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ABSTRACT 

Tube leakage of steam boiler can decrease the whole 

efficiency of power plant cycle, and eventually cause an 

unscheduled shutdown. In this paper, we propose a leakage 

detection method for steam boiler tubes in thermal power 

plant (TPP) using principal component analysis and 

exponentially weighted moving average (EWMA). To 

determine the number of principal components, the 

cumulative percent variance technique is employed, and the 

Q statistic is used as the detection index. If the Q statistic of 

an unseen sample is larger than a predefined threshold value, 

the sample is detected as a fault sample and an alarm signal 

is generated. EWMA is used to reduce false alarms. To 

demonstrate the performance, we apply the proposed method 

to an unplanned shutdown case due to boiler tube leakage, 

which is collected from distributed control systems of 250 

MW coal-fired TPP. The experiment results show that the 

proposed method can detect failure symptoms of the case 

successfully. 

1. INTRODUCTION 

In large-scale industrial processes (e.g., coal-fired thermal 

power plant (TPP)), online monitoring and fault diagnosis are 

indispensable for effective operation and maintenance; they 

provide potential benefits for improving safety, reliability 

and availability of the processes (Wang, Ma, and Wang, 

2014). A fault is defined as an unpermitted deviation of at 

least one characteristic property or variable of the system 

from acceptable, usual, or standard behavior (Patan, 2008). 

In an early stage, the effects of a fault on system performance 

may be insignificant. However, if there are no proper 

corrective actions, the fault results in system malfunction and 

failure, and cause severe performance degradation and losses 

of life and property. A fault detection system can monitor the 

operating conditions of power plants and identify a fault at its 

earliest developing stage by analyzing complex and non-

stationary patterns of process variables; thus, it can help 

operators to take proper actions in advance. 

Boiler is important equipment in power plant, chemical and 

refinery processes. Boiler tube failures cause approximately 

60% of boiler outages (An, Wang, Sarti, Antonacci, and Shi, 

2011). The tube failures are the main factors that influence 

safe and economical operations of power plant. The timely 

detection of boiler tube leakages can reduce secondary 

damage and productivity losses caused by unscheduled 

shutdowns. In the following, we summarize several previous 

studies on boiler tube leakage detection. 

Sun et al. (2002) developed a model-based least-squares 

algorithm with a time-varying forgetting factor for leak 

detection in boiler steam-water systems. Afgan et al. (1998) 

described the development of an expert system for detecting 

boiler tube leakage based on selected diagnostic variables 

obtained by radiation heat flux measurements. Zhang et al. 

(2015) used three-dimensional space location algorithm 

based on the time delay of arrival to determine the location 

of water-cooling wall tube leaks in real time. An et al. (2011) 

used a four-element acoustic array and a set of hyperbolic 

equations to locate boiler leaks. Widarsson and Dotzauer 

(2008) evaluated a new method for early warning to detect 

leakage of a typical recovery boiler using Bayesian network. 

Rostek et al. (2015) reported early detection and prediction 

of leaks in fluidized-bed boilers using artificial neural 

network (ANN). Sun et al. (2005) proposed a new 
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preprocessing technique and dynamic principal component 

analysis (PCA) model for boiler leak detection. 

When machine learning techniques such as ANN are used for 

fault detection, the difficulty lies in identifying significant 

inputs among many initial input candidates for effective 

learning. Furthermore, a number of models should be 

implemented for residual generation if the models have 

multi-input single-output structure. In this paper, we propose 

a PCA-based tube leakage detection method for steam boiler 

in TPP. PCA is a powerful tool capable of compressing data 

and reducing its dimensionality so that essential information 

is saved and easier to analyze than the original huge data set 

(Ajami and Daneshvar, 2012). In PCA, prior domain 

knowledge is not needed and historical data is only required 

for fault detection. PCA-based fault detection is performed 

by calculating detection indices using eigenvectors in the 

subspace of principal components (PCs). The PCA-based 

method has been widely applied for self powered neutron 

detectors, chiller systems, helical coil steam generator 

systems, pediatric emergency department and continuously 

stirred tank reactor (Peng, Li, and Wang, 2015; Beghi, 

Brignoli, Cecchinato, Menegazzo, Rampazzo, and Simmini, 

2016; Zhao, and Upadhyaya, 2006; Harrou, Kadri, Chaabane, 

Tahon, and Sun, 2015; Harrou, Nounou, Nounou, and 

Madakyaru, 2013). 

