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ABSTRACT

This paper investigates the shortcomings of performance

evaluation for prognostic algorithms, particularly in the pres-

ence of uncertainty. To that end, the various elements of a

prognostic algorithm (present health state estimation, future

load condition, degradation model, and damage threshold)

and their effects on prognostics are examined. Each of these

elements contribute to overall prediction performance and

therefore it is important to distinguish between (1) assessment

of the correctness of information regarding these quantities,

and (2) the assessment of correctness of the prognostic algo-

rithm. The need for proper accounting for uncertainty in the

various associated elements is discussed. Next, the shortcom-

ings of traditional comparisons between ground truth and al-

gorithm prediction is discussed. Several scenarios are pointed

out where misleading interpretations about evaluation out-

comes are possible. In order to address these shortcomings an

“informed evaluation” methodology is being proposed, where

the algorithm is informed with future loading/operating con-

ditions before comparing against ground truth. Additionally,

the importance of estimating the accuracy of aggregating the

different sources of uncertainty using rigorous mathematical

procedures is also emphasized. While this discussion does

not target developing new metrics, it highlights key criteria

for an accurate performance evaluation process under uncer-

tainty and proposes new measures to accomplish this goal.

1. INTRODUCTION

1.1. Prognostics

Prognostics, the ability to predict future events, conditional

on anticipated usage and environmental conditions, signifi-
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cantly contributes to a system’s resilience for safe and effi-

cient operation. It is now well accepted that prognostics can

add considerable value to life cycle cost reduction by assess-

ing the state of health of the system components, and esti-

mating their remaining useful life that makes it possible to

initiate a mitigating action that will either prevent the break-

down, minimize downtime, avoid unscheduled maintenance,

or result in similar outcomes that minimize operational cost

of the system. However, at the same time, prognostics is in-

herently affected by various sources of uncertainty present in

the system; if the methods that deal with uncertainty are not

adequately understood and incorporated, it can be difficult to

make reliable predictions with high accuracy and confidence.

It is, therefore, not surprising that considerable attention has

been given to this technology in the last few years. A variety

of different approaches have been explored and employed to

predict system health and/or estimate remaining useful life.

However, it is important to note that the term “prognostics”

has been used by various practitioners in any context that has

a predictive element but not all of these methods result in es-

timation of remaining life. Subsequently, it also has a bear-

ing on the interpretation and treatment of uncertainty in each

of these methods, which is important not only to understand

how to incorporate these uncertainties in the analysis but also

to assess performance of these methods in a technically cor-

rect and rigorous manner (Saxena, Sankararaman, & Goebel,

2014).

1.2. Prognostic Performance Evaluation

Performance assessment of prognostics algorithm is an in-

dispensable element in maturing prognostics and health man-

agement technology as these predictions become the basis of

any subsequent decision making process. Mitigating actions

taken based on these decisions ultimately determine the ef-

fectiveness of the overall health management system. Most of

the existing literature on prognostics performance evaluation

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

focuses on choosing the most appropriate metrics to evalu-

ate algorithms. Several metrics have been proposed and used

in the past that measure unique characteristics of prognostics

(Saxena, Celaya, Saha, Saha, & Goebel, 2010). These metrics

described different ways to express and measure accuracy,

precision, timeliness, and prediction-confidence attributes of

the prediction of a prognostic algorithm. Less attention has

been paid towards determining the correct approach for eval-

uating and interpreting prognostic performance under uncer-

tainty. Current approaches rely on comparing predicted out-

comes to observed end of life (also referred to as ground

truth). The key question, as investigated in this paper, is

whether such a comparison is technically correct, especially

when considering uncertainty in the prediction process. In

contrast to discussing prognostic metrics, this paper attempts

to identify a meaningful approach for performance evalua-

tion irrespective of which metrics are used to quantify perfor-

mance. In particular, two issues are explored: (1) choosing

the baseline to compare prediction results with and (2) iden-

tifying a method that can be used to obtain such information.

In the process, several important caveats in interpreting the

results of prognostic algorithms are explained in detail and

several misconceptions are clarified in this regard.

1.3. Relation to Work on Metrics

For providing a clear context with regards to earlier works

investigating prognostic performance, it is important to draw

connections between the what should be measured and how

prognostic metrics were designed. Early versions of prognos-

tics algorithms output were point estimates of end-of-life that

were compared with the observed end-of-life to assess perfor-

mance (Saxena et al., 2008). Later as prognostics algorithms

matured they started incorporating uncertainties in predic-

tions through various representations of uncertainty, although

mostly dominated by probability distributions. However, the

basic underlying question of what the key contributing factors

to the quality of a prediction are and how the contribution of

each can be evaluated separately have not been addressed in

detail until very recently (Sankararaman & Goebel, 2013b).

Prognostic performance is understood to depend on two dis-

tinct factors; 1) External inputs (data quality, operating en-

vironment, system loading, etc.), and 2) Internal processing

(fault models, state estimation methods, uncertainty propa-

gation methods, etc.). To gain full understanding of uncer-

tainty expressed in remaining useful life (RUL) estimates it

is important to isolate the effects of these different internal

and external factors through adequate performance evaluation

while algorithm development. Based on feedback from such

evaluation, targets for further technology improvement can

be identified and a baseline of acceptable performance can

be established before a prognostic system is put into usage.

This paper extends the discussion in (Saxena et al., 2014)

by focusing on effects of uncertainty in prognostics for the

purpose of performance evaluation and explores how care-

fully designed performance evaluation process can help distill

these effects.

1.4. Organization of this Paper

This paper focuses its attention on performance evaluation

of only condition based prediction methods for prognostics.

