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ABSTRACT

The complexity of technical systems requires increasingly ad-
vanced fault diagnosis methods to improve safety and relia-
bility. Particularly in domains where maintenance poses an
extensive part of the entire operation cost, accurate identifica-
tion of failure sources has a large economic impact. Model-
based diagnosis, as a subfield of Artificial Intelligence, al-
lows to determine root causes based on observed anomalies
and has already been applied to a variety of domains. Abduc-
tive model-based diagnosis considers information on failures
and how they affect detectable system measurements. Thus,
this type of fault localization procedure depends on system-
atic and analytic knowledge on components, their possible
malfunctions, and the subsequent effects. In this paper, we
examine various common failure assessments such as Failure
Mode Effect Analysis, in regard to serving as a basis for ab-
ductive diagnosis. In particular, we analyze the methods con-
cerning their advantages and limitations as sources of failure
information within our diagnosis process.

1. INTRODUCTION

Accurate failure localization in technical systems is a topic of
interest from an industrial as well as research point of view
due to their increasing complexity and magnitude. An inten-
sive body of research has concerned itself with this subject
ranging from fields such as Control Engineering to Artificial
Intelligence. Within the former and the latter model-based
approaches have been suggested. These methods exploit a
formalization of the system behavior to identify causes of
observed anomalies (Cordier et al., 2004). In the Artificial
Intelligence community two main techniques have emerged:
consistency-based and abductive diagnosis. The first requires
a model of the correct operation to determine inconsisten-
cies stemming from failure effects on the system (Reiter,
1987). In contrast abductive model-based diagnosis reasons
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on knowledge of the system performance in case of a defect
(Console, Dupre, & Torasso, 1991).

Even though these model-based approaches build on solid
theories, have been applied to various domains, and contin-
uous research improves their methods, a widespread adop-
tion is yet to be observed. Certainly, the initial creation of
the system descriptions suitable for diagnosis poses an obsta-
cle (Console & Dressler, 1999). Further, as noted by Milde,
Guckenbiehl, Malik, Neumann, and Struss (2000), the cur-
rent industrial work processes have to be known in order to
integrate model-based diagnosis successfully. To account for
the complexity of systems, the models have to be developed
in relation to existing knowledge on products, such as design,
construction, and failure information.

An essential benefit promoted by the community has been the
reuse of knowledge inherent to the model-based techniques.
To emphasize this potential and provide an economic addi-
tional benefit besides diagnosis, research has focused on fur-
ther tasks which can be performed with the initially generated
diagnosis models. Struss, Malik, and Sachenbacher (1996)
describe an automated approach integrating diagnosis and the
creation of Failure Mode Effect Analysis (FMEA) as well as
repair manuals based on compositional qualitative models of
the intended part behavior. Similar goals have been pursued
by Hawkins and Woollons (1998a), Price and Taylor (2002)
or Milde et al. (2000). While the former two proposed meth-
ods for FMEA, the latter automatically generates fault trees
from device knowledge by predicting the correct and erro-
neous behavior based on qualitative models.

In contrast, we propose a different approach to reuse knowl-
edge: As certain reliability assessments, such as FMEA or
Fault Tree Analysis (FTA) are common practice and even
mandatory in certain industries (Rausand & Høyland, 2004),
the information captured can be exploited for diagnostic rea-
soning. In particular, these types of analyses describe the re-
lation of failures and their consequences on the system, thus,
can form the basis for abductive diagnosis.

The remaining paper is structured as follows. First, we
present the theoretical background of abductive model-based
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diagnosis and subsequently recap a previously shown process
of incorporating it in an industrial setting. Second, we ana-
lyze different assessments which can be used to automatically
infer abductive models. In particular, we focus on FMEA,
FTA and an approach incorporating Physics of Failure (PoF).
For each type of failure analysis a modeling methodology is
introduced generating a system formalization suitable for ab-
ductive reasoning. Further, we give a short overview of ad-
vantages and disadvantages of each assessment in regard to
the resulting model and its capabilities within the entire diag-
nosis process. Lastly, we present general limitations of our
approach and conclude the paper.

2. PRELIMINARIES

Abductive model-based diagnosis reasons about explanations
for a given set observations via entailment, i.e. the obser-
vations are logical consequences of the explanations (Poole,
Goebel, & Aleliunas, 1987). Formally we write this relation
as ψ |= φ, where ψ denotes the explanations or causes and φ
represents the observations. Thus, in order to employ abduc-
tive reasoning, this type of model-based approach depends
on a formalization of failures and their discoverable effects to
infer diagnoses from observed symptoms.

Abduction belongs to the intractable problems, meaning that
in general it requires exponential time (Nordh & Zanuttini,
2008). Therefore, we focus within our research on subsets of
logic, which allow computing explanations rather efficiently.
We consider the propositional Horn clause abduction problem
(PHCAP) (Friedrich, Gottlob, & Nejdl, 1990). Before formu-
lating the PHCAP, we define a knowledge base KB as a set of
Horn clause sentences over a finite set of propositional vari-
ables. A subset of these propositional variables constitute the
hypotheses or abducibles, i.e. the variables which can pose as
part of an explanation or a diagnosis. Later when considering
the model generation based on failure assessments these hy-
potheses refer to faults. The Horn clause theory characterizes
the relations between the causes and their effects.

Definition 1 A knowledge base (KB) is a tuple (A,Hyp,Th)
where A denotes the set of propositional variables, Hyp ⊆ A
the set of hypotheses, and Th ⊆ HC the set of Horn clause
sentences over A.

