDT).
There is also a control signal which indicates the commanded
GCV position. To summarize, there are three control signals
for each GCV (Mornacchi et al., 2015):

1. GCV position command: corresponding to the position
request from the control system.

2. GCV position feedback: position indication acquired
from the LVDT and used to close the control position
loop.

3. GCV current feedback: generated by the control system
coinciding with the compensated error. It is used to con-
trol the GCV.

The control system applies a current to actuate the hydraulic
valve. The current applied is proportional to the error be-
tween the command signal from the controller and the feed-
back reading from the valve instrumentation. As the error
between command and reference signal increases, the control
system compensates by increasing current to the respective
torque motor. A faulty valve is unable to follow the control
system reference signal, and thus the error between command
and reference increases and becomes erratic as the valve com-
ponents wear or otherwise have a fault. When a valve is not
commanded to move, a current is still applied to overcome
the force of a feedback spring internal to the hydraulic servo.
This is called the null bias current.

2. METHODS AND ANALYSIS

This section and the following subsections discuss the gen-
erated data set and the methodology applied throughout the
exploratory analysis, feature engineering, data filtering, and
feature selection activities. The overarching goal was to clas-
sify each GCV across the entire monitored gas turbine fleet
as being healthy or degraded. Due to the lack of instrumen-
tation on each GCV, significant work was applied upfront to
improve model performance downstream. Furthermore, the
upfront exploratory analysis and data engineering methodolo-
gies were implemented with the intent of classifying a GCV

2



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

as degraded with sufficient lead time of the GCV causing the
gas turbine to trip, thus minimizing unplanned outages for the
customer base.

2.1. Input Data Description

The data set for the gas control valve was generated from
events captured in an events database for 7FA.02, 7FA.03,
and 7FA.04 gas turbines between January 1, 2009 and May
21, 2014. Events extracted from a Hadoop Distributed File
System (HDFS) cluster were filtered in which those events
led to a forced outage or a failed start, and filtered by those
events where failures were attributed to one of the four GCVs.
In addition, some failures were not included in the training
data sets, such as failures where the root cause was deter-
mined to be wiring, controls related, etc., which are generally
failures that will not manifest as a pre-cursor that can be de-
tected with sufficient lead time to take action on the anomaly.
As previously mentioned, the four GCVs are controlled to a
position, whereas the SRV is controlled to maintain a pres-
sure signal, measured as FPG2. Table 1 lists the raw signals
extracted. Historical data was extracted from HDFS and the
following subsections will discuss the features that were gen-
erated from the raw data using a combination of statistics and
domain based features.

2.2. Time-Series Feature Calculation

This step involved calculating derived features at the same
time interval as the raw data. It is important that this step
occurred prior to any data filtering, so that the derivative cal-
culations were truly representative of the difference between
consecutive time samples. Table 2 identifies the calculated
features derived from the raw control system data.

2.3. Training Data Filtering

The training data was filtered on two criteria, that (1) the gas
turbine was operating in either base-load or part-load condi-
tions and (2) that all GCVs were actively controlled to a refer-
ence signal. The exception to this criteria was GCV4, which
for some units is not in service during operation.

2.4. Aggregate Feature Calculation

Similar to the aggregate feature selection approach taken in
(Ravi et al., 2010), the following aggregate features were cal-
culated on a four hour window, with the raw data sampled at
a five-minute interval:

1. Sum, mean, median and standard deviation of GCV1-4
position error

2. Shown in Equation 1, DPCi represents the derivative
of the Gas Turbine Generator Output (DWATT) w.r.t the
GCV current feedback, where i represents the respective
GCV. DPCi was then aggregated to obtain the mean,

Table 1. Extracted Control System Signals

Feature Description Units
TNH Turbine Rotor Speed %
CTIM Compressor Inlet Temperature ◦F
DWATT Gas Turbine Generator Output MW
FAGPM1 GCV-1 Servo Current Feedback A
FAGPM2 GCV-2 Servo Current Feedback A
FAGPM3 GCV-3 Servo Current Feedback A
FAGQ Quat Servo Current Feedback A
FAGR SRV Servo Current Feedback A
FPG2 Interstage Gas Fuel Pressure psig
FPG3 Gas Pressure Upstream of SRV psig
FPRG1OUT Control Command Interstage Pressure psig
FPRGOUT Alias for FPRG1OUT psig
FSRPM1 PCT GCV1 % of Total Flow %
FSRPM2 PCT GCV2 % of Total Flow %
FSRPM3 PCT GCV3 % of Total Flow %
FSRQT PCT Quat % of Total Flow %
FSGPM1 GCV1 Position Feedback %
FSGPM2 GCV2 Position Feedback %
FSGPM3 GCV3 Position Feedback %
FSGQ Quat Position Feedback %
FSGR Servo Valve Position Indication %
FSR Fuel Stroke Reference %
FSRG1OUT GCV1 Position Command %
FSRG2OUT GCV2 Position Command %
FSRG3OUT GCV3 Position Command %
FSRGQOUT Quat Position Command %
FTG Fuel Gas Temperature %

median, and standard deviation, for each i.