Other prediction methods are considered beyond the scope of

this paper. First, Section 2 describes various sources of uncer-

tainty that are present in prognostics and clearly distinguishes

between the interpretation of uncertainty in condition-based

prognostics and fleet-based prediction methods. This discus-

sion dissects the overall uncertainty into a few fundamental

elements and subsequently provides a stepwise approach to

assess prognostic performance so that these effects of each

of these elements on prognostic performance evaluation can

be assessed. Next, Section 3 discusses the impact of uncer-

tainty on prognostic algorithms through an illustrative exam-

ple and a simple prediction algorithm. Section 4 explains the

challenges involved in performance evaluation of prognostic

algorithms and Section 5 explains different types of perfor-

mance measures. Section 6 numerically illustrates the above

concepts using a lithium-ion battery application. Finally, con-

clusion and future work are presented in Section 7.

2. PROGNOSTIC ALGORITHMS

In order to completely understand the various aspects of per-

formance evaluation of prognostic algorithms, it is necessary

to understand the various elements of a prognostic algorithm.

A prognostic algorithm ideally takes all available information

(state estimate, future estimates, degradation model, etc.) and

computes the remaining useful life of the component or sys-

tem of interest.

2.1. Key Elements of a Prognostic Algorithm

For the purpose of rating the performance of an algorithm, it

is important to decide which elements are part of an algorithm

and which are not. Roychoudhury et al. (Roychoudhury, Sax-

ena, Celaya, & Goebel, 2013) focused on identifying the key

aspects of a prognostic algorithm, this argument is extended

in this paper to identify the various elements that are needed

to determine the remaining useful life, as follows:

1. Present condition (state) of the system/component

2. Future (operational, loading, environmental, etc.) condi-

tions of the system/component

3. Degradation model of the system/component

4. End-of-Life damage threshold

5. The actual algorithmic procedure, that combines the

above information systematically in order to compute the

remaining useful life.
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One could argue that quantifying the present condition of the

system/component through a state estimation algorithm (per-

haps using a Bayesian filtering approach such as particle fil-

tering or Kalman filtering) is a necessary and essential com-

ponent of the prognostic algorithm. However, the develop-

ment of the degradation model and estimating the future con-

ditions seem to be outside the scope of the prognostic algo-

rithm. The problem is that these two components are “inputs”

to a prognostic algorithm, i.e., the algorithm needs these two

pieces of information to predict the remaining useful life. It

would not reasonable to penalize an algorithm whose predic-

tions do not compare well with ground truth data, if the algo-

rithm did not have access to an accurate degradation model

and/or an accurate estimate of the future conditions of the

component/system. Similarly, it is not reasonable to accept

a prognostic algorithm whose predictions apparently match

well with ground truth data, if the algorithm had used in-

accurate future conditions and inaccurate degradation model

(whose inaccuracies could cancel each other out). For exam-

ple, the degradation model may have a much smaller degrada-

tion rate and the chosen future conditions may be much more

severe than reality.

Figure 1. Components of Prognostics Algorithm

Therefore, this paper explores the various aspects of perfor-

mance evaluation with an emphasis on the above elements of

a typical prognostic algorithm, as explained through the rest

of this paper.

2.2. Uncertainty in Prognostics

While non-probabilistic methods (Wang, 2011) such as Fuzzy

logic, possibility theory, Dempster-Shafer theory, Evidence

theory, etc. have been used for the treatment of uncertainty,

probabilistic methods have been predominantly used for un-

certainty representation in prognostics (DeCastro, 2009; Or-

chard, Kacprzynski, Goebel, Saha, & Vachtsevanos, 2008;

Saha, Goebel, Poll, & Christophersen, 2009). Without loss

of generality, the rest of this paper will focus only on prog-

nostic algorithms based on probability theory.

In order to evaluate the performance of prognostic algorithms

in the presence of uncertainty, it is important to answer ques-

tions such as:

1. What does one actually mean by “uncertainty” in prog-

nostics?

2. What causes uncertainty in prognostics?

3. What are various elements of a prognostic algorithm that

are affected by uncertainty?

4. What is the contribution of these elements to overall

prognostic performance?

2.3. Interpreting Uncertainty in Prognostics

Though mathematical axioms and theorems of probability

have been well-established in the literature and probabilis-

tic methods are being increasingly used for uncertainty quan-

tification in engineering, there is considerable disagreement

among researchers on the interpretation of probability. There

are two major interpretations based on physical and subjec-

tive probabilities, respectively. Physical probabilities (Szabó,

2007), also referred to objective or frequentist probabilities,

are related to random physical systems such as rolling dice,

tossing coins, roulette wheels, etc. Each trial of the experi-

ment leads to an event (which is a subset of the sample space),

and in the long run of repeated trials, each event tends to oc-

cur at a persistent rate, and this rate is referred to as the rela-

tive frequency”. These relative frequencies are expressed and

explained in terms of physical probabilities. Thus, physical

probabilities are defined only in the context of random experi-

ments. On the other hand, subjective probabilities (De Finetti

& de Finetti, 1977) can be assigned to any “statement”. It

is not necessary that the concerned statement is in regard to

an event which is a possible outcome of a random experi-

ment. In fact, subjective probabilities can be assigned even in

the absence of random experiments. The Bayesian method-

ology is based on subjective probabilities, which are simply

considered to be degrees of belief and quantify the extent

to which the statement is supported by existing knowledge

and available evidence. Calvetti and Somersalo (Calvetti &

Somersalo, 2007) explain that “randomness” in the context of

physical probabilities is equivalent to “lack of information” in

the context of subjective probabilities. In this approach, even

deterministic quantities can be represented using probability
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distributions which reflect the subjective degree of the ana-

lyst’s belief regarding such quantities.