As abduction derives explanations for given symptoms, a set
of observables has to be considered in addition to the KB to
form a PHCAP.

Definition 2 Given a knowledge base (A,Hyp,Th) and a set
of observations Obs⊆ A then the tuple (A,Hyp,Th,Obs) forms
a propositional Horn clause abduction problem (PHCAP).

Definition 3 Given a PHCAP (A,Hyp,Th,Obs). A set ∆ ⊆
Hyp is a solution if and only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|=
⊥. A solution ∆ is parsimonious or minimal if and only if no
set ∆′ ⊂∆ is a solution.

As we are considering abduction, the solution to the PHCAP
comprises the hypotheses which together with the back-
ground theory logically entail the set of observables. If not
specified otherwise, we refer to minimal diagnoses simply as
diagnoses. The restriction to subset minimal solutions is due
the fact that in most practical applications only parsimonious
results are of interest. There are several approaches capa-
ble of computing abductive explanations such as abductive
logic programming (Kakas, Kowalski, & Toni, 1992), proof-
tree completion (McIlraith, 1998), or consequence finding
(Marquis, 2000).

2.1. Observation Discrimination

Abductive diagnosis is exponential in the number of possible
explanations, that is in the worst case 2|Hyp| solutions are de-
termined. As mentioned before, yet, from a practical point of
view a single diagnosis is preferred. Thus, probing has been
proposed as a means to decrease the solution space. Wotawa
(2011) suggests computing all explanations and subsequently
adding new symptoms which allow discrimination of diag-
noses.

Definition 4 Given a PHCAP (A,Hyp,Th,Obs) and two di-
agnoses ∆1 and ∆2. A new observation o ∈ A \ Obs dis-
criminates two diagnoses if and only if ∆1 is a diagnosis for
(A,Hyp,Th,Obs ∪ {o}) but ∆2 is not.

Entropy is the informations gain, thus, the probing point, with
the highest entropy H(o) (Eq. (1)) determines the measure-
ment with the greatest discrimination capabilities (de Kleer
& Williams, 1987).

H(o) = −p(o) · log2 p(o)− (1− p(o)) · log2(1− p(o)) (1)

In Equation (2) the probability p(o) of observation o is de-
fined, where ∆-Set is the set of diagnoses obtained as a solu-
tion to the PHCAP.

p(o) =
|{∆ | ∆ ∈ ∆-Set,∆ ∪ Th |= {o}}|

|∆-Set|
(2)

Once the next best probing points have been selected on basis
of the entropy value, additional measurements are taken and
passed on to the diagnosis engine as observations. The fault
identification process is then restarted. Within the PHCAP a
diagnosis ∆ is discriminated in case we observe a comple-
mentary observation, i.e. ¬o ⊆ Obs : ∆ ∪ Th |= {o}.

2.2. Diagnosis Ranking

According to Bayes rule the conditional probability of an ex-
planation can be computed as shown in Eq. (3):

p(∆ | o) =
p(o | ∆)p(∆)

p(o)
(3)
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Since we aim at determining the probability of a diagnosis
given the PHCAP, we only consider effects actually observed.
Let us further assume that there is no uncertainty in the mea-
surement, hence the data has not be subjected to errors or
noise. For any o ∈ Obs, we can infer that p(o) = 1. As the
explanation logically implies the observation we can assign
p(o | ∆) = 1. Hence, p(∆ | o) = p(∆). Assuming in-
dependence amongst faults, the probability of each diagnosis
∆ can be computed based on the a-priori probability p(h) of
each hypothesis h represented within the diagnosis, as shown
in Eq. (4).

p(∆) =
∏
h∈∆

p(h)
∏
h/∈∆

(1− p(h)) (4)

Given a PHCAP we compute p(∆) for all diagnoses in ∆-Set
and subsequently assign ranks accordingly.

3. PROCESS

Even though abductive model-based diagnosis is based on
solid theoretical background, its adoption in practice is hin-
dered by two main obstacles: (1) the initial domain modeling
effort necessary and (2) the computational complexity. In this
paper, we focus on the former and describe various failure as-
sessments used in practice and their capabilities to function
as a basis for abductive diagnosis. We previously defined
a process for applying abductive model-based diagnosis to
real-world applications, which relies on an automated model
creation (Koitz & Wotawa, 2015b). In this section we give a
short introduction into the process, which is divided into three
main steps, as can be seen in Figure 1:

1. Model Development. Abductive model-based diagno-
sis utilizes a formal description of how failures mani-
fest themselves within the system. In order to diminish
the modeling effort, we propose an automated technique
exploiting failure analyses common in practice. An es-
sential requirement for these assessments to function as
the basis of abductive diagnoses is to contain knowledge
of failures and their symptoms to enable a mapping to a
KB as discussed in the previous section. Depended on
the underlying fault analysis, the generated logical the-
ory presents different characteristics.

2. Fault Detection. The diagnosis process is triggered once
a symptom is observed for which a cause is to be com-
puted. Thus, there has to be a mechanism to detect the
presence of a fault, such as a condition monitoring sys-
tem.

3. Fault Identification. Once an anomaly has been discov-
ered, the diagnosis process is started, i.e. a solution to
the PHCAP is computed. Various approaches are capable
of computing abductive explanations (Koitz & Wotawa,
2015a). Depending on the information embedded in the

failure assessment additional refinements to the initial di-
agnosis results can be made.

