
 

1 

Smart Diagnosis of Journal Bearing Rotor Systems:  
Unsupervised Feature Extraction Scheme by Deep Learning 

Hyunseok Oh1, Byung Chul Jeon2, Joon Ha Jung3, and Byeng D. Youn4 

1,2,3,4 Department of Mechanical Engineering, Seoul National University, 
Seoul 08826, Republic of Korea 

 
hsoh52@hotmail.com 
puurni@empas.com 

reallibero@gmail.com 
bdyoun@snu.ac.kr 

 
ABSTRACT 

In most approaches for journal bearing rotor system diagnosis, 
dominant features are manually extracted based on expert’s 
experience and domain knowledge. With the adoption of 
advanced journal bearings and the limited knowledge about 
physics-of-failure, the current practice for feature extraction 
showed limitations for real applications in the power plant 
industry. To this end, this paper proposes an unsupervised 
scheme to extract features from correlated vibration signals. 
First, raw vibration signals from a pair of sensors are 
preprocessed by generating two-dimensional images. Second, 
the vibration images are characterized with a HOG 
(histogram of original gradients) descriptor. Then, deep 
learning is used to extract relevant features for journal 
bearing rotor system diagnosis. To demonstrate the validity 
of the proposed unsupervised-feature-extraction scheme, a 
case study was conducted with data from the RK4 rotor kit. 
The results showed that the proposed scheme outperformed 
existing methods in terms of fault classification accuracy. We 
anticipate that the proposed scheme is promising as it can 
minimize the reliance of expert’s experience and domain 
knowledge. 

1. INTRODUCTION 

Failure of rotors can lead to significant financial loss in 
engineered systems. To prevent unexpected failure and 
minimize its downtime, the concept of condition-based 
maintenance (CBM) is adopted in industrial applications. To 
realize the CBM, three diagnostic approaches are used: 
model-based, data-driven, and hybrid. In the data-driven 
diagnostic approach, the key steps are (1) data acquisition, (2) 

feature extraction and selection, and (3) fault classification. 
Among them, the step of feature extraction and selection is 
known to be most critical and challenging. Therefore, 
numerous studies addressed how to extract and select features 
(Ha, Youn, Oh, Han, Jung, & Park, 2016; Lee, Wu, Zhao, 
Ghaffari, Liao, & Siegel, 2014; Oh, Han, McCluskey, Han, 
& Youn, 2015; Yang & Kim, 2006).  

So far, a number of signal preprocessing techniques were 
developed to extract features for rotor systems. Some 
examples are Fourier transform, wavelet transformation, 
empirical mode decomposition, principal component analysis, 
and independent component analysis. Excellent studies can 
be found in the research area of feature extraction. They 
showed good performance in the rotor system diagnosis. 
However, a couple of limitations were found in implementing 
the existing methods in practical applications. First, a 
considerable amount of expert’s experience and domain 
knowledge is required to extract a number of proper features 
for the diagnosis of rotor systems. Second, differences in 
scale and makers warrant unique features for the diagnosis of 
a particular system, although an identical type of systems 
such as motors, pumps, and compressors is considered. It can 
be time-consuming and labor-intensive to customize existing 
features for a similar system. To overcome the limitations, a 
better method is required to extract features in the diagnostics 
of rotor systems.  

