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ABSTRACT 

This paper investigates a real-time fault detection and 

degradation prediction scheme for dynamical systems such 

as jet engines, based on Regularized Particle Filtering 

(RPF). Particle Filtering is a prognosis method for the 

prediction of state degradation and remaining useful life 

(RUL) due to its demonstrated performance in handling 

non-linear and non-Gaussian situations.  RPF overcomes the 

problem of sample impoverishment among particles over 

the resampling process. Based on measured data from 

hybrid sensing and nonlinear models, which link system 

parameters and degradation state to the measurement, RPF 

has been applied to establishing a framework for both state 

and parameter estimation, to achieve prognosis at the 

component level.  In addition, a modified system evolution 

model is proposed to track both exponential and transient 

types of system performance degradation. The developed 

method is evaluated using simulated data created with C-

MAPSS, which contains measured parameters associated 

with engine degradation under nominal and varied fault 

types (fan, compressor and turbine) during a series of 

flights. The developed system-parameter estimation method 

is found effective in state estimation and degradation 

prediction in jet engines. 

1. INTRODUCTION 

In most cases real world data contain failure signatures but 

little to no information about the failure evolution or state 

degradation, thus driving the need for health monitoring, 

diagnosis of faults, system performance degradations and 

trend prediction for dynamic systems, such as jet engines. 

Several prevalent sensing and diagnosis techniques have 

been proposed in past decades for health management in jet 

engines, such as gas path analysis (Volponi, 2003), exhaust 

composition and gas path debris (Simon, Garg, Hunter, Guo 

& Semega, 2004). Gas path analysis (GPA) is one of the 

most popular techniques to quantify the thermodynamic 

performance of engines based on the hybrid sensing of 

temperature, pressure and other measurements. The 

approaches to establish the relationship between 

measurement and system state can be classified into two 

categories: data-driven and model-based. A data-driven 

approach requires a large amount of historical data for 

training and lacks generality (Peng, Dong & Zuo, 2010), 

while a model based approach takes advantage of merits of 

both physical knowledge and historical data information.  

Depending on system types and noise assumptions, different 

methods including the Kalman filter (for linear system and 

Gaussian noise) (Kalman, 1960), the extended Kalman filter 

(for weak nonlinear system and Gaussian noise) (Julier & 

Uhlmann, 1997), and the particle filter (for nonlinear system 

and non-Gaussian noise) (Gordon, Salmond & Smith, 1993) 

can be applied to implement model based prognosis (Doucet 

& Johansen, 2009). Due to the stochastic and nonlinear 

nature of the engine system performance degradation, this 

paper presents a probabilistic degradation prediction method 

to achieve the diagnosis and prognosis at the component 

level by recursively updating the physical model with online 

measurement based on Regularized Particle Filtering (RPF), 

while RPF is proposed to overcome the sample 

impoverishment problem in the resampling stage of standard 

PF (Musso, Oudjane & Legland, 2001).  Besides 

exponential degradation prediction, a modification of the 

state evolution model has been proposed to track transient 

changes in system state and parameters due to faults. 

The rest of the paper is constructed as follows. 

Theoretical background of particle filtering and the 

modified system evolution model are introduced in Section 

2, followed by the discussion of the system degradation 

model and thermodynamic measurement models of engines 

at the component level that are implemented in RPF based 

prognosis in Section 3. The effectiveness of the presented 

technique is demonstrated in Section 4, based on run-to-

failure simulated data created with C-MAPSS. Finally, 

conclusions are drawn in Section 5. 
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2. FILTERING FRAMEWORK 

In order to analyze and make inference about a dynamic 

system, the posterior probability density function (pdf) 

needs to be estimated and updated for the underlying system 

state, based on the availability of new measurements, in the 

Bayesian framework. The system model describing the 

evolution of the state (variables representing system 

performance degradation in this paper) with time and the 

measurement model relating observable noisy 

measurements to true state are not nonlinear in many 

dynamic systems. Particle Filtering, also referred as 

Sequential Monte Carlo (SMC) (Orchard, Cerda, Olivares & 

Silva, 2012), provides a numerical approximation for 

nonlinear system estimation, using a set of random samples 

(or particles) with associated weights to construct the pdf of 

a state (Gordon, 1993). 