Our focus in the upcoming section is on how different failure
assessments can form the input to a model creation procedure
and which improvements to the initial fault identification can
be made based on the information contained in the assess-
ment.

4. MODEL-BASED DIAGNOSIS WITH FAILURE ASSESS-
MENTS

The initial construction of the system description related to
model-based diagnosis constitutes a disadvantage. To auto-
mate this task, we propose a mapping function associating en-
tries from failure assessments to propositional clauses to form
an abductive KB (Wotawa, 2014). Risk analysis tools provide
a systematic and comprehensive identification, review, and
evaluation of possible threats or hazards. Usually, the assess-
ment comprises the risk sources, consequences, magnitude,
and likelihood (Ayyub, 2014). While there is a distinction
between failure and fault mode, we use these terms synony-
mously throughout the paper.

In previous work we have focused on the modeling process
based on FMEA (Wotawa, 2014; Koitz & Wotawa, 2015b),
while in this research we further discuss FMEA in compari-
son to other failure assessments common in practice, namely
FTA and a PoF approach and show how these can be used for
model generation. In particular, the upcoming subsections
describe the methods, how the knowledge can be translated
into a propositional Horn theory as well as the advantages and
disadvantages of each failure assessment in regard to consti-
tuting the basis of an abductive knowledge base.

4.1. Failure Mode Effect Analysis

FMEA is an established standardized reliability tool in which
components are systematically assessed in regard to their pos-
sible failure modes. These rigorous and comprehensive reli-
ability and safety design evaluations are usually required by
industry standards or government policies (Vogl, Weiss, &
Donmez, 2014). Generally, the objectives of an FMEA in-
clude the identification and prevention of failures and safety
hazards, minimization of performance loss, development of
preventive maintenance plans, and the usage for diagnos-
tic techniques (Carlson, 2014). The reasoning is performed
in an inductive bottom-up manner, where the general theo-
ries are derived from detailed examples on various levels of
depth. Besides determining component-based single faults,
each failure mode is examined in regard to its causes, de-
tection mechanisms, and consequences. Further, the assess-
ment encompasses fault probabilities and severity ratings. As
detailed knowledge about the system structure, the require-
ments, the behavior of the components as well as their oper-

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Model Development

Failure 
Assessment

Observations
Data 

Acquisition
Data 

Analysis

Mapping

KB Diagnosis Diagnoses
Diagnoses 
Ranking

Observation 
Discrimination

Ranked 
Diagnoses

and 
Observations

Repair and 
ReplacementProbing 

Results

Additional 
Measurements

Fault Identification

Fault Detection

Figure 1. Process for incorporating abductive model-based diagnosis in an industrial setting.

ational relationship is necessary, such a review is conducted
by a team of specialists (Rausand & Høyland, 2004).

In case the criticality of each failure mode is identified the
technique is referred to as Failure Mode, Effects, and Criti-
cality Analysis (FMECA). The criticality of a failure encom-
passes how hazardous or serious the caused interference is
and is determined by the occurrence likelihood and the sever-
ity of the fault. Even though there are slight differences be-
tween the various FMEA/FMECA standards (Mode, 2002;
Vogl et al., 2014), both analyses result in a detailed document
with a tabulation of components and their single point fail-
ures as well as consequences. Frequently, the results can be
utilized qualitatively as a hazard analysis method or quantita-
tively considering the various ratings (Liu, 2016).

The parts of an FMEA differ depending on the followed stan-
dard or guideline. However, certain parts are usually incorpo-
rated (Carlson, 2014):

• Component/Item: The component or item determines the
artifact being analyzed.

• Failure Mode: The potential failure mode encompasses
the manner in which the component potentially fails to
deliver its intended function with the desired perfor-
mance at various levels of depth within the system.

• Failure Cause: A failure cause describes the internal and
external influences as well as their interaction which may
lead up to the failure mode such as wear, aging, defective
material, or damage.

• Failure Effect: Effects are failure consequences and have
to be considered at various levels such as local effects or
impacts on the overall system and operation.

• Detection Method and Rating: Often a particular detec-
tion mechanism is recorded, such as automated warnings
as well as alarms or the discovery by a human opera-
tor. Additionally, a rating is applied to account for the
detectability of a failure, i.e. the likelihood of discov-
ery. Evident failures are detected instantly when they oc-

cur, while hidden failures can usually only be confirmed
through testing.

• Severity: To quantify the analysis a severity rating is in-
cluded, based on the most serious failure consequences.

• Occurrence: The occurrence rating associates a failure
with the likelihood of its presence.

• Risk Priority Number (RPN): The RPN is the arithmetic
product of severity, occurrence and detection ratings.

• Actions: The actions are recommended efforts to reduce
or eliminate the risk associated with the cause of a fail-
ure.

Table 1 depicts an excerpt of an exemplary FMEA for the
yaw drive of a wind turbine. As can be seen, not all columns
described previously are present within the analysis. Yet, the
most important information for the mapping, i.e. component,
failure mode and effects, are included.

4.1.1. Model Development

Formally, we create an abductive knowledge base. As the
failures recorded in the FMEA represent the connections be-
tween single faults and a conjunction of effects, we can cre-
ate a theory consisting of definite propositional Horn clauses
(Wotawa, 2014). This limitation of the expressiveness of the
logical model leads to an avoidance of some of the computa-
tional inefficiencies inherent to abduction in general (Nordh
& Zanuttini, 2008).