According to LeCun, Bengio, and Hinton (2015), high-level 
features in complicated data can be extracted using a general-
purpose learning procedures in an unsupervised manner, i.e., 
deep learning. With the deep learning, a couple of 
breakthroughs were reported in the area of automatic speech 
recognition, computer vision, and language translation. 
Therefore, the deep learning may have a potential for smart 
diagnosis of rotor systems. There are only a limited number 
of publications about fault diagnosis using deep learning. 
Most of them was published in the recent years. A multi-
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sensor health diagnosis approach was proposed with the use 
of the deep belief network (Tamilselvan & Wang, 2013). A 
hierarchical diagnosis network was constructed based on 
deep learning (Gan, Wang, & Zhu, 2016). The potentials of 
deep neural networks were studied to capture fault 
characteristics and diagnose rotating machinery (Jia, Lei, Lin, 
Zhou, & Lu, 2016). For rolling element bearing diagnostics, 
the deep belief network was optimized with the particle 
swarm algorithm (Shao, Jiang, Zhang, & Niu, 2015). A 
stacking denoising autoencoders was proposed to detect 
anomalies in gas turbine combustors with temperature 
measurement data (Yan & Yi, 2015). The concept of deep 
belief networks and symbolic time series analysis was 
proposed to detect combustion instability from flame images 
(Sarkar, Lore, Sarkar, Ramanan, Chakravarthy, Phoha, & 
Ray, 2015). In the existing deep learning publications for 
fault diagnosis, none of them considered correlated signals 
from a pair of sensors for engineered system diagnostics. The 
correlated signals are commonly acquired from mission- and 
safety-critical systems such as steam turbines. 

This paper propose an unsupervised scheme to extract 
features from correlated vibration signals for rotor systems. 
The remaining sections are organized as follows. Section 2 
reviews the theoretical background of deep belief network. 
Section 3 presents the proposed scheme for smart rotor 
system diagnosis. Section 4 shows a case study with the 
journal bearing rotor system. Section 5 concludes the paper 
with future work. 

2. A BRIEF OVERVIEW OF DEEP BELIEF NETWORK 

A breakthrough in deep learning was initiated by Hinton, 
Osindero, and Teh (2006). The key idea of deep learning is 
to train a hierarchy of features one level at a time, which is 
referred to as greedy layer-wise unsupervised pretraining. At 
each iteration, one layer of weights and biases is added to a 
deep architecture. A set of layers is built after multiple 
iterations. The iteration process is called pretraining. A 
pretrained deep architecture can be used to build a classifier. 

To form the deep architecture, multiple layers should be 
stacked in a proper manner. Although there is no consensus 
on which type of layers should be stacked and how to stack 
them, several approaches were proposed (Bengio, Courville, 
& Vincent, 2013): (1) stacking pretrained restricted 
Boltzmann machines (RBMs) into a deep belief network 
(DBN), (2) stacking autoencoders (or RBMs) into a deep 
autoencoder, and (3) constructing a free energy function 
iteratively. In this section, we overview the first approach 
since it is widely accepted in the research community of deep 
learning. 

2.1. Pretraining RBM 

The RBM consists of one visible layer and one hidden layer 
(Smolensky, 1986). The energy function of the RBM is: 

 ( , )RBM T T Tv h v Wh b v d hε = − − −  (1) 

where v and h are the visible and hidden vectors (a series of 
binary state of 0 or 1); W is the matrix that encodes the 
interactions between the visible and hidden nodes; b and d 
are the vectors that present the visible self-connections and 
the hidden self-connections (i.e., biases), respectively. 

The probability that the RBM assigns to a visible vector is 
calculated by summing energy over all hidden vectors: 
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where Z is the partition function that normalizes the 
probability, P(v). It is worth noting that the probability of 
having a particular training vector can be increased by 
adjusting the model parameters (i.e., weights and biases) to 
lower the energy of the training vector, whereas the 
probability can be decreased by adjusting them to increase 
the energy.  

The model parameters of the RBM can be calculated with 
stochastic maximum log-likelihood. The derivative of the log 
probability of a training vector with respect to a weight is: 

 data model

log ( )
i j i j

ij

p v v h v h
w

∂
= −

∂
 (3) 

where subscripts, i and j, indicate the ith visible and jth hidden 
nodes, respectively; the angle brackets are the expectation of 
the dot product of the ith visible and jth hidden node binary 
states. Therefore, the optimization can be stopped when the 
second term in Eq. (3) converges to the first term. The weight 
can be adjusted: 

 ( )data modelij i j i jw v h v hε∆ = −  (4) 

where ε is the learning rate. 