2.1. Regularized Particle Filtering 

For the estimation of the underlying state in a nonlinear 

dynamic system, it is assumed the stochastic model of 

system evolution is known as:  

 
1 1( , )k k k kx f x w                            (1) 

where : x w xn n n
kf    describes the state transition 

function from state xk-1 to xk considering an order-one 

Markov process. wk-1 is the process noise representing 

uncertainty. The state is recursively estimated based on the 

measurements (Saha & Goebel, 2011): 

( , )k k k kz h x v                             (2) 

where : x v zn n n
kh    is the measurement function 

representing the relation between online measurements zk 

and an unobservable degradation state xk. νk is the sequence 

of measurement noise. 

In the Bayesian framework, estimation is fulfilled by 

recursively calculating the posterior pdf p(xk|z1:k) of the state 

given the noisy measurements z1:k (Wang, Wang & Gao, 

2013).  Taking into account the one-step Markov process, 

the pdf can be obtained using two stages: prediction and 

update, as shown in Eq. (3) and Eq. (4). 
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where p(zk|zk-1) is the normalizing factor which can be 

calculated as:  

1 1( | ) ( | ) ( | )k k k k k k kp z z p x z p z x dx               (5)                                   

In particle filters, the posterior pdf is represented and 

approximated by a set of random samples or particles { 1:

i

kx  , 

i = 1, 2, …, N} and associated importance weights
i

kw . The 

weights are normalized with 1i

ki
w  . The integral 

operation in Eq. (3) is then approximated as the 

summarization of these random numbers as:  
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where the total number of particles N can affect the 

accuracy of the represented probability distribution, and 

computational efficiency. In the update step, the weight of 

each particle is updated based on the likelihood of the 

observation zk at time k as: 

            1 ( | )i i i

k k k kw w p z x                             (7)  

Similarly, the posterior probability distribution p(xk+l|zk) in 

the l-step ahead prediction can be obtained as:  

1 1

1

( | ) ( | )
N

i i

k l k k l k l k l

i

p x z w p x x     



              (8)  

In constructing the particle filter, resampling is applied in 

every step to remove particles with small weights (justified 

by comparing the cumulative distribution function to a 

threshold within 0~1) and obtain equally weighted samples 

so as to avoid the degeneracy problem of the algorithm. 

After resampling, the weights of the new particle population 

are reset to 1/i

kw N . However, in the standard PF methods 

stated above, due to the fact that the samples are drawn from 

discrete distributions instead of continuous distributions, the 

problem of loss of diversity among the particles may arise. 

To overcome this problem, the Regularized Particle Filter 

(RPF) has been proposed. The fundamental idea is to change 

the discrete approximation to a continuous one of posterior 

pdf in the resampling stage with the rescaled kernel 

structure. The update process Eq. (4) becomes: 

1

( | ) ( )
N

i i

k k k h k k

i

p x z w K x x


                    (9) 

Where 

1
( ) ( )

x
h n

x
K x K

hh
                            (10) 

K(·) is the recalled kernel density and h is the kernel 

bandwidth, the selection of which is optimally related to the 

dimension of state nx and the number of particles N. 

2.2. System Model for Transient Degradation  

System estimation includes state estimation and parameter 

estimation. In most cases, the parameters are included in the 

state transition function : x w xn n n
kf   , and then it 

becomes the joint state and parameter estimation. For most 

dynamical models like the performance degradation, the 

parameters are assumed to be constant within in a small 

range and the artificial evolution law is adopted (Liu & 

West, 2001), then the state will decay in an exponential 
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way. However these state models do not consider the case of 

transient degradation due to faults, which would cause a 

transient change in both parameters and states (Daroogheh, 

Meskin & Khorasani, 2013). The idea to handle this 

problem proposed in this paper is to include the output 

prediction error or measurement innovation into the state 

evolution model. 