This leads to the obvious question - is one particular interpre-

tation more suitable to prognostics? In general, both inter-

pretations may be suitable. However, in the particular con-

text of condition-based monitoring or online health moni-

toring, there is only one system which is being monitored,

and hence, at any time instant, there is no “physical random-

ness” associated with the system (from a frequentist point

of view). Therefore, any quantity associated with a system,

even though it may be uncertain, cannot be represented using

a probability distribution, following the frequentist interpre-

tation of probability. Nevertheless, system state estimation

during health monitoring is commonly performed using par-

ticle filters and Kalman filters, and these approaches compute

probability distributions for the state variables; therefore, the

only possible explanation for such calculation is that the sub-

jective (Bayesian) approach is being inherently used for un-

certainty quantification. Such filtering approaches are known

as “Bayesian tracking” methods not only because they make

use of Bayes theorem, but also fall within the realm of subjec-

tive probability. This implies that the uncertainty estimated

through the aforementioned filtering algorithms are simply

reflective of the analyst’s degree of belief, and not related to

actual physical probabilities. Similarly, the uncertainty in fu-

ture conditions (loading, operating, and environmental con-

ditions) also need to interpreted subjectively. For example, if

the anticipated current on a battery follows a normal distri-

bution with mean and standard deviation equal to 10 and 1

(current units) respectively, then this probability distribution

is only reflective of the subjective belief, and only one re-

alization may occur in reality. The actual current may be 10

units (which is not possible to know), and this implies that the

subjective belief was reasonable; the subjective belief would

have been even better had the standard deviation been smaller.

On the other hand if the actual current had been 30 units, then

it implies that the subjective belief was completely wrong.

Sometimes, in practice, both frequentist and subjective in-

formation can be useful, even in condition-based prognos-

tics. For example, an ensemble of test units may be used

to develop degradation models and learn the corresponding

model parameters. Since these models and their parameters

are estimated based on physically variable units, the uncer-

tainty in such parameters need to be interpreted from a fre-

quentist point of view. However, when such a model is used

in condition-based monitoring, these parameters are typically

updated in order to reflect the parameters of the particular

unit; during this procedure, the interpretation of uncertainty

transitions from “frequentist” to “subjective” as the informa-

tion described in terms of uncertainty changes from reflecting

the ensemble of test units to the particular unit under con-

sideration for condition-based monitoring. It is important to

understand the interpretation of uncertainty during the course

of the monitoring procedure, depending upon what informa-

tion is used to characterize and quantify the aforementioned

uncertainty.

2.4. Sources of Uncertainty in Prognostics

Having discussed the importance and interpretation of un-

certainty, this subsection seeks the answer to the question:

What are the different sources of uncertainty in prognostics?

Typically, the answer to this question varies from applica-

tion to application, and depends on the type of prediction.

For example, in testing-based prediction methods (referred

to as “reliability-based testing” in some publications), the re-

maining useful life is typically calculated by testing multi-

ple nominally identical specimens of the engineering compo-

nent/system. It may be noted that the term “remaining” in

“remaining useful life” may not be applicable to such test-

ing methods. This is because, testing is typically carried

out before the engineering system is under operation. The

term “time-to-failure” is more appropriate for testing-based

health management. It is important not to confound “time-to-

failure” and “remaining useful life”.

Assume that a set of run to failure experiments have been

performed with high level of control, ensuring same usage

and operating conditions. The time to failure for all the n

samples (ri; i = 1 to n) are measured. It is important to

understand that different time-to-failure values are obtained

due to inherent variability across the n different specimens,

thereby confirming the presence of physical probabilities or

true randomness. The various factors that contribute are:

1. Inherent variability in properties and characteristics of

the nominally identical specimens

2. Inherent variability across the loading conditions experi-

enced by each of the individual specimens

3. Inherent variability in operating and environmental con-

ditions for each of the individual specimens

On the other hand, in condition-based prognostics, the focus

should be on monitoring the performance of one particular

component/system where the inherent variability across nom-

inally identical units are not of interest. In other words the end

of life of the system under test is not governed by system to

system variability within the context of condition based pre-

dictions or prognostics. It is, therefore, necessary to adopt

a significantly different approach for the treatment of uncer-

tainty. Various uncertainties involved in prognostics can be

divided into following broad categories:

1. Present uncertainty: Prior to prognosis, it is important

to be able to precisely estimate the condition/state of the

component/system at the time at which RUL needs to be

predicted. Typically, damage (or faults) are expressed

in terms of states, and therefore, estimating the state is

equivalent to estimating the extent of damage (or fault).
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This is related to state estimation and is commonly ad-

dressed using filtering. Output data (usually collected

through sensors) are used to estimate the state and many

filtering approaches (Kalman filtering, particle filtering,

etc.) are able to provide an estimate of the uncertainty in

the state. Practically, it is possible to improve the esti-

mate of the states and thereby reduce this uncertainty, by

using better sensors and improved filtering approaches.

It is important to understand that the system is at a par-

ticular state at any time instant, and the aforementioned

uncertainty simply describes the lack of knowledge re-

garding the “true” state of the system.

2. Future uncertainty: The most important source of un-

certainty in the context of prognostics is due to the fact

that the future is unknown, i.e. the loading, operating,

environmental, and usage conditions are not known pre-

cisely, and it is important to assess this uncertainty be-

fore performing prognosis. If there is no uncertainty re-

garding the future, then there would be no uncertainty

regarding the true remaining useful life of the engineer-

ing component/system. However, this true RUL needs to

be estimated using a model; the usage of a model imparts

additional uncertainty as explained below.