The first term in Eq. (4) is straightforward to calculate when 
a training vector is given. However, calculating the second 
term in Eq. (4) is computationally expensive since it requires 
numerous iterations with an infinite number of samples. To 
address this, a training method called contrastive divergence 
(CD) is proposed by Hinton (Hinton 1999):  

 ( )data reconstructionij i j i jw v h v hε∆ = −  (5) 

With a given training vector, a single (or a few) iteration of 
alternating Gibbs sampling can approximate the second term 
in Eq. (4) without sacrificing accuracy while reducing 
computational cost. The identical training method can be 
used to find another model parameters of the RBM, i.e., 
biases for visible and hidden nodes. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

3 

2.2. DBN Construction  

A DBN is comprised of multiple RBMs. As mentioned in 
Section 2.1, a single RBM consists of two layers: one visible 
layer and one hidden layer. The weights and biases associated 
with the two layers (i.e., model parameters) can be  

 
Figure 1. Multilayered architecture for deep belief network. 

 

 
(a) 

 
(b) 

Figure 2. Virtual sensor signals (a) virtual sensor placement 
and (b) vibration signals generated by the ODR 
technique (indicated by the blue color): the 1× 
frequency components are superimposed on the 
individual vibration signals (indicated by the red 
color). 

 

determined by training. Then, another RBM is stacked on top 
of the previous RBM and its model parameters can be 

determined by the training. Stacking and training of 
additional RBMs can be repeated in an unsupervised manner. 
Finally, an output layer is stacked on the top of the stacked 
RBMs. The whole model parameters can be fine-tuned by the 
conventional training method such as back-propagation in a 
supervised manner. As shown in Figure 1, for example, three 
RBMs are stacked to build a DBN. (1) The first and second 
layers are the visible and hidden layers of RBM 1, 
respectively. Model parameters of RBM 1 are determined in 
an unsupervised manner. (2) The second and third layers 
become the visible and hidden layers of RBM 2, respectively. 
Model parameters of RBM 2 are determined in the same 
manner. (3) The third and fourth layers correspond to the 
visible and hidden layers of RBM 3, respectively. Model 
parameters of RBM 3 are determined in the same manner. (4) 
The fifth layer is added on top of the stacked RBMs to 
construct the DBN. The whole model parameters are fine-
tuned with the back-propagation method. 

Section 2 overviewed the DBN architecture and presented 
how to pretrain the DBN, which is theoretical background of 
the proposed method in this paper. In Section 3, for smart 
diagnostics of rotor systems, we present a novel scheme that 
learns vibration images of correlated signals in an 
unsupervised manner. 

3. PROPOSED SCHEME FOR UNSUPERVISED FEATURE 
EXTRACTION WITH CORRELATED VIBRATION 
SIGNALS 

Section 3.1 presents how to visualize correlated x- and y-axis 
vibration signals on two dimensional (2D) images. An 
omnidirectional regeneration (ODR) technique is employed 
to generate multiple vibration signals from virtual sensors. 
Section 3.2 shows an image processing technique, i.e., HOG, 
to characterize the ODR images. Section 3.3 describes the 
unsupervised feature extraction scheme with the ODR-based 
HOG descriptor and deep belief networks.  

3.1. Image Generation for Correlated Vibration Signals 

The procedures for generating vibration images are as 
follows. First, raw vibration signals are acquired from actual 
sensors. Second, additional vibration signals are produced 
from virtual sensors by the ODR technique. Third, among the 
produced vibration signals, a reference vibration signal is 
determined. Fourth, vibration signals are aligned in 
accordance with the reference vibration signal. And the 
aligned vibration signals are assembled to produce a single 
image. The final step is to normalize the magnitude of the 
vibration in the image. The steps one to five are repeated to 
generate multiple images using a set of vibration signals 
acquired at another sampling sequences. We presented each 
step with details as follows. 