DPCi =
DWATTt −DWATTt−1

FAGPMi,t − FAGPMi,t−1
(1)

3. Shown in Equation 2, DV Ci represents the derivative
of the GCV current feedback, where i represents the re-
spective GCV. DV Ci was then aggregated to obtain the
mean, median, and standard deviation, for each i.

DV Ci = FAGPMi,t − FAGPMi,t−1 (2)

4. Shown in Equation 3, DV Fi represents the derivative
of the GCV total flow, where i represents the respective
GCV. DV Fi was then aggregated to obtain the mean,
median, and standard deviation, for each i.

DV Fi = FSGPCTi,t − FSGPCTi,t−1 (3)

5. Shown in Equation 4, DPFi represents the derivative of
DWATT w.r.t the GCV position feedback, where i rep-
resents the respective GCV. DPFi was then aggregated
to obtain the mean, median, and standard deviation, for
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Table 2. Calculated Features

Feature Calculation Formula Units
PM1ERROR FSRG1OUT - FSGPM1 %
PM2ERROR FSRG2OUT - FSGPM2 %
PM3ERROR FSRG3OUT - FSGPM3 %
QUATERROR FSRGQOUT - FSGQ %
DFSGPM1 FSGPM1t - FSGPM1t - 1 %
DFSGPM2 FSGPM2t - FSGPM2t - 1 %
DFSGPM3 FSGPM3t - FSGPM3t - 1 %
DFSGQ FSGQt - FSGQt - 1 %
DFSGR FSGRt - FSGRt - 1 %
DFAGPM1 FAGPM1t - FAGPM1t - 1 A
DFAGPM2 FAGPM2t - FAGPM2t - 1 A
DFAGPM3 FAGPM3t - FAGPM3t - 1 A
DFAGQ FAGQt - FAGQt - 1 A
DFAGR FAGRt - FAGRt - 1 A
DFSRPM1 PCT FSRPM1 PCTt - FSRPM1 PCTt - 1 %
DFSRPM2 PCT FSRPM2 PCTt - FSRPM2 PCTt - 1 %
DFSRPM3 PCT FSRPM3 PCTt - FSRPM3 PCTt - 1 %
DFSRQT PCT FSRQT PCTt - FSRQT PCTt - 1 %
DDWATT DWATTt - DWATTt - 1 %
DFSR FSRt - FSRt - 1 %

each i.

DPFi =
DWATTt −DWATTt−1

FSGPMi,t − FSGPMi,t−1
(4)

6. Lastly, shown in Equation 5, DFPi represents the
derivative of the fuel stroke reference w.r.t the GCV po-
sition feedback, where i represents the respective GCV.
DFPi was then aggregated to obtain the mean, median,
and standard deviation, for each i.

DPFi =
FSRt − FSRt−1

FSGPMi,t − FSGPMi,t−1
(5)

3. DATA ANALYSIS

The R programming language was selected for the data anal-
ysis and model building phase due to the compatibility with
HDFS. Data were exported from HDFS and loaded into R as
a table of labeled features.

3.1. Applying Data Transformations

Several fields were transformed and filters were applied to
aid in the analysis. This was done to transform variables into
similar ranges as well as to clean data where the valve was in a
relatively fixed position. Additionally, the healthy population
included were from units that had a post Jan 1, 2009 COD
Date, with data from the first two weeks of operation.

Table 3. Univariate Feature Selection Results

Parameter T-Test P-Value
position error total 0e+00
position error mean 0e+00
position error median 0e+00
dcurrent sd 0e+00
current sd 0e+00
current mean 0e+00
current median 0e+00
asddwattdcurrent median 0e+00
position error sd 0e+00
dfsrdposition median 0e+00
ddwattposition median 0e+00
dflowpct sd 1e-07

Figure 3. Corregram of Features.

3.2. Feature Selection

3.2.1. Univariate Feature Selection

Univariate feature selection was applied using a two sample t-
test to identify a significant difference in means between pop-
ulations of the healthy and unhealthy GCVs. Features shown
in Table 3 yielded p-values less than 0.01 and were removed
prior to applying multivariate feature selection.