3. Modeling uncertainty: It is necessary to use a func-

tional degradation model in order to predict future state

behavior, i.e., model the response of the system to an-

ticipated loading, environmental, operational, and usage

conditions. Further, the end-of-life is also defined us-

ing a Boolean threshold functional model, that is used to

indicate whether failure has occurred or not. These two

models are jointly used to predict the RUL, and they may

either be physics-based or data-driven. It may be practi-

cally impossible to develop models that accurately pre-

dict the underlying reality. Modeling uncertainty repre-

sents the difference between the predicted response and

the true response (that can neither be known nor mea-

sured accurately), and comprises of several parts: model

form, model parameters, and process noise. While it may

be possible to quantify these terms until the time of pre-

diction, it is challenging to know their values at future

time instants.

3. IMPACT OF UNCERTAINTY ON PROGNOSTIC ALGO-

RITHMS

To better illustrate the impact of uncertainty on prognostic al-

gorithms, a conceptual example is introduced in this section.

3.1. Conceptual Example

Consider an engineering component whose health state at any

time instant is given by x(t). Consider a simple degradation

model, where the rate of degradation of the health state (that

decreases with time, due to the presence of damage) is pro-

portional to the current health state. This can be mathemati-

cally expressed as:

ẋ(t) ∝ x(t), (1)

where the constant of proportionality is a negative number.

Since differential equations are usually solved by considering

discrete time instants, the above equation can be rewritten as:

x(k + 1) = a.x(k) + b, (2)

where k represents the discretized time-index. The condition

that “the constant of proportionality in Eq. 1 is negative” is

equivalent to the condition that “a < 1 in Eq. 2”. The initial

health state, i.e., x(0) is a random variable, and is expressed

using a probability distribution. For the sake of illustration,

let a denote the loading on the system (the smaller the value a,

the larger the degradation rate), and let b denote the parameter

of the above degradation model. While a and b are constant

and time-invariant (for the sake of illustrating the conceptual

example), they are random and expressed using probability

distributions. (In practical examples, the probability distribu-

tions of a and b could vary as a function of time.)

In order to compute the remaining useful life, it is necessary

to chose a threshold function that defines the occurrence of

failure. Since x(k) is a decreasing function, the threshold

function will indicate that failure occurs when the state value

x becomes smaller than a critical lower bound (l), and the

first time instant at which this event occurs indicates the end

of life, and this time instant can be used to calculate the RUL.

For the purpose of illustration, consider prediction at the ini-

tial time instant; hence, the end of life is equal to the remain-

ing useful life. This remaining useful life (r, an instance of

the random variable R) is equal to the smallest n such that

x(n) < l, and is expressed as:

r = inf{n : x(n) < l}, (3)

In general (i.e., at arbitrary time instants when it is desired

to make prediction), the RUL is calculated as the difference

between the end-of-life and the time of prediction.

3.2. Closed-Form Solutions?

This section postulates that closed-form analytical solutions

for the remaining useful life prediction are not available even

for such simple problems involving linear prediction models.

In order to illustrate this point, assume that the chosen time-

discretization level is infinitesimally small, it is possible to

directly estimate the RUL by solving the equation:

ar.x(0) +

j=r−1∑

j=0

aj.b = l. (4)

The above equation can be used to calculate the RUL (r) as

a function of the initial state (x(0)), loading (a) and model

parameter (b). For the sake of further simplification, assume
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that a and b are completely known constants and x(0) is the

only uncertain quantity; further assume that x(0) follows a

Gaussian distribution. The following analysis shows that it is

impossible to analytically calculate the remaining useful life

prediction even with only one uncertain variable and a linear

degradation model.

The RUL R follows a Gaussian distribution if and only if it

is linearly dependent on x(0). In other words, R follows a

Gaussian distribution if and only if Eq. 4 can be rewritten as:

α.r + β.x(0) + γ = 0 (5)

for some arbitrary values of α, β, and γ. If it were possible to

estimate such values for α, β, and γ, the distribution of RUL

can be obtained analytically.

In order to examine if this is possible, rewrite Eq. 4 as:

x(0) =
1

ar
(l −

j=r−1∑

j=0

aj .b) (6)

While x(0) is completely on the left hand side of this equa-

tion, r appears not only as an exponent in the denominator

but is also indicative of the number of terms in the summa-

tion on the right hand side of the above equation. Therefore, it

is clear that the relationship between r and x(0) is not linear.

Therefore, even if the state variable (x(0)) follows a Gaus-

sian distribution, the RUL (r, a realization of R) does not

follow a Gaussian distribution. Thus, it is clear that even for

a simple problem consisting of linear state models, a straight-

forward threshold function, and only one uncertain variable

that is Gaussian, the calculation of the probability distribu-

tion of R is not trivial. Even the distribution type of RUL is

unknown for this conceptual problem.

Indeed practical problems considered in the prognostics and

health management domain may consist of:

1. Several non-Gaussian random variables which affect the

RUL prediction,

2. A non-linear multi-dimensional state space model,

3. Uncertain future loading conditions,

4. A complicated threshold function which may be defined

in multi-dimensional space.

It is the goal of a prognostic algorithm to rigorously account

for all the uncertain quantities and compute the uncertainty

in the remaining useful life prediction. It is important to note

that RUL is simply a dependent quantity and needs to be pre-

dicted without making any assumptions regarding the distri-

bution type (say, Gaussian) or statistics (say, mean or standard

deviation) of RUL. This can be addressed posing RUL predic-

tion as an uncertainty propagation problem (Sankararaman &

Goebel, 2013b, 2013a). For this purpose, the remaining use-

ful life prediction needs to be written as a function of all of

the uncertain quantities. For instance, in the above conceptual

example, Eq. 4 can be rewritten as:

r = G(x(0), a, b) (7)

Then, the uncertainty in x(0), a and b are propagated through

G (note that G is equivalent to solving Eq. 4 for r) to com-

pute the uncertainty in the remaining useful life prediction.