In rotor systems, a pair of sensors is mounted on the housing 
of bearings. For example, gap sensors are placed along with 
the predefined x- and y-axis directions perpendicular to the 
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rotor central axis. Signals from the two sensors may not be 
sufficient to diagnose the rotor system since anomalous 
behaviors of the rotor (e.g., unbalance) can occur in any 
direction that is not aligned with the sensing directions. To 
address this issue, the idea of adding virtual sensor signals 
given actual sensor signals, so-called ODR technique, was 
proposed by Jung, Jeon, Youn, Kim, & Kim (2015). The 
ODR signals from the ith virtual sensors, xi and yi, are defined 
(i=1, 2, …, N):  

 0 0[cos( )] [sin( )]ix i x i yθ θ= ×∆ − ×∆  (6) 

 0 0[sin( )] [cos( )]iy i x i yθ θ= ×∆ + ×∆  (7) 

where x0 and y0 are the vectors that consist of vibration signals 
from actual x- and y-axis sensors, respectively; N is the 
maximum number of the ODR signals to be generated; and 
Δθ is the increment of the rotation angle. Figure 2(a) 
illustrates multiple virtual sensors with the two actual sensors 
(x0 and y0). Figure 2(b) shows vibration signals generated by 
the ODR technique to be used to generate a single image.  

With the N number of signals from the virtual sensors, we can 
generate an image that represents the state of the rotor at a 
particular sampling sequence. Among the set of N vibration 
signals, we should select a vibration signal as a reference that 
is assembled into the first row of the image. In this study, the 
reference is determined to be the vibration signal that 
contains the largest magnitude at the first harmonic frequency 
(1×) of the rotating speed. This is reasonable since an 
anomalous behavior can be best observed at the 1× frequency 
component with the largest magnitude.  

The reference vibration signal is assembled to the first row of 
the image. However, we need to consider the consistency 
between images for training of a DBN. Therefore, the first 
data point in the reference vibration is determined to be that 
with the maximum magnitude. For example, as shown in 
Figure 3(a), the first data point of the original reference 
vibration signal is not the data point with the maximum 
magnitude. For the purpose of consistency between the 
images, we defined the reference vibration signal that starts 
from the data point with the maximum magnitude as shown 
in Figure 3(b). Other vibration signals are prepared in 
accordance with the synchronization rule. Then, an image is 
assembled with from top to bottom. Suppose a vibration 
signal, xj, is a reference signal. Then, xj+1, xj+2, xj+3, …, xj, are 
assembled into the 2nd, 3rd, 4th, …, Nth rows of the image. 
Figure 4 shows an image generated with correlated vibration 
signals. 

3.2. ODR Image Processing with HOG Descriptor 

The histogram of oriented gradients (HOG) is a descriptor 
that is used to detect objects in computer vision and image 
processing. A combination of the HOG and SVM was 
proposed by Dalal and Triggs (2005) to detect human, 
especially, pedestrians on the image with a large range of 

poses and backgrounds. Since the introduction, the use of the 
HOG descriptor has been extended to extract the 
characteristic of shape-based objects such animals and 
vehicles. In this study, we employed the HOG descriptor to 
improve the quality of the input images provided to the DBN 
for rotor system diagnostics.  

 
(a) 

 
(b) 

Figure 3. Vibration signal: (a) reference and (b) phase 
synchronized ones. 

 

 
Figure 4. Image of correlated vibration signals measured for 

two revolutions of the rotor. 
 

 
Figure 5. Vibration image after HOG processing. 

 

The key idea of the HOG descriptor is that the shape of an 
object in local areas can be characterized by a series of 
histograms of local intensity gradients (LIGs). To implement 
the idea, an image should be divided into small spatial regions 
(cells). Then, for each cell, a histogram is drawn with the 
counts of the number of LIGs. For rotor system diagnostics, 
the processing of ODR images with the HOG descriptor 
includes six steps. First, the ODR image is sectioned into 
multiple cells with n (width) by n (height) pixels. Second, a 
spatial gradient (i.e. magnitude and orientation) for every 
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pixel is computed. Third, a histogram is built for each cell by 
“weight-voting” the gradients. Counts in each bin of the 
histogram is the number of gradients in a particular range of 
the direction. Fourth, the counts of the histograms generated 
for a number of cells is normalized to account for changes in 
illumination and contrast. Fifth, the normalized histograms 
are concatenated to produce a series of histograms for a block. 
Last, the counts of the concatenated histograms are 
normalized between blocks. An example of the HOG 
descriptor is prepared with the image in Figure 4. LIGs are 
shown with gradients for each cell as shown in Figure 5. The 
final outcome from the HOG descriptor is the concatenated 
histogram of the cell gradients as shown in Figure 6.  