In this paper, to determine the number of PCs, cumulative 

percent variance (CPV) method is employed, and Q statistic 

and its smoothed value are used as detection indices. Using 

exponentially weighted moving average (EWMA), the 

smoothed value is calculated to consider the trend of the Q 

statistic (Harrou, Nounou, and Nounou, 2013). To verify the 

performance, we use an unplanned shutdown case due to 

boiler tube leakage in 250 MW coal-fired TPP. Experimental 

results show that the PCA-based method can successfully 

detect failure symptoms that appeared immediately before 

the shutdown. In addition, the results illustrate the validity of 

EWMA for fault detection. 

The remainder of this paper is organized as follows. Section 

2 explains the PCA-based fault detection method. Section 3 

briefly summarizes the target system, i.e., 250 MW coal-fired 

TPP, and boiler tube leakage. In Section 4, we present the 

experimental results, and finally we give our conclusions in 

Section 5. 

2. PRINCIPAL COMPONENT ANALYSIS 

PCA is a multivariate statistical technique for dimensionality 

reduction of collected dataset. In PCA-based fault detection 

method, arbitrary m-dimensional vectors are projected onto a 

lower dimensional (i.e., l-dimension) subspace, and abnormal 

operating conditions are identified on the l-dimensional 

subspace. 

2.1. Definition of PCA 

Let X = [x1,..., xn]T n m
 be a collected data matrix, where 

X is composed of m-dimensional n data vectors xi
m

 . 

After applying z-score standardization to each dimension, X 

can be decomposed using singular value decomposition as 

follows: 

 

 ,
T

X TP   (1) 

 

where T = [t1,..., tm] n m
 and P = [p1,..., pm] m m

 consist 

of score vectors tj
n

 and orthogonal loading vectors pj

m
 , respectively. The vectors pj are eigenvectors of 

covariance matrix Σ defined as 
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where PPT = PTP = Im and Λ = diag(λ1,..., λm) is diagonal 

matrix whose diagonal components sorted in descending 

order (i.e., λ1 >...> λm) are eigenvalues of Σ. The matrix Λ and 

λj are defined as (Joe Qin, 2013) 
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In other words, λj is the variance of n projections of data 

vector xi, i = 1,..., n onto eigenvector pj. In PCA, 

dimensionality reduction is performed by selecting l 

eigenvectors that correspond to largest l eigenvalues among 

m eigenvalues sorted in decreasing order. 

2.2. Determining the number of PCs 

The performance of PCA depends on the value for l, i.e., the 

retained number of PCs in the subspace. If the number of 

selected PCs is too small, important variations cannot be 

detected in the subspace and the performance deteriorates. On 

the other hand, if there are too many retained PCs, extraneous 

components could be considered. To select the proper 

number of PCs, several methods such as scree plot, CPV, 

cross validation, parallel analysis, sequential test, resampling 

and profile likelihood have been developed (Harrou et al., 

2013). In this paper, the CPV method is employed and the 

CPV value is calculated as (Harrou et al., 2015) 
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After calculating CPV(l), l = 1,..., m, the value for l is 

determined by 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

3 

 

   *

th
min | ( ) ,    1,..., ,l l CPV l CPV l m     (5) 

 

where CPVth is a threshold value of CPV(l) (e.g., 90%). When 

CPVth is set as 90%, l PCs selected by eq. (4) capture more 

than 90% of total variations. After determining the number of 

PCs, X can be reformulated as 
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where T̂ = [t1,..., tl]
n l

 and T = [tl+1,..., tm]
 n m l 



consist of l retained PCs and m−l ignored PCs, respectively, 

and P̂ = [p1,..., pl]T m l
 and P = [pl+1,..., pm]T  m m l 

 are 

composed of l retained eigenvectors and m−l ignored 

eigenvectors, respectively. Eq. (6) can be rewritten as 
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where X̂ is the approximated part by l retained PCs and E 

corresponds to the part of approximation error. 