In the case of practical problems, such computation is very

challenging particular when prognostic calculations need to

be performed during the operation of the system.

3.3. Conceptual Algorithm

Given information regarding the state estimate, future con-

ditions, and degradation model, this section further uses a

conceptual algorithm for the purpose of illustration. This al-

gorithm calculates the mean and standard deviation of RUL

using first order Taylor’s series expansion (Sankararaman,

Daigle, & Goebel, 2014), and is known as the first-order sec-

ond moment (FOSM). Note that this simply has been delib-

erately chosen to illustrate certain pitfalls of existing perfor-

mance evaluation methods.

For the conceptual example of Section 3.1,

µr = G(µx(0), µa, µb) (8)

where µr, µx(0), µa, µb denote the mean of r, x(0), a, and b

respectively. The variance of r, i.e., σ2
r can be calculated as:

σ2
r = (

∂G

∂x(0)
)2σ2

x(0) + (
∂G

∂a
)2σ2

a + (
∂G

∂b
)2σ2

b (9)

where σr , σx(0), σa, σb denote the standard deviation of r,

x(0), a, and b respectively.

Typically, µx(0) and σx(0) are provided by the state estimation

algorithm, and the RUL needs to be predicted by forecasting

(extrapolating using the degradation model) the state estimate

forward in time; such forecasting is equivalent to the calcula-

tion in Eq. 7. For example, consider the following statistics:

x(0) follows a Gaussian distribution (with mean and standard

deviation equal to 1000 and 200 respectively), a follows a

uniform distribution (with lower and upper bounds of 0.990

and 0.995), and b follows a uniform distribution (with lower

and upper bounds of -0.005 and 0 respectively). For failure

threshold limit l = 50, the RUL prediction can be approxi-

mated to be a Gaussian distribution based on the above calcu-

lation of the FOSM method. The resultant probability density

function (PDF) is indicated in Fig. 2.

The various aspects of performance evaluation are discussed

in detail using this algorithm. While the above algorithm is

simply used for the purpose of illustration, the following dis-

cussion can be extended to any type of unit-based prognostic

algorithm.
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Figure 2. RUL: Conceptual Example

4. CHALLENGES IN PERFORMANCE EVALUATION

Any typical prognostic algorithm uses information regarding

the three key elements, i.e., state uncertainty, future uncer-

tainty, and model uncertainty, and computes the remaining

useful life prediction. While it would be ideal to compute the

entire probability distribution of the RUL, some algorithms

compute only certain statistics (like mean and standard de-

viation) and assume a distribution type (such as Gaussian).

Recall that Section 3 stipulated that such assumptions should

not be made, and RUL must be fully treated as a dependent

quantity.

In order to judge the performance of an algorithm, ground

truth data are obtained through experimental studies that

mimic the various uncertainties that are accounted for, in the

prognostic algorithm. Note that it is not individually possible

to evaluate how well each of the three key elements have been

quantified; only their combined effect on the RUL prediction

can be compared against ground truth data.

As far as experiment is concerned, the component/system is

at a particular state at any instant of time and there is no uncer-

tainty regarding this state. However, a typical state estimation

cannot precisely estimate this state and hence, expresses the

uncertainty through a probability distribution. Hence, a typ-

ical state estimation algorithm adds extraneous uncertainty,

and this would not exist if an idealistic state estimator were

present. Similarly, the degradation model uncertainty is also

extraneous from the perspective of an algorithm (arises due

to the inability to accurately predict the underlying degrada-

tion phenomenon), and would not exist if an idealistic, exact

degradation model were used. These two types of uncertainty

cannot be simulated in a laboratory experiment since they are

extraneously added by the algorithm due to the lack of an ex-

act state estimate and an exact degradation model. In fact,

effect of state estimation uncertainty and model uncertainty

on the difference between the the ground truth and prediction

will be equal to zero in the presence of an exact state estimate

and an exact degradation model.

However, this is not the case for future loading uncertainty be-

cause this uncertainty represents possible future realizations

of loading conditions. Hence, it is possible to simulate multi-

ple future loading conditions in the laboratory. However, the

challenge lies in the fact that one unit can experience only

one set of loading conditions. Multiple loading conditions

would have to be simulated on multiple, nominally identical

units, and in this case, run-to-failure times of these multiple,

nominally identical units will be colored by the inherent vari-

ability across them. Hence, it is not possible to experimen-

tally emulate multiple future loading conditions, in the con-

text of condition-based monitoring. And, it is not possible

to rigorously evaluate prognostic algorithm performance by

considering the simultaneous, joint, effect of state estimation

uncertainty, model uncertainty, and future uncertainty on the

remaining useful life prediction. Therefore, it is necessary to

investigate other practical performance evaluation techniques

that can quantitatively judge quality of the remaining useful

life predictions of a prognostic algorithm.

5. PRACTICAL PERFORMANCE EVALUATION

This section discusses the most common method of perfor-

mance evaluation, i.e., comparing the actual run-to-failure

time against the algorithm prediction. The shortcomings of

this approach are described and new performance evaluation

approaches are suggested.