 

 
Figure 6. Concatenated histogram. 

 

 
(a)                                            (b) 

Figure 7. Procedures for rotor system diagnostics: (a) training 
and (b) testing. 

 

3.3. Unsupervised Feature Extraction Scheme with 
ODR-based HOG Descriptor and DBN 

The ODR-based HOG descriptor is provided as inputs of the 
DBN. The number of hidden layers of the DBN should be 
sufficient to capture the characteristics of the ODR-based 
HOG descriptor. The number of nodes of each hidden layer 
should be determined by the user. Other parameters such as 
learning rate, batch size, and training-validation-testing data 
ratio should be also determined. Currently, there is no solid 

guideline for the determination of the aforementioned 
parameters. After pretraining of the DBN with training data 
as explained in Section 2.1, a DBN is constructed. The DBN 
can perform clustering of given data. 

The pretrained DBN can be used for system diagnostics with 
the supervised learning as specified in Section 2.2. Figure 7 
shows the procedures to diagnose rotor systems. It combines 
the proposed unsupervised feature extraction scheme with the 
supervised diagnostic method. First, vibration data are 
collected from rotor systems. For the purpose of training a 
deep belief network, data from multiple sources such as a 
testbed in the laboratory and an actual rotor system in the 
field can be used. The collected vibration data are grouped 
into two sets including training and test data. Then, vibration 
images are generated with multiple vibration signals from 
virtual sensors by the ODR technique. The images are 
processed by the HOG descriptor to capture the characteristic 
of the images. For high-level feature generation, 
unsupervised learning by building a deep belief network is 
conducted. A large amount of field data without any label can 
be incorporated in the unsupervised learning since a training 
data set does not require any label that indicates the condition 
of the rotor system. Finally, the pretrained deep belief 
network is fine-tuned in a supervised manner. We evaluated 
the performance of the proposed diagnostic scheme for rotor 
system with the test data. 

4. CASE STUDY: JOURNAL BEARING ROTOR SYSTEM 
DIAGNOSIS 

This section presents a case study for the diagnostics of 
journal bearing rotor systems. Section 4.1 describes the data 
used for the case study. Section 4.2 shows the vibration 
imaging and HOG descriptor with the data. A deep belief 
network is used to extract features in an unsupervised manner. 
The performance of the proposed unsupervised feature 
extraction scheme is evaluated with the journal bearing rotor 
systems. The diagnostic accuracy is compared with those 
from conventional feature extraction methods.  

4.1. Description of Data 

The data used in this case study are collected from the journal 
bearing rotor testbed produced by GE Bently-Nevada (i.e., 
RK4 rotor kit; see Figure 8). Details of data collection can be 
found in Jeon, Jung, Youn, Kim, and Bae (2015). This section 
overviews the data briefly. The rotational speed was 3600 
rpm. Two gap sensors measured relative displacements of the 
shaft in the directions of x- and y- axes with the sampling rate 
of 8,500 data points per second. Each set of x-directional data 
contained 200 data points that correspond to two revolutions 
of the rotor. Another set of y-direction data also contained 
200 data points. The x- and y-directional data sets were 
generated for health conditions of (1) normal, (2) rubbing, (3) 
misalignment, and (4) oil whirl. This was repeated five times. 
Table 1 summarizes the RK4 data sets used in this case study. 
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Figure 8. RK4 rotor kit. 

 

 
(a) 

 
(b) 

Figure 9. Imaging vibration signals at normal condition: (a) 
ODR vibration image and (b) ODR vibration image 
after HOG processing. 

 

 
(a) 

 
(b) 

Figure 10. Imaging vibration signals for rubbing fault: (a) 
ODR vibration image and (b) ODR vibration image 
after HOG processing. 

 

 
(a) 

 
(b) 

Figure 11. Imaging vibration signals for oil-whirl fault: (a) 
ODR vibration image and (b) ODR vibration image 
after HOG processing. 