3.2.2. Correlated Features

As discussed in (Breiman, 2001), features having high cor-
relation can introduce correlation bias into the predictions,
therefore features which possessed high correlation (correla-
tion greater than 0.90) were removed. A corregram generated
in R, shown in Figure 3, represents the correlation of features
where the darker colors represent higher correlations. Con-
cretely, a darker blue color corresponds to two features being
directly correlated and a darker red color corresponds to two
features being inversely correlated.

3.2.3. Multivariate Feature Selection

Following the univariate feature selection and removal of
highly correlated variables, recursive feature selection was
used to further down-select statistically important features.
For recursive feature elimiation, bootstrap models were de-
veloped from the data partitions in a training data-set and
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tested on a validation data-set. The Bootstrap models select
the set of features that maximize the area under the Receiver
Operability Curve (ROC).

Following the multivariate feature selection, the following
variables were selected for modeling:

1. Derivative of the current feedback standard deviation

2. Median current feedback

3. Total position error

4. Median position error

5. Standard deviation of the current feedback

4. MODEL SELECTION

As discussed in Section 2, the overall goal was to determine
if a GCV is healthy or degraded, thus the model output of
instances should admit only binary values (Kotsiantis, Za-
harakis, & Pintelas, 2007). Accordingly, classification mod-
eling techniques were selected for this work. This section and
the following subsections discuss the process and considera-
tions taken for selecting the classifier as well as an overview
of the selected classification algorithms.

4.1. System Constraints

Model selection was constrained by the following and listed
in order of priority:

4.1.1. Computational Runtime Performance

As discussed in Section 2.1, the upfront goal was to apply this
classification technique to the entire GE 7FA gas turbine fleet
(more than 600 assets). Additionally, a system constraint ex-
ists where the model must execute once per day, regardless
of the data resolution. The current system executes a tremen-
dous number of analytics and models daily for diagnostic and
prognostic purposes, therefore computational overhead dur-
ing runtime execution was the most significance constraint for
model selection. Certain computational intensive activities
could not be minimized during runtime, such as data retrieval
and pre-processing, so it was important to minimize compu-
tational overhead generated from the model during runtime.

4.1.2. Output Interpretability

The monitoring and diagnostics system raises alerts that are
dispositioned by an engineer who is not particularly famil-
iar with the specificities of the classification algorithm. This
engineer will view alerts raised by the model and further clas-
sify them as being either true or false positives. This can have
an adverse impact on the model results by creating inadver-
tent false negatives, or by increasing the disposition time for
the respective engineers. Consequently, it is important for the
model to be relatively simple to interpret.

4.1.3. Scalability

Although the goal is to initially apply this model to the
entire 7FA gas turbine fleet, it would be advantageous to
scale this model and/or technique to additional gas turbine
frame-sizes, assuming similar features exist, while minimiz-
ing model management costs. Model management overhead
refers to model training time, number of models to manage,
production model size in memory. Typically, a tradeoff ex-
ists between model learning time and number of production
models. However, since the models were trainined on an
HDFS cluster, the cost of having multiple models to maintain
greatly outweighed the cost of learning time. Lastly, since the
production model execution system supports model compres-
sion, this was the least weighted system constraint.

Given the GCV classification problem at hand and the exist-
ing system constraints, the following classification algorithms
were chosen for comparison:

1. Decision Tree

2. Random Forest

3. C5.0 Algorithm

Other popular pattern recognition classifiers were considered,
such as Bayesian classification, Neural Networks, and Sup-
port Vector Machines, however they were disqualified due to
the output interpretability constraint.

4.2. Decision Tree

Decision trees, also called Classification and Regression
Trees (CART) are defined by recursively partitioning the in-
put space, and defining a local model in each resulting region
of input space. This can be represented by a tree, with one
leaf per region. An example of a simple decision tree using
two arbitrary inputs and thresholds to predict color is shown
in Figure 4. The first node asks if x2 is greater than 5. If yes,
the second node asks if x1 is greater than 8. If yes, the color
is classified as green and if no, the color is classified as blue.
The same methodology follows for the opposite paths. The
result of these axis parallel splits is to partition 2d space into
four regions (colors), as shown in Figure 4 (Murphy, 2012).