5.1. Ground Truth Comparison

Most existing performance evaluation techniques rely on the

availability of the ground truth failure data, and the RUL pre-

dicted by the prognostic algorithm can be easily compared

against the observed failure time. However, such comparison

is not only inequitable, but,sometimes, it may lead to incor-

rect conclusions.

1. Inequitable Comparison: From the time of prediction

until the time of failure, the algorithm assumes some un-

certainty regarding the future loading and usage condi-

tions. However, the observed ground truth is reflective

of only one loading/usage condition that actually hap-

pened in reality, thereby implying that similar quantities

are not compared. In other words, the experiment con-

tains no uncertainty regarding loading/operating condi-

tions, whereas the algorithm accounted for such uncer-

tainty.

2. Concluding poor performance of a good algorithm:

The aforementioned inequitable comparison can some-

times lead to concluding that a good algorithm is poor.

Consider the case where an algorithm is provided fu-

ture loading conditions that are completely different from

the actual loading conditions. The algorithm may pro-

cess the provided information accurately and compute

the RUL. However, this prediction may be completely

different from the observed ground truth RUL. This dif-

ference needs to be attributed only to the incorrectly as-
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sumed loading conditions and it is not reasonable to pe-

nalize the prognostic algorithm in this context. In the

context of the conceptual example, the actual loading

may have been corresponding to a = 0.90 which would

have led to a much smaller ground truth RUL than that

predicted by the algorithm in Fig. 2. Thus, though the

algorithm had been reasonably accurate, its performance

would have been judged based on incorrect loading as-

sumptions.

3. Concluding good performance of a poor algorithm:

Suppose that the prediction of the algorithm is extremely

accurate and precise, with respect to the observed ground

truth. Then, it cannot be inferred that the algorithm is

performing well. This is because the algorithm may not

be accurately processing all the uncertainty regarding the

future and thereby leading estimates with lesser precision

than what the algorithm is supposed to do.

Some of these challenges can be overcome using another type

of performance evaluation, as explained in the following sec-

tion.

5.2. Informed Ground Truth Comparison

It is possible to eliminate the effect of not knowing the

loading condition in advance, by waiting until failure. The

actual loading/usage condition experienced by the compo-

nent/system can be observed, and the prediction algorithm

can be provided this information. Therefore, the algorithm

prediction can be ”informed” with the actual loading con-

dition, and the informed-prediction can be computed easily.

Note that, at the time of prediction, this information would

generally not be available to the algorithm. Therefore, this

procedure is only to evaluate the algorithm performance, after

eliminating the effect of unknown future loading conditions.

All the other information provided to the algorithm need to

be reflective of the information available to the algorithm at

the time of prediction, such as the state values at the instant

of prediction.

In the conceptual example, assume that a component has been

run until failure, and the actual loading condition was ob-

served to correspond to a = 0.994. Then, the informed pre-

diction can be computed, as shown in Fig. 3. Note that the

original prediction has also been shown, for the sake of com-

parison. This comparison needs to confirm that the observed

ground truth falls within reasonable bounds of the informed

prediction; note that these bounds are much narrower than the

bounds corresponding to the original algorithm prediction.

Similar to the traditional ground-truth-based evaluation, the

informed prediction of the algorithm can be compared against

the observed ground truth. Note that the former is uncertain

because of uncertainty in the state estimate and the degrada-

tion model. Note that it is still difficult to evaluate the effects
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Figure 3. RUL Prediction: Original vs. Informed

of state estimation uncertainty and model uncertainty; in fact,

these two quantities could have compounding or canceling ef-

fects and such effects cannot be detected and evaluated easily,

unless intermediate measurements of the state are available

during the experimental set up.

5.3. Assessment of Computational Accuracy

While the above described measures of evaluation focus on

characterizing the effects of state estimates, future loading

conditions, and degradation model, it is also necessary to

check whether the algorithm is accurately processing the

different sources of uncertainty. This is not related to ac-

curately predicting the RUL, but is directly associated to

the mathematical treatment of the various sources of uncer-

tainty. Some algorithms may average the effect of the differ-

ent sources of uncertainty on the RUL, and arbitrarily calcu-

late the variance of RUL using approximations and assump-

tions (Sankararaman & Goebel, 2013b). It is important not

to underestimate or overestimate the underlying uncertainty

and accurately calculate the probability distribution of RUL.

The ideal approach to perform such calculation is the use

of Monte Carlo simulation with a large number of samples;

though this requires high computational power, this method

can be used to check the performance of other algorithms that

are suitable for online prediction. In other words, the proba-

bility distributions obtained using the specific algorithm and

Monte Carlo simulation can be compared and any discrep-

ancy can be quantified, in order to evaluate the performance

of the algorithm, from the perspective of integrating the dif-

ferent sources of uncertainty.

For instance, in the conceptual example, if x(0) follows

a Gaussian distribution (with mean and standard deviation

equal to 1000 and 200 respectively), a follows a uniform dis-

tribution (with lower and upper bounds of 0.990 and 0.995),

and b follows a uniform distribution (with lower and upper

bounds of -0.005 and 0 respectively), then the RUL (defined

by Eq. 3, where l = 50) can calculated as a probability dis-

tribution, using Monte Carlo sampling. Using unit discretiza-

tion (i.e., the time interval between the kth and (k + 1)th

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

instants is equal to one second) for solution, the resultant

probability density function (PDF) obtained using exhaustive

Monte Carlo sampling (MCS) is shown in Fig. 4. For the sake

of comparison, the previously obtained result using FOSM is

also shown.
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Figure 4. RUL: Conceptual Example

An ideal algorithm should be able to replicate the result from

Monte Carlo sampling, as much as possible. A narrower pre-

diction implies that the algorithm is underestimating the to-

tal amount of uncertainty whereas a wider prediction implies

that the algorithm is overestimating the total amount of uncer-

tainty. The former scenario may lead to unexpected system

failure and hence heavy losses, whereas the latter scenario re-

sults in extremely conservative decisions and may not use the

available resources in an optimal manner.