We previously presented this modeling methodology, thus,
the following definitions are equivalent to the ones proposed
in Wotawa (2014). For model creation we simplify the FMEA
to three essential columns, namely the one featuring the set of
components COMP, their potential failure modes MODES,
and the set of failure effects forming a subset of the set of
propositional variables PROPS.

Definition 5 An FMEA is a set of tuples (C,M,E) where
C ∈ COMP is a component, M ∈MODES is a failure mode,
and E ⊆ PROPS is a set of effects.
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Table 1. Example 1: FMEA excerpt (adapted from Rademakers et al. (1993)).

Component Failure Mode Failure Effect Failure Cause Likelihood Severity Detection
Method

Yaw Drive Fails to rotate No yaw, failure
of safety system,
decrease of effi-
ciency

Motor not electrically powered,
Motor burned after emergency
stop, Yaw drive disconnected from
frame, mechanical damage, fatigue
fracture, capacitors burned during
emergency stop

2.2E− 5 3 Visual inspection

Yaw Drive Yaw shaft blocked No yaw, decrease
of efficiency

Motor not electrically powered,
Motor burned after emergency
stop, Yaw drive disconnected from
frame, mechanical damage, fatigue
fracture, capacitors burned during
emergency stop

1.3E− 5 3 Visual inspection

As abductive reasoning relies on a formalization of failures
and their symptoms, the conversion of an FMEA to a propo-
sitional KB(A,Hyp,Th) is straightforward. First, we create
the set of hypotheses. In the FMEA each component-failure
mode pair represents a possible cause. Each pair is mapped
to a propositional variable mode(C,M), where C is the com-
ponent and M is the failure mode. This propositional variable
is then added to the set Hyp. Equation (5) defines Hyp in this
modeling context.

Hyp =def

⋃
(C,M,E)∈FMEA

{mode(C,M)} (5)

Second, the set A then is simply the union over all hypothe-
ses as well as propositional variables representing effects as
shown in Eq. (6).

A =def

⋃
(C,M,E)∈FMEA

E ∪ {mode(C,M)} (6)

Example 1 (cont.): Considering the FMEA in Table 1, there
are two component-failure mode pairs forming the set Hyp:

Hyp =

{
mode(Yaw Drive, Fails to rotate),
mode(Yaw Drive, Shaft blocked)

}

The set of all propositional variables then contains the hy-
potheses as well as all propositional variables constituting ef-
fects.

A =


mode(Yaw Drive, Fails to rotate),
mode(Yaw Drive, Shaft blocked),

no yaw, failure safety system,
decrease of efficiency


Lastly, the propositional theory is determined by the relation
between defects and their manifestations as depicted in the
FMEA. For each record of the FMEA the mapping function
M : 2FMEA 7→ HC generates a Horn clause as a subset of the
set of Horn clauses HC.

Definition 6 Given an FMEA, the function M is defined as
follows:

M(FMEA) =def

⋃
t∈FMEA

M(t) (7)

where

M(C,M,E) =def {mode(C,M)→ e |e ∈ E } (8)

Example 1 (cont.): The theory then simply comprises Horn
clauses where a single hypothesis implies one of its effects.

Th =


mode(Yaw Drive, Fails to rotate) → no yaw,

mode(Yaw Drive, Fails to rotate)
→ failure safety system,

. . .


4.1.2. Advantages and Limitations

The application areas of FMEA are widespread as it can be
applied to complex systems. Its representation can form a
comprehensive knowledge base for failures in each part of the
system, explaining their effects on subcomponents that are
dependent on them and the entire system (Hawkins & Wool-
lons, 1998b). Thus, the mapping to an abductive model can
be automated in a simple manner. Due to the structure of
the FMEA, the resulting system descriptions are acyclic and
contain solely bijunctive clauses, i.e implications always lead
from one hypothesis to a single effect variable. These types
of models require polynomial time when used for computing
abductive diagnoses (Koitz & Wotawa, 2015c). In addition as
FMEA usually considers single faults, the resulting diagnos-
tic system holds the single fault assumption.

Furthermore, the analysis holds additional information which
can be incorporated in the diagnosis process such as data on
failure occurrence likelihood or severity. Those can be inte-
grated into the diagnosis ranking procedure to prioritize prob-
able or severe defects. However, these ratings are often sub-
jective, thus, they should merely be considered as a means
to focus on a subset of diagnoses and not as a discrimination
criteria.
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Since abductive diagnosis depends on the premise of model
completeness, we assume that all significant fault modes for
each contributing part of the system are being considered in
the analysis. Furthermore, our mapping approach expects
consistent effect descriptions, i.e. a symptom is represented
in a uniform way throughout the FMEA. Of course, in order
to count as an observation within the diagnostic process, each
effect mentioned in the analysis has to be detectable in nature.

FMEA does not take into account the potential interdepen-
dencies between various failure modes and effects. While the
absence of interconnections between failures may apply to
some systems or subsystems, a generalization is not correct
(Lee, 2001; Medina-Oliva, Iung, Barberá, Viveros, & Ruin,
2012). Thus, depending on the underlying assessment ar-
tifact, the analysis might not depict the causal relations in
its entirety. Furthermore, as the set of effects correspond-
ing to a failure is represented by a conjunction, the contrary
measure of any of these manifestations results in a discrim-
ination of the failure mode. Assume for Example 1 that
even though there is no yaw and a decrease in efficiency, the
safety system does not fail. Then the ∆-Set would contain
mode(Yaw Drive, Shaft blocked) but not mode(Yaw Drive,
Fails to rotate) as the Horn theory requires in case of the yaw
drive failing to rotate that the safety systems fails.