 

 

Table 1. Data points collected from RK4 testbed. 
 

 Normal Rubbing Misalignment Oil whirl 

RK4 set 1 200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

RK4 set 2 200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

RK4 set 3 200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

RK4 set 4 200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

RK4 set 5 200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

200 (x) 
200 (y) 

 

 
Figure 12. Classification accuracy when the pretrained DBN 

is combined with the multilayer perceptron classifier. 
 

 
Figure 13. Classification accuracy when time and frequency 

features are combined with the multilayer 
perceptron classifier; as the number of features 
incorporated was increased, the classification 
accuracy became higher. 

 

4.2. Results and Discussion 

The vibration signals acquired from a pair of gap sensors was 
visualized by the method described in Section 3.1. Then, the 
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image was processed by the HOG descriptor. Figure 9(a) 
shows a representative image for the normal health condition, 
while Figure 9(b) presents an image with gradients that 
indicate the change of color intensity. In each cell of the 
image, the gradients were superposed to represent the 
gradient at individual pixels of the cells.  Figure 10 and 
Figure 11 are the images for the rubbing and oil-whirl faults, 
respectively.  

In the preliminary test, we examined various architecture of 
the DBN. The details are not shown in this paper since it is 
out of the scope of this paper. The DBN in this case study had 
one input, three hidden, and one output layers. The number 
of nodes for each hidden layer varied from 512 to 2048. A 
five-fold cross validation technique was employed to reliably 
evaluate the performance of the DBN.  

The classification accuracy with the proposed scheme varied 
from 95% to 100% as shown in Figure 12. It was 
corroborated that the variation of the performance was 
attributed to the number of nodes in the hidden layers of the 
DBN. We compared the results with the conventional 
approach with the existing features such as mean, skewness, 
kurtosis, crest Factor, shape factor, impulse factor, frequency 
center, RMS at multiple frequencies, (0~0.39x) / 1x, 
(0.4x~0.49x) / 1x, 0.5x / 1x, (0.51x~0.99x) / 1x, 2x /1x, 
(3x~5x) / 1x, (3x,5x,7x,9x) / 1x, (1x~10x) / 1x, etc. The 
extraction of the features required a significant amount time. 
The selection of efficient features also required considerable 
efforts. As shown in Figure 13, the MLP classifier with the 
conventional time and frequency achieved the maximum 
classification accuracy of 89%, which were lower than the 
result from the proposed scheme. 

5. CONCLUSION 

In this study, an unsupervised feature extraction scheme was 
proposed for smart fault diagnosis of journal bearing rotor 
systems. The scheme consists of three main steps: (1) 
vibration image generation, (2) HOG descriptor processing 
and (3) unsupervised feature extraction by deep learning. 
First, a pair of vibration signals acquired from a pair of x- and 
y-axes sensors is visualized by stacking multiple signals from 
virtual sensors by the omnidirectional regeneration method. 
Second, the two dimensional vibration images are 
characterized by the histogram-of-gradients (HOG) 
descriptor. Finally, features were extracted by deep learning 
by pretraining the deep belief network (DBN) in an 
unsupervised manner. We evaluated the performance of the 
proposed scheme with the data from the RK4 testbed that 
emulate normal and three faulty conditions (i.e., rubbing, 
misalignment, and oil-whirl). The fault classification 
accuracy varied from 95% to 100% depending on the number 
of nodes in the hidden layers of the DBN. Nevertheless, the 
accuracy by the proposed method was, on average, 9% higher 
than that by the fault diagnostic method with the use of a 
number of existing time and frequency features.  

It is anticipated that the proposed scheme helps minimize the 
reliance of expert’s experience and domain knowledge. 
Consequently, the time and efforts to develop a diagnostic 
approach to a particular journal bearing rotor system will be 
reduced considerably. We suggest some future works. First, 
an optimal architecture of the deep neural networks needs to 
be studied. Second, another type of deep learning 
architectures should be examined. Last, the proposed scheme 
should be implemented to another type of rotating machines, 
then, non-rotating machines such as inverters. 
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