Note that the FOSM method reasonably agrees with MCS,

in this example. This can be attributed to the fact that the the

example itself was very simple to begin with. When more un-

certain variables are present, and when the degradation model

becomes increasingly non-linear, then it is expected that the

FOSM result will be significantly different from the MCS re-

sult.

5.4. Summary

The search of prognostic performance evaluation measures

raises several important questions and concerns. There are

four important critical factors that control the performance of

prognostic algorithm, and it is not practically possible to in-

dividually evaluate the goodness of these factors. While eval-

uating algorithm performance against observed ground truth

seems to be the most widely used method, it is not only un-

fair but may lead to incorrect conclusions. The informed-

prediction method eliminates the uncertainty regarding the

future loading conditions, and quantifies the combined ef-

fect of state uncertainty and degradation model uncertainty

on the RUL prediction. The fourth factor, i.e., whether all

the sources of uncertainty are being processed and integrated

accurately, can be verified by comparing the algorithm pre-

diction against rigorous Monte Carlo simulation.

An important challenge is the inability to check whether the

loading conditions assumed by the algorithm are reflective of

what is expected in reality. Is it reasonable to penalize the

algorithm for poor performance? Another issue is the ability

to identify whether the adverse effect of two (or more) incor-

rectly estimated quantities jointly cancel out one another, and

deceivingly suggest that the prediction is highly accurate and

precise. Further research is necessary to address these issues

and advance the state-of-the-art in performance evaluation of

prognostic algorithms.

6. AN ILLUSTRATIVE EXAMPLE

This section provides an application example to illustrate the

various concepts explained earlier in this paper. The exam-

ple used in this paper predicts end-of-discharge of a Li-ion

battery and is borrowed from previous works of the authors

(Sankararaman et al., 2014). Since various details about prog-

nostic model development for Li-ion battery are not directly

relevant to this discussion they are omitted here, which can

be found in (Sankararaman et al., 2014). This example il-

lustrates how one can apply the evaluation method proposed

in Section 5 to a real problem. To illustrate pitfalls of raw

ground truth comparison and explain the proposed method-

ology, the rest of this section discusses the various sources

of uncertainty in this application example, and explains the

previously discussed performance measures.

6.1. Sources of Uncertainty

Consider the prediction of end-of-discharge (EOD) at the ini-

tial time instant (t0). The EOD prediction depends on the

following uncertain quantities:

1. State Uncertainty: Typically, state estimation is ad-

dressed using a filtering technique that can continu-

ously estimate the uncertainty in the state based on

the available measurements. In the example discussed

in (Sankararaman et al., 2014; Daigle, Saxena, & Goebel,

2012) there are three state variables tracking amount of

charge in three capacitive elements of the battery model.

These three capacitive elements are referred to as — bulk

capacitance (Cb); concentration-polarization capacitance

(Csp); and ohmic-drop capacitance (Cs). For complete

details of the battery model, and explanation of these

terms, refer to (Sankararaman et al., 2014; Daigle et al.,

2012).

It must be noted that in this problem, the charge in Cb is

the most influential state variable for predicting the end-

of-discharge, and therefore, is considered to be the only

uncertain state variable. At the initial time instant, the

value of the state variable Cb is denoted by X , and the

values of the other state variables are set to zero. Let µX

and σX denote the mean and standard deviation of X .

2. Loading Uncertainty: For the purpose of illustration

and simplicity, the future loading is assumed to be con-
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stant; however, this constant value is chosen at random,

and denoted by Y . Let µY and σY denote the mean and

standard deviation of Y .

All other quantities are assumed to be completely known con-

stants. The above two sources of uncertainty are sufficient to

explain the concepts discussed in this paper.

6.1.1. End-of-Discharge Prediction and Performance

Evaluation

It can be seen that the end-of-discharge (EOD) can be written

as a function of the uncertain quantities (X and Y ), as:

EOD = G(X,Y ) (10)

Note that G is a combination of the degradation model and the

end-of-discharge voltage threshold (VEOD) mentioned ear-

lier, and includes all constants that are precisely known. Due

to the uncertainty in X and Y , the predicted EOD is also un-

certain and represented using a probability distribution. This

distribution needs to be compared against experimental end-

of-discharge data for performance evaluation. The remainder

of this section illustrates various aspects of prognostic algo-

rithm performance evaluation under uncertainty.

6.2. Rejecting a Good Algorithm

If prognostics and prognostics performance are not inter-

preted and understood correctly, then it may lead to inferring

that the algorithm is not performing well.
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Figure 5. Rejecting a Good Algorithm

For example, consider the RUL prediction (equal to the end

of discharge, since the prediction is performed at t = 0) in

Fig. 5, obtained through Monte Carlo sampling. In this illus-

tration, X and Y are chosen to be Gaussian variables, with

µX = 31115.0, σX = 3111.5, µY = 35, and σY = 5.

In addition to the RUL prediction, two different ground truth

RUL values (Ground Truth I and II respectively) are shown;

these two values correspond to different future loading real-

izations – the more severe results in a shorter life whereas the

less severe results in a longer life.

Evidently, the comparison suggests that the algorithm is not

performing well since it does not predict Ground Truth II

well. However, this may have happened due to several rea-

sons such as:

1. Overestimating the system health during state estimation

that leads to the early prediction

2. Overestimating the severity of the loads that leads to

early prediction

There is nothing wrong about the algorithm; the information

provided to the algorithm is alone questionable. Further, note

that the above comparison against the ground truth is unfair

since the ground truth represents only one out of several pos-

sible realizations considered in the prognostic algorithm.