4.2. Fault Tree Analysis

Fault trees provide a systematic sequence of events leading
to an incident of interest, i.e. the top event. By employ-
ing a top-down approach the analysis reasons from effects to
causes. Starting at the root the chain of events prompting the
undesired event at the top is determined in a deductive man-
ner. Besides basic events forming the leafs of the fault tree,
intermediate incidents leading up to the top event are con-
sidered (Rausand & Høyland, 2004). Logic gates describe
the relations between these events. Each gate has a set of
basic or intermediate failures as input and the output is de-
fined by a single event. Thus, the tree represents logical paths
of cause-effect relationships (Vesely, Goldberg, Roberts, &
Haasl, 1981).

Based on information on event likelihood, the tree can be
quantified. To compute the frequency of the top event, the
probabilities of each output event are determined by the gates
and the input events’ probabilities in a bottom-up manner.
Thus, it is apparent that for the basic events the probabilities
have to be know (Rausand & Høyland, 2004).

Figure 2 shows an exemplary systematic chain of events lead-
ing to insufficient lubrication of a gearbox in a wind turbine.
The depicted fault tree has a top event (Insufficient lubrica-
tion), three basic events (Oil filter failure, Leakage/Cracks of
cooler and Rusty cooling fins of radiator) and one intermedi-
ate event (Poor cooling). These incidents are connected by an
OR as well as an AND gate. The former states that either the

Figure 2. Example 2: Fault Tree (adapted from Márquez et
al. (2012); Botsaris et al. (2012)).

Leakage/Cracks of cooler or Rusty cooling fins of radiator or
both must occur, to cause Poor cooling, while the latter states
that for Insufficient lubrication to arise both Poor cooling and
Oil filter failure are necessary to appear.

4.2.1. Model Development

While there are several logic gates and symbols available in
fault trees, we focus in our analysis on a simple fault tree
representation with three types of events (basic, intermediate,
top) and the two most common gates, i.e. AND and OR. We
assume that each system is described by a set of fault trees T.
Each fault tree describes the event combinations leading to a
top event which represents a certain effect of interest.

Definition 7 A fault tree FT is a pair (G, E) where G is a
set of logic gates and E a set of events. BE ⊂ E is the set
of basic events, while ε ∈ E is the top event. Ω(I, ω) ⊆ G
denotes the set of OR gates and A(I, ω) ⊆ G the set of AND
gates, where I ⊆ {E \ ε} is the set of input events and ω ∈
{E \ BE} the output event.

As a fault tree is a pictorial representation of a Boolean for-
mula depicting how the top event is caused by other events,
we can simply transform the tree into a set of clauses by de-
termining the Boolean expression for each gate. Each event
corresponds to a propositional variable in A. In our case, we
assume that the basic events represent the initial root causes,
thus, we limit the set of hypotheses to only comprise propo-
sitional variables corresponding to these primary events. The
relevant sets A and Hyp are defined the following way:

6
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A =def

⋃
e∈E
{e} (9)

Hyp =def

⋃
β∈BE

{β} (10)

In case intermediate events depict failures which should be
diagnosable, we would define the set Hyp as {E \ ε}.
Example 2 (cont.): For the fault tree in Figure 2 we can record
the following set of propositional variables and hypotheses:

A =

 Insufficient lubrication,Oil filter failure,
Poor cooling, Leakage cracks of cooler,

Rusty cooling fins of radiator



Hyp =

{
Oil filter failure, Leakage cracks of cooler,

Rusty cooling fins of radiator

}

We have a mapping function MFTA : 2FT 7→ HC, creating
for each fault tree a set of Horn clauses based on the gates
comprising the tree.

MFTA(FT) =def

⋃
g∈G

M(g) (11)

where

MFTA(g) =

{⋃
i∈I{i→ ω}, g ∈ Ω(I, ω)∧
i∈I i→ ω, g ∈ A(I, ω)

(12)

In case of an OR gate, for each input event a Horn clause
is created where the input implies the gate’s output. As the
AND gate represents the relation that all inputs have to be
present in order for the output event to occur, a single im-
plication is added, such that a conjunction of the variables
representing the inputs leads to the output event. The theory
of the abductive KB then is the union over all Horn clauses
generated over the gates of the fault tree.

Example 2 (cont.): Thus, considering the gates of Example 2
the resulting theory of the fault tree is as follows:

Th =


Oil filter failure ∧ Poor cooling

→ Insufficient lubrication,
Leakage cracks of cooler → Poor cooling,

Rusty cooling fins of radiator → Poor cooling


Note that the resulting KB, however, encompasses solely the
information of a single tree. Thus, to create an entire system
model the knowledge bases resulting from each tree in the
system have to be combined into a single KB.

4.2.2. Advantages and Limitations

Fault trees provide a clear and logical representation of cause-
effect relations between combinations of events. In order to
produce a meaningful abductive theory which can be utilized
in diagnosis, each basic event has to represent a failure or
cause. Further, for each diagnosable effect there has to be
a fault tree where the top event represents the symptom. As
with the FMEA a coherent description of the failures through-
out the fault trees of the systems has to be guaranteed for an
automatic model creation. Additionally, since it is a top-down
approach, the analysis has to ensure that all contributors, i.e.
failures, for a particular effect have been considered within
the assessment to secure completeness.