Decision trees are advantageous for several reasons: they are
easy to interpret, they can easily handle mixed discrete and
continuous inputs, they are insensitivie to monotone transfor-
mations of the inputs, they perform automatic variable selec-
tion, they are relatively robust to outliers, they scale well to
large data sets, and they can be modified to handle missing in-
puts. However, decision trees also have some disadvantages,
The primary one is that they do not predict very accurately
compared to other kinds of models. This is in part due to the
greedy nature of the tree construction algorithm. A related
problem is that trees are unstable: small changes to the input
data can have large effects on the structure of the tree, due to
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Figure 4. A simple decision tree on two inputs to predict
color.

the hierarchicial nature of the tree-growing process, causing
errors at the top to affect the rest of the tree (Murphy, 2012).

4.3. Random Forest

Random forests are a modified form of decision trees with
improvements to reduce the variance of estimates. Random
Forests can train M different trees on different subsets of the
data, chosen randomly with replacement, and then compute
the ensemble shown in Equation 6, where fm is the m’th tree.
This technique is known as bagging, also known as bootstrap
aggregation.

f(x) =

M∑
m=1

1

M
fm(x) (6)

Additionally, the technique known as random forests attempts
to decorrelate the base learners by learning trees based on a
randomly chosen subset of input variables, as well as a ran-
domly chosen subset of data cases. Such models generally
have very high predictive accuracy and have been widely used
in many applications. Unfortunately, random forests sacrifice
interpretability for the higher predictive accuracy (Murphy,
2012). Additionally, for this analysis all of the default set-
tings were used for the Random Forest model creation with
no optimization applied, such as pruning or boosting.

4.4. C5.0 Algorithm

The last classification model selected for comparison was
the C5.0 algorithm, a more recent version of C4.5 (Quinlan,
1993). The C5.0 algorithm yields similar results to other clas-
sification algorithms, such as the Chi-Square Automatic In-
teraction Detector (CHAID), decision trees, neural networks,
Logit classifiers, and discriminant analysis (Coenen, Swin-
nen, Vanhoof, & Wets, 2000). The C5.0 algorithm differs

from a decision tree in that it converts a standard decision
tree into a set of rules, where each rule has an assigned clas-
sification label with a corresponding confidence. When this
set of decision rules is ran over a number of observations,
each observation is classified by the output with the highest
confidence. The observation is then assigned the output la-
bel with the higher confidence. Although the C5.0 algorithm
does not have the predictive accuracy of a random forest, it
offers improved interpretability and scalability in that the set
of classification model rules are programming language inde-
pendent.

5. RESULTS

This section evaluates the models considered for comparison
in Section 4 on the test data set. A set of evaluation criteria
is established, so each model can be compared fairly on the
same test data set.

5.1. Evaluation Criteria

Each aforementioned classification algorithm predicts an out-
put for each observation within the test data set. Since this
is a binary classification problem, let y represent the actual
state of the GCV and ŷ represent the predicted state of the
GCV, where 0 represents a healthy GCV and 1 represents a
degraded GCV. A GCV can be correctly predicted as being
degraded (true positive) or healthy (true negative), shown in
Equation 7 and Equation 8, respectively (Murphy, 2012).

tp = p(ŷ = 1|y = 1) (7)

tn = p(ŷ = 0|y = 0) (8)

Alternatively, a GCV can be incorrectly classified in the two
converse scenarios. A GCV can be incorrectly predicted as
being degraded (false positive) or a GCV can be incorrectly
predicted as being healthy (false negative), shown in Equa-
tion 9 and Equation 10, respectively (Murphy, 2012).

fp = p(ŷ = 1|y = 0) (9)

fn = p(ŷ = 0|y = 1) (10)

To measure the model effectiveness, precision and recall were
used. For this problem, precision (P ) is defined as the ratio of
correctly classified, degraded GCVs versus the total number
of predicted degraded GCVs. This is shown in Equation 11.
Recall (R) is defined as the ratio of correctly degraded GCVs
detected versus the total number of actual degraded GCVs.
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Table 4. Model Performance Results

Model Precision Recall F1 Score
Decision Tree 87.6% 87.3% 87.45%
Random Forest 97.4% 95.9% 96.64%
C5.0 Algorithm 94.5% 94.6% 94.55%

P =
tp

tp+ fp
(11)

R =
tp

tp+ fn
(12)

There is typically a tradeoff with classification algorithms be-
tween precision and recall. For example, if the model has
high precision it will typically have low recall, and vice versa.
The balanced F measure (a.k.a. F1) is used to effectively
compare the three classification models, which is a single
measure that trades off precision versus recall. Concretely,
the F measure is the weighted harmonic mean of precision
and recall, shown in Equation 13 with β2 defined in Equa-
tion 14, where α ∈ [0, 1] and thus β2 ∈ [0,∞]. The balanced
F measure equally weights precision and recall, which cor-
responds to making α = 1

2 or β = 1. Values of β < 1
emphasize precision, whereas values of β > 1 emphasize re-
call. The F1 measure was chosen to evaluate overall model
performance in comparison to the accuracy metric due to
the high bias that existed in the data, which is common for
anomaly detection problems. From Equation 12, 100% recall
can be achieved by classifying all test observations as hav-
ing a degraded GCV, and therefore 50% arithmetic mean can
be achieved by the same process. This strongly suggests that
accuracy was an unsuitable measure to use (Manning, Ragha-
van, & Schütze, 2008).