If fault occurs between sampling time k and k+1, the 

parameters used to predict the state xk+1 and output zk+1 are 

assumed to be consistent with values in previous sampling 

times 1:k. Thus there will be transient change of the output 

prediction error between time k and k+1. The solution is to 

compare the cost function  

1 11 1

1
[ ( )( ) ]
2

T
k kk kJ E z z z z

 

                 (11) 

to a predefined threshold. Where 1kz


 is the predicted 

output at time k+1. If the cost function exceeds the 

threshold, the state evolution model Eq. (1) becomes: 

1 xk k k kx u w                          (12) 

where u is the unit step function and γk is the time varying 

gain related to the cost function J.  The additional item γku is 

to track the state change due to failures.  

3. MODEL FORMULATION 

Gas path analysis relies on discernable changes in 

observable parameters to detect physical faults. The 

fundamental tenet underlying this approach is that physical 

faults occurring in components (fan, low/high pressure 

compressor and high/low pressure turbine) of engines 

induce a change in component performance (modeled as 

efficiency, flow capacity, etc.), which in turn produce 

observable changes in measureable parameters 

(temperature, pressure, speeds, etc.). This inverse 

relationship offers the approach for engine performance 

estimation (Volponi, 2003). In the implementation of fault 

detection and degradation trend prediction of engines at the 

component level, using the proposed estimation method, the 

efficiency of each component is considered as the state 

needing to be estimated from observable measurements. 

The exponential behavior of the fault evolution or system 

performance degradation is common for all degradation 

models (Saxena, Goebel, Simon & Eklund, 2008).  Thus, a 

generalized state evolution model in this paper is assumed 

as: 

1

1 1 1exp( )kB

k k k kx x A w 

                       (13) 

where Ak-1 is the scaling factor and Bk-1 is the time-varying 

factor determining the degradation rate at sampling k-1. τ is 

the sampling interval and w is the associated process noise. 

In the training stage, parameters A and B are estimated 

using RPF iteratively. In the prediction stage, the latest 

updated parameters assigned with each particle joint with 

state evolution model would provide the predicted states. 

Namely, the parameters stay constant in the prediction stage 

(Zhu, Yoon, He, Qu & Bechhoefer, 2009). 
 

The nonlinear measurement equations that relate state 

(efficiency) and measurements for compressor and turbine 

(Moran & Howard, 2004) are listed as follows 

1

( 1)
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where, TCin, TCout, TTin and TTout denote the temperature of 

the inlet and outlet of the compressor (low/high pressure) 

and turbine (low/high pressure), respectively, and PCin, 

TCout, TTin and TTout denote the temperature of the inlet and 

outlet of the compressor and turbine, respectively. CPR is 

the abbreviation of compressor pressure ratio. γC and γT 

denote the specific heat ratio of the compressor and turbine, 

which are assumed to be constant. ηC and ηT denote the 

efficiency of the compressor and turbine, which are also 

assigned as the state parameter to represent engine status. 

Even if no fault occurs, the engine performance still decays 

in an exponential way, causing an accumulative efficiency 

loss of each component, which in turn is represented by 

discernable changes of observable measurements. Fig (1) 

gives an example of accumulative efficiency loss and 

corresponding measurement change of the high pressure 

compressor (HPC). More details on implementation of 

degradation trend prediction and  transient decay detection 

using proposed diagnosis and prognosis method are 

discussed in the next section. 

 

Figure 1. Accumulative efficiency loss and corresponding 

CPR increase of HPC 
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4. PERFORMANCE EVALUATION 

To evaluate the performance of the proposed RPF based 

engine degradation prediction method, a set of high fidelity 

system level engine simulation data is used (Saxena, 2008). 

The data is created with a Matlab Simulink tool called C-

MAPSS, designed to simulate normal and fault engine 

degradation over a series of flights. Each flight is a 

combination of a series of flight conditions with a 

reasonable transition period to allow the engine to change 

from one flight condition to the next. For the normal 

condition case, the engine is given an exponentially 

degrading fuel flow and efficiency profile, which denote the 

degradation of system performance. For fault condition 

cases, the engine is assigned one of five possible faults (fan, 

LPC, HPC, HPT and LPT) at a random flight. The fault is 

manifested by increasing the efficiency parameters 

degradation from the fault time point until the end of the 

simulation for the remaining flights. After a flight is 

simulated, a snapshot of all engine parameters is taken in the 

middle of cruise and applied to estimate engine state and  

predict the degradation trend. 