Since we assume that the fault trees contain only AND as well
as OR gates, the created theories can feature a disjunction
and conjunction of hypotheses. Thus, the models are Horn,
however, in contrast to the FMEA models they do not feature
a bijunctive form. It is apparent that due to the knowledge
encompassed within the fault tree, the resulting models are
more expressive than the ones generated on top of an FMEA,
i.e. the information stored in a fault tree can depict more rela-
tions than an FMEA due to the different logical connections
that can be represented. In case of a quantitative analysis of
the fault tree, the prior probability of the basic events are to be
known. Thus, this knowledge can be utilized in the diagnos-
tic context to compute diagnosis probabilities as described in
Section 2.

The relation between FTA and abductive reasoning is worth
mentioning. A (subset) minimal cut set (MCS) encompasses
a possible combination of basic events that lead to the top
event (Rausand & Høyland, 2004). As a MCS is the prime
implicant of the top event, it is equivalent to an abductive di-
agnosis for the observation of the top event (Bobbio, Montani,
& Portinale, 2002).

Example 2 (cont.): Given the fault tree, the MCSs
are {Oil filter failure, Leakage cracks of cooler} and
{Oil filter failure, Rusty cooling fins of radiator}, which
in fact are the diagnoses given the KB and Obs =
{Insufficient lubrication}.

4.3. Physics of Failure

The PoF approach to reliability analyzes root causes of fail-
ures and utilizes theoretical models capturing the relation be-
tween operational and environmental loads as well as damage
accumulation rates (Pascoe, 2011). Thus, these mathematical
models have to represent the physics inherent to the damage
process. Based on the knowledge on failure mechanisms and
potential degradation in addition to life cycle stress informa-
tion, estimates can be made in regard to the probability of
certain failures for a component or product under investiga-
tion (Pecht & Dasgupta, 1995; Oh et al., 2010).
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Table 2. Example 3: Failure Mode Assessment (FMA) of the Converter.

Fault Mode Component Damage Pro-
moting Operat-
ing Mode

Aggravating Bound-
ary Conditions

State Indicators/Part Inspection

Electrical
chemical
aging

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient temper-
ature

(T power cabinet OR P turbine) AND Equivalent se-
ries resistance higher

Corrosion Fan - Pin Full load Saline environment,
high temperature en-
vironment

T cabinet OR P turbine

Thermo-
mechanical
fatigue
(TMF)

Fan - Bearing
Running Surface

Start Up/ Shut
Down, Transient
current/voltage
events

Light winds (frequent
start up and shot
down),
changing wind direc-
tion (yaw adjustment)

T cabinet AND P turbine

High-cycle
fatigue
(HCF)

IGBT - Wire
Bonding

Start Up/ Shut
Down, Transient
current/voltage
events

Low ambient temper-
ature

T inverter cabinet OR T nacelle OR P turbine

C. Gray, Langmayr, Haselgruber, and Watson (2011) describe
a failure mode assessment (FMA) combining diagnostic and
prognostic techniques. Their method relies on a structured
evaluation of faults, in particular, physical and chemical fail-
ure mechanisms, and their manifestations. In order to create
a comprehensive assessment of a system, it is decomposed
into its subcomponents. Each part is then analyzed in regard
to its potential failure modes as well as the damage driving
physics. To ensure a complete depiction of the system, top-
down and bottom-up reasoning are incorporated to determine
failure relevant operational and environmental boundary con-
ditions. For each combination of failure mode and compo-
nent, a mathematical model is used to calculate the rate at
which damage accumulates in response to the operating envi-
ronment. The approach is similar to Failure Modes, Mech-
anisms and Effects Analysis (FMMEA) (Ganesan, Eveloy,
Das, & Pecht, 2005) as it emphasizes the evaluation of dam-
age driving conditions. The FMA method differentiates be-
tween automatically retrieved state indicators such as Super-
visory Control and Data Acquisition (SCADA) results and
measurements from inspections (C. S. Gray & Watson, 2010).
In contrast to FMEA or FMMEA, the evaluation considers a
more detailed view on the relationships between failure ef-
fects. By incorporating logical connections, namely AND as
well as OR, the description of effects is a Boolean expression
representing which consequences are observed in case of a
fault and how these are linked.

Table 2 shows parts of an FMA produced by an expert group
during a system analysis for the converter of an industrial
wind turbine. As can be seen the analysis encompasses the
failure mechanism, i.e. fault mode, the component, the oper-
ation and environmental conditions promoting the damage as
well as the effects which are on the one hand state indicators
automatically retrieved from a condition monitoring system
as well as manual part inspections.

4.3.1. Model Development

As we are creating propositional Horn clauses to form a
PHCAP, some adjustments to the information stored in the
FMA have to made. Again we can use three sources of in-
formation for modeling: the set of components COMP, their
potential fault modes MODES, and the Boolean formulas
FORM describing the connection between the state indicators
and part inspections.

Definition 8 An FMA is a set of tuples (C,M, φ) where
C ∈ COMP is a component, M ∈ MODES is a fault mode,
and φ ∈ FORM is the Boolean expression relating effects to
one another.