F =
(β2 + 1)PR

β2P +R
(13)

β2 =
1− α
α

(14)

5.2. Model Comparison Results

The three models were executed on the test set and the per-
formance results are shown in Table 4. The target F1 score
to achieve was 90%. The Decision Tree did not meet the tar-
get F1 score and was disqualified. Both the Random Forest
and C5.0 models exceeded the F1 threshold, having scores of
96.64% and 94.55%, respectively. The run-time performance
of the two algorithms were generally equivalent, however the
interpretability and scalability of the C5.0 algorithm are much
higher than that of the Random Forest. The C5.0 model was
selected to move forward into production.

Figure 5. Gas Turbine GCV Probability of Trip vs Time.

5.3. Production Validation

After the C5.0 model was implemented in a production en-
vironment, the classification algorithm was able to provide
early warning signs of GCV degradation approximately six
months prior to a trip occurring. Shown in Figure 5, the ver-
tical red dotted line represents that the respective gas turbine
tripped due to a degraded GCV during late February, 2015.
The green dots on the plot represents the confidence of a trip
output from the C5.0 model, where the darker dots represent
high density in trip confidence. Following the gas turbine trip,
the GCV was actuated and immediately restarted to reduce
unplanned downtime. This is what causes the C5.0 model to
still yield a high trip confidence after the trip occurred. The
gas turbine was finally shutdown during March, 2015, where
the GCV was serviced. This is shown on Figure 5 by the
decrease in trip confidence during the associated timeframe.

Figure 5 shows that the trip confidence to be approximately
75%, months prior to the trip actually occurring. Placing a
static threshold on the probability of a trip would lead to an
abundant number of false alarms. Instead, the trip confidence
was compared to the confidence of a healthy GCV and if the
trip confidence exceeded the confidence that the GCV was
healthy, for a tunable threshold of time, an alert was raised
to notify the customer. Due to the long-term degradation be-
havior of GCVs, this persistence technique was optimal for
maximizing alert precision.

6. CONCLUSIONS

Being that GCVs are one of the leading causes of gas tur-
bine trips and failed starts, the diagnosis of a degraded GCV
on a gas turbine is critical to reduce unplanned maintenance
and downtime. By simply placing thresholds around the cur-
rent feedback and/or the slew rate of the GCV is not a fea-
sible means of detecting hydraulic valve degradation. This
methodology requires high resolution data to capture these
features, which adds a significant amount of computational
overhead and an abundant number of false positives. If lower
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resolution data is used, the sampling frequency may yield a
high amount of false negatives. Furthermore, this technique
does not provide a solution to monitor the long-term degrada-
tion of the GCV.

This work proposes a purely data-driven solution to effi-
ciently detect and classify degraded servo-actuated hydraulic
valves installed in a gas turbine fuel delivery system. Addi-
tionally, the proposed solution provides prognostic capabili-
ties to alert operators up to four months prior to a GCV related
trip, without customers installing additional instrumentation.
Nearly eighty potential features were calculated from the lim-
ited instrumentation using a combination of domain exper-
tise, statistical feature extraction, and insight gains from prior
physics-based simulations. Based on the problem at hand and
system constraints, three classification algorithms were ana-
lyzed on more than 500 gas turbines, each gas turbine having
more than a year and half of data. The three algorithms were
measured by their respective precision, recall, and F1 score.
The C5.0 algorithm was selected as the optimal classifier and
was implemented in a production environment, where it cur-
rently has a precision value greater than 90%.

Future work could investigate how to scale this methodol-
ogy to additional gas turbine frame-sizes. This could in-
volve incorporating additional frame sizes into the original
data set and re-training the model or creating a new, indepen-
dent model following this same methodology. Also, future
work could expand this technique to other types of hydraulic
valves with limited instrumentation, such as the SRV. Lastly,
improving the instrumentation on a GCV system to expand
the feature space would be advantageous to improving model
fidelity. Such features may include the differential pressure
across the valve and the hydraulic fluid temperature.

NOMENCLATURE

A Amperes
MW Megawatt
psig Pounds per square inch gauge
◦F degrees Farenheit
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