In the learning stage, based on the state equations (denoted 

by Eq. (12) and Eq. (13)) and measurement equations 

(denoted by Eq. (14) and Eq. (15)), the state transition 

probability p(xk|xk-1) and measurement probability p(zk|xk) 

can be obtained as a priori, then the posterior distribution 

function of efficiency state p(xk+l|zk) can be predicted using 

the RPF. In the system equation, the model parameters A 

and B in Eq. (13) are modeled as probability distributions 

following the uniform distribution, to incorporate the 

stochastic property of the engine component degradation. 

The latest update of these two parameters helps construct 

the state transition probability p(xk|xk-1) and subsequently the 

degradation prediction. Fig. 2 shows an example of HPC 

efficiency degradation prediction based on the developed 

methods under a normal case (natural decay, no fault 

occurrence), using the information of the first 160 flights as 

the prior knowledge to predict the efficiency trend.  
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Figure 2. Predicted HPC efficiency degraded in an 

exponential way without external fault 

Fig. 3 shows the HPC efficiency prediction under fault case, 

where the transient decay occurs at the 23
rd

 flight by a 

0.25% loss. Also, the information about the first 80 flights is 

taken as the prior knowledge for the proposed method to 

predict the efficiency evolution of the last 20 flights. The 

simulation result indicates that the proposed method can 

track the both exponential and transient types of system 

performance degradation. Because the cost function of 

estimated output at previous sampling time, as denoted by 

Eq. (11), is checked each step, there is a time delay for the 

estimation to track the transient change. Fig. 4 is the 

evolution of distribution of parameters A and B in Eq. (13). 

It is noted that the value of both parameters are consistent 

before and after the transient change. In addition, because 

there is no new information to update the parameters, they 

stay the same in the prediction stage.   
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Figure 3. Predicted HPC efficiency with a transient decay 

under the effect of external fault 
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Figure 4. Evolution of distribution of parameters A and B 

for HPC efficiency estimation 

Fig. 5 shows another example of LPT efficiency prediction 

in the fault case, where the fault occurs at 33
rd

 flightFig. 6 is 

the corresponding evolution of parameters distribution. 
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Figure 5. Predicted LPT efficiency with a transient decay 

under the effect of external fault 
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Figure 6. Evolution of distribution of parameters A and B 

for LPT efficiency estimation 

To evaluate the effectiveness and robustness of proposed 

method on degradation prediction, Monte Carlo simulation 

is applied to derive the comprehensive simulation results. 

Each scenario has been run for 100 times. Mean and root 

mean square (RMS) of root mean square error (RMSE) of 

median prediction are listed in Table 1. 

Table 1 Monte Carlo simulation result of proposed method 

 Normal HPC Fault HPC Fault LPT 

Mean 0.086% 0.1% 0.13% 

RMS 0.097% 0.12% 0.14% 

Extended Kalman filter (EKF) is selected here as the 

alternative method to compare with PF, while the results are 

shown in Fig. 7. Maximum likelihood (ML) integrated with 

EKF is adopted to estimate the unknown parameters in the 

state evolution model, based on which prediction is 

performed.  It is found that prediction accuracy of PF is over 

EKF+ML, and the prediction accuracy of natural 

degradation over the mixed degradation. 

 
Figure 7. Performance comparison between PF and EKF 

5. CONCLUSION 

Particle Filtering has been investigated as a prognostic 

method for both state and parameter estimations in 

determining the efficiency degradation of jet engines as an 

example of dynamical system prognosis, at the component 

level. State estimator is modified by a cost function that 

compares the predicted measurements to updated 

measurements, and enables the tracking of transient decays 

in addition to exponential type of degradations. Simulated 

data sets including normal and fault cases generated by the 

C-MAPSS program have been used to evaluate the 

effectiveness of the developed algorithm for engine 

degradation state prediction,   with quantified confidence 

intervals to manage uncertainty. In the three examples 

considered, the results indicate that the method can track 

transient changes within two steps, and the prediction error 

is less than 1%. Future research will investigate the 

robustness of the developed algorithm for different 

applications under different operational conditions, using 

experimental data.  
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