Example 3 (cont.): The first entry of the FMA in Table 2
results in the following tuple:

( Buck Boost, Electrical chemical aging,
(T power cabinet ∨ P turbine) ∧

Equivalent series resistance higher)

Since the effects can be connected by disjunctions, a simple
mapping to Horn clauses as with the FMEA is not possible.
As a disjunction of effects implies that at least one of these
manifestations is present in case of the failure, a mapping to
conjunctions, as Horn clauses would require, is inadequate.
Thus, the underlying information has to be preprocessed in a
new FMA which we denote FMAp. The first step is to en-
sure that each Boolean expression in the effect description is
in disjunctive normal form (DNF), i.e. each formula is a dis-
junction of conjunctions. This can be simply achieved by ap-
plying the laws of Boolean algebra. Let us assume that there
is a function DNF converting a Boolean expression φ into its
DNF form:

∀φ ∈ FORM : φ′ = DNF(φ) (13)

Thus, each tuple (C,M, φ′) ∈ FMAp now contains the DNF
formula φ′ of φ.
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Example 3 (cont.): For the first entry, we can record φ′ as

(T power cabinet ∧ Equivalent series resistance higher)∨
(P turbine ∧ Equivalent series resistance higher )

In the second step we create for each record, where φ′ consists
of a disjunction, a new fault mode Mc for each conjunction
c ∈ φ′. Each resulting tuple (C,Mc, c) is added to FMAp.
It is apparent that each original tuple (C,M, φ′) has to be
removed subsequently from FMAp.

Example 3 (cont.): The Boolean expression in DNF of the
first entry comprises a disjunction with two conjunctions, i.e.
(T power cabinet∧Equivalent series resistance higher) and
(P turbine ∧ Equivalent series resistance higher). Thus, for
each of the conjunctions a new fault mode Mc is generated
and the resulting tuples of the form (C,Mc, c) are:

(Buck Boost, Electrical chemical aging 1,
T power cabinet ∧ Equivalent series resistance higher)

and

(Buck Boost, Electrical chemical aging 2,
P turbine ∧ Equivalent series resistance higher )

It is apparent that the number of records within the FMAp
is increased in regard to the primary FMA, as each DNF for-
mula can be exponentially larger than its original. Table 3
shows the processed FMAp of Example 3. Then, the mapping
MFMA : 2FMAp 7→ HC is similar to M and the composition
of Hyp (Eq. (16)) and A (Eq. (17)) is analog to the FMEA
modeling.

Definition 9 Given an FMAp, the function MFMA is defined
as follows:

MFMA(FMAp) =def

⋃
t∈FMAp

M(t) (14)

where

MFMA(C,Mc, c) =def {mode(C,Mc)→ v |v ∈ c} (15)

Hyp =def

⋃
(C,Mc,c)∈FMAp

{mode(C,Mc)} (16)

A =def

⋃
(C,Mc,c)∈FMAp

{mode(C,Mc)} ∪
⋃
v∈c

v (17)

Example 3 (cont.): Applying Eq. (16), Eq. (17) and MFMA to
the FMAp in Table 3 results in the following KB:

Hyp =

 mode(Buck Boost, Electrical chemical aging 1),
mode(Buck Boost, Electrical chemical aging 2),

mode(Fan Pin,Corrosion 1), . . .



A =

{
mode(Fan Pin,Corrosion 1),

T power cabinet, P turbine, . . .

}

Th =



mode(Buck Boost, Electrical chemical aging 1)
→ T power cabinet,

mode(Buck Boost, Electrical chemical aging 1)
→ Equivalent series resistance higher,

mode(Buck Boost, Electrical chemical aging 2)
→ P turbine,

. . .


It is apparent that in case the diagnoses are computed, these
do not contain the original fault modes, but the additionally
created ones of the second transformation step. Thus, these
have to be mapped back once the explanations have been
computed. Note here, that due to the creation of the auxil-
iary hypotheses the abductive solutions when converted back
to the original fault modes might not be minimal and subse-
quently supersets have to be removed.

4.3.2. Advantages and Limitations

Due to describing the logical relations between effects, a
more detailed representation of the real physical interconnec-
tions within a system is possible. Further, the FMA takes
into account the gradual degradation of components over their
lifetime and thus allows in the succeeding refinements of the
initial diagnosis result to consider historic data of the life cy-
cle stress of a part in addition to the damage model. Hence,
a combination of the diagnosis and prognosis process is pos-
sible, such that the current component condition can identify
failures more probable.

As the PHCAP requires a Horn theory, some conversions
are necessary which may involve an exponential explosion
of the formula and a growing number of hypotheses. Be-
sides the computational effort increasing, the solutions gen-
erated based on the theory might not be minimal once trans-
formed back to the original hypotheses space. Therefore, ad-
ditional superset checks are required at the end to ensure par-
simonious diagnoses. Furthermore, due to the inclusion of
disjunctions between effects, the discrimination capability of
probing is limited to a certain extend.

5. DISCUSSION

Depending on the utilized assessment, the resulting models
differ in their structure and expressiveness. The Horn the-
ory constructed from the information stored within an FMEA
is the most straightforward and simple, as each clause rep-
resents a causal relation between a single failure and a sin-
gle effect. Due to the consequences of a cause being related
by conjunctions, the produced models are rather strict in the
sense that in case the opposite of one manifestation out of the
effect set is perceived, the corresponding cause is no longer
a viable part of a diagnosis. Thus, the associated hypothe-
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Table 3. Example 3 (cont.): Processed Failure Mode Assessment (FMAp) of the Converter.