6.3. Accepting a Bad Algorithm

On the other hand, consider an algorithm that produces the

RUL prediction as shown in Fig. 6, and assume that Ground

Truth II alone was available through experiments. For exam-

ple, such an algorithm may compute the RUL in a completely

wrong approach in predicting the RUL either by neglecting

certain sources of uncertainty or by incorrectly combining

the state information along with the degradation model and

the threshold model. Therefore, this may lead to concluding

that the algorithm is performing well.
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Figure 6. Accepting a Bad Algorithm

However, such a conclusion is incorrect. Since some uncer-

tainty is not accounted for, this algorithm can only capture

certain possible realizations of the future but not all possible

future realizations; in this case, while Ground Truth II alone

be explained by the algorithm, Ground Truth I (which is also

a possible future realization) cannot be explained by the algo-

rithm.
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6.4. Performance Evaluation

In order to address these issues, this paper discussed two addi-

tional measures for performance evaluation. For the purpose

of illustration, assume that the FOSM algorithm has been pur-

sued. The first measure of “informed” evaluation measures

the actual loading scenario (value of Y , the electrical current,

in this numerical example) experienced by the ground truth

and “informs” the algorithm with such ground truth. In this

case, Y = 35 corresponds to Ground Truth I, Y = 25 cor-

responds to Ground Truth II, i.e., a less severe loading leads

to longer life. The informed predictions are plotted in Fig. 7,

and it can be easily seen that both informed RUL predictions

match well with the corresponding ground truth values.
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Figure 7. FOSM: Original vs. Informed

The second measure focuses on evaluating the correctness of

the algorithm by direct comparison against rigorous Monte

Carlo simulation, as shown in Fig. 8. As it can be seen from

this figure, the FOSM algorithm is able to capture central

tendencies but is not able to capture tail behavior. For this

numerical example, the prediction seems to be conservative.

However, it could be otherwise for a different set of uncer-

tain quantities and corresponding statistics. That is why it is

important to evaluate such correctness by direct comparison

against MCS.

6.5. Discussion

Practical problems may have several sources of uncertainty

that further complicate performance evaluation through com-

plicated interactions, i.e., Eq. 10 may get complicated with

multiple arguments. Many of these sources of uncertainty are

“inputs” to the prognostic algorithm, and it is not reasonable

to penalize the algorithm if the information regarding these

“inputs” are incorrect. That is why it is necessary to develop

a rigorous approach to separate (1) evaluation of correctness

of information regarding these “inputs” from (2) evaluation

of the prognostic algorithm itself. This paper presented a few

preliminary steps in this direction and future research may

continue to explore the topic of prognostic performance eval-

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
x 10

−3

 

 

RUL (in seconds)

P
D

F

FOSM (original)
MCS

Figure 8. FOSM Algorithm vs. MCS

uation in further detail.

7. CONCLUSION

This paper discussed the various aspects of performance eval-

uation of prognostic algorithms in detail, particularly in the

presence of uncertainty. To begin with, it was explained that

there are several sources of uncertainty that affect prognos-

tics, and that a good prognostic algorithm needs to rigorously

account for all of these uncertainties and quantify their com-

bined effect on the remaining useful life prediction. While the

presence of uncertainty has been addressed using probability

methods, it was explained that the interpretation of proba-

bility is not straightforward in prognostics. In testing-based

prediction methods, there is inherent variability amongst all

the nominally identical specimens that are being tested, and

classical statistics-based or frequentist interpretation is ap-

plicable. However, in condition-based monitoring, only one

unit is studied; therefore, physical variability is absent and

all uncertainty needs to be interpreted subjectively. This dif-

ference in interpretation plays a key role in understanding

the various elements that effectively contribute to the perfor-

mance of a prognostic algorithm. These elements include: (1)

state estimate and associated uncertainty; (2) future loading,

operating, and environmental conditions, and associated un-

certainty; (3) degradation model and associated uncertainty;

and (4) end-of-life threshold and the associated uncertainty.

Then, this paper discussed methods for performance evalua-

tion from the perspective of quantifying the combined effect

of these elements on the remaining useful life prediction.

First, this paper postulated that it is not possible to evaluate

algorithm performance by simultaneously accounting for all

these three sources of uncertainty. Second, the most popular

technique of comparing ground truth against the algorithm

prediction was discussed, and its shortcomings were men-

tioned. This approach is not only unfair, but also may lead

to incorrect conclusions of rejecting a correct algorithm and

accepting a wrong algorithm. In order to address some short-
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comings of this approach, an ”informed evaluation” method-

ology was proposed; in this method, the true future loading

information (available after failure) is provided to the algo-

rithm and then, it is tested whether the ground truth falls

within reasonable bounds of the algorithm prediction. Fi-

nally, the importance of the mathematical treatment of the dif-

ferent sources of uncertainty was explained, and in this con-

text, it is necessary to compare the performance of any algo-

rithm against Monte Carlo simulation. In other words, given

the same information to the algorithm and Monte Carlo simu-

lation, the algorithm prediction needs to be “similar” (in fact,

as exact as possible) to that of the Monte Carlo prediction.

A narrower prediction implies that the algorithm is underes-

timating the total amount of uncertainty whereas a wider pre-

diction implies that the algorithm is overestimating the total

amount of uncertainty. Future work needs to further explore

the concepts of informed evaluation and identify metrics that

can express various performance aspects of a prognostic al-

gorithm.
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