Fault Mode Component Damage Promoting Op-
erating Mode

Aggravating Boundary Condi-
tions

State Indicators/Part Inspection

Electrical chemical
aging 1

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient temperature T power cabinet AND Equivalent
series resistance higher

Electrical chemical
aging 2

Buck Boost -
Electrolyte
Capacitor

Partial load High ambient temperature P turbine AND Equivalent series re-
sistance higher

Corrosion 1 Fan - Pin Full load Saline environment,
high temperature environment

T cabinet

Corrosion 2 Fan - Pin Full load Saline environment,
high temperature environment

P turbine

Thermo-mechanical
fatigue (TMF)

Fan - Bearing
Running Surface

Start Up/ Shut Down,
Transient current/voltage
events

Light winds (frequent start up and
shot down),
changing wind direction (yaw ad-
justment)

T cabinet AND P turbine

High-cycle
fatigue (HCF) 1

IGBT - Wire
Bonding

Start Up/ Shut Down,
Transient
current/voltage events

Low ambient temperature T inverter cabinet

High-cycle
fatigue (HCF) 2

IGBT - Wire
Bonding

Start Up/ Shut Down,
Transient
current/voltage events

Low ambient temperature T nacelle

High-cycle
fatigue (HCF) 3

IGBT - Wire
Bonding

Start Up/ Shut Down,
Transient
current/voltage events

Low ambient temperature P turbine

ses have to be removed from all solutions. In practice this
signifies that observation data have to be preprocessed to re-
move noise or account for inaccurate measurements to ensure
that feasible fault modes are not discriminated prematurely.
As the FMEA comprises certain information on occurrence
likelihood and severity or criticality, additional improvements
to the diagnosis results are possible. Ideally, a-priori failure
probabilities are known from manufacturers or historic data.
However, even ratings, as are very commonly used in FMEA,
can indicate a prioritization. Particularly severity or critical-
ity can signify failures most paramount in regard to safety or
economic considerations.

In comparison to the FMEA-based models, fault trees can ex-
press a wider range of situations by allowing to represent the
combination of events. To create a KB for an entire system,
the modeling requires a fault tree for each possible observa-
tion and subsequently the knowledge bases have to be joined
in a comprehensive system description. In case the FTA is
quantitative, the probabilities of the basic events correspond-
ing to hypotheses can be incorporated to determine cause
likelihoods. Interesting enough to create abductive diagnoses
a mapping to a KB is not necessary, as we could exploit the
notion of MCS. Assume a PHCAP with Obs = {o1, . . . , on}
and for each oi ∈ Obs there is a fault tree fti ∈ T with
ε corresponding to oi. To obtain an MCS equivalent to the
abductive explanations for the given problem, the fault trees
need to be joined. A combined fault tree with a new top event
ex is introduced with a gate α ∈ A(I, ω) such that ω = {ex}
and I =

⋃
fti∈T ε. The MCSs of ex then constitute the prime

implicants or minimal abductive diagnoses of the PHCAP.

The last approach combines prognosis and diagnosis by de-
termining damage models for recorded fault modes. As FMA
allows to express the combination of effects with disjunctions

a simple mapping to a Horn theory is not possible. Thus, a
conversion prior to model creation is necessary. The disad-
vantage is that the resulting processed model might be expo-
nentially larger than the original assessment due to the trans-
formation, that the resulting diagnoses have to be mapped
back to the initial causes and that finally subset checks have
to be performed to ensure minimal explanations. Note that
there are other abduction frameworks, which do not restrict
their underlying models to feature a Horn structure and thus
not require a conversion for this type of knowledge. The main
benefit of the FMA is the prognosis capabilities based on the
knowledge of failure mechanisms and life cycle stress. In
comparison to the other methods, the incorporation of infor-
mation of time to failure, allows a more accurate ranking of
diagnoses.

Essentially, the advantages and disadvantages of the underly-
ing assessments are not only inherent in the type of relation
they are capable of expressing, but also in the incorporated
additional information they hold. In particular, any ranking
information can be viable to determine probable or critical di-
agnoses. It is apparent that the quality of the model automat-
ically generated is largely depended on the underlying failure
assessment. Failure modes or effects not considered in the
analysis, are absent in the abductive model and thus diagnoses
involving those cannot be uncovered. Model completeness
is a primary requirement, thus, an essential aspect is a sys-
tematic and comprehensive review of the system to achieve a
high coverage of faults and their consequences (Milde et al.,
2000). Certain assumptions are fundamental to our approach,
e.g. to ensure the feasibility of an automatic creation of the
model, manifestations and failures have to be coherently re-
ported throughout the assessment and consequences have to
be detectable in order to be useful in a diagnostic context.
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6. CONCLUSION

Model-based diagnosis requires a description of the system
under consideration to determine causes for symptoms ob-
served. Although applications have been developed for vari-
ous domains, the need to construct a suitable model remains a
hindering factor in the adoption of these approaches. There-
fore, we propose to exploit failure assessments already avail-
able in practice to generate the formalizations which are nec-
essary for abductive model-based diagnosis.

We discuss three different analysis methods, namely FMEA,
FTA and an approach based on PoF, in regard to their capa-
bilities to form the basis of an abductive diagnosis process.
Depending on the assessment, the resulting models feature
different characteristics as well as expressiveness and further
the additional information included can be utilized in succes-
sive refinements of the initial diagnosis.

To analyze the suitability of the modeling methodology and
the diagnosis refinements, evaluations on practical failure as-
sessments are planned. In particular, an investigation of the
combination of the Pof approach and our diagnosis process
within the domain of industrial wind turbine should reveal the
practicability of the integration of failure assessments in the
diagnosis process as well as the incorporation of model-based
diagnosis into an industrial setting.
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