2.3. Detection indices 

As described in eq. (7), an arbitrary m-dimensional data 

vector x can be decomposed into approximated part x̂ and 

error part x . The norm of x is small when target system is 

normally operated, but its magnitude sharply increases when 

a system fault occurs. Q statistic measuring the magnitude of 

the size of x is defined as 

 

  
2
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After calculating the Q statistic for an unseen data vector, an 

alarm signal is generated if the Q statistic is larger than or 

equal to a predefined threshold value. The threshold value of 

Q statistic, i.e., Qα is defined as (Jackson, and Mudholkar, 

1979) 
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  , and cα is the 

upper (1−α)th percentile of normal distribution. 

2.4. Summary of PCA-based fault detection procedures 

Fig. 1 summarizes PCA-based fault detection procedure 

divided into training and test steps. In the training step, 

covariance matrix Σ, its eigenvectors pj, the proper number 

of PCs and Qα are sequentially calculated. In the test step, 

after calculating detection indices of an unseen vector xnew, 

alarm signal occurs if the detection indices are larger than or 

equal to the Qα. 

3. SUMMARY OF THE TARGET SYSTEM: 250 MW COAL-

FIRED POWER PLANT 

In this study, the target system is a 250 MW coal-fired TPP. 

Fig. 2 shows an example of distributed control system (DCS) 

screen. An unplanned shutdown data due to boiler tube 

leakage was collected from the DCS and is used to 

demonstrate the performance. 

3.1. Coal-fired thermal power plant 

In the coal-fired power plant, after transforming feedwater 

into steam by thermal energy produced from combustion of 

bituminous coal, electricity is generated by driving steam 

turbine and generator. Fig. 3 shows a simplified schematic 

diagram of the target TPP. (Yu, Jang, Yoo, Park, and Kim, 

2016). Steam boiler raises steam by heating feedwater using 

thermal energy converted from fossil fuel. The steam boiler 

 

 
Fig. 1. PCA-based fault detection procedures. 

 
Fig. 2. An example of DCS screen for 250MW coal-fired 

power plant. 
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follows the thermodynamic steam cycle, i.e., Rankine cycle, 

which is a practical implementation of the ideal Carnot cycle 

(Flynn, 2003). Steam, an important medium to produce 

mechanical energy, can be generated from abundant water, 

does not react much with materials of the power plant 

equipment and is stable at the required operation temperature 

in the power plant (Raja, 2006). 

Bituminous coal pulverized in advance is transformed into 

thermal energy at the furnace of the steam boiler. Before 

flowing into drum, the feedwater is preheated by passing 

through a series of low- and high-pressure heaters and 

economizer. The heater and economizer raise the feedwater 

by extraction steam from turbine and high temperature flue 

gas, respectively. These preheating steps improve efficiency 

of the whole cycle. The drum supplies feedwater that will be 

converted into steam and temporarily stores the steam 

produced by evaporator. The saturated steam by evaporator 

contains a little moisture. Superheater converts the steam into 

high-purity and high pressure and temperature superheated 

steam that will be supplied to turbine. 

In the turbine, the superheated steam expands, turbine blades 

are rotated and thermal energy is transformed into 

mechanical energy. The rotating turbine blades drives electric 

generator and three phase electric power is generated. After 

performing mechanical works at high pressure turbine, the 

steam is reheated by reheater and supplied to intermediate 

pressure turbine. The steam exiting from low pressure turbine 

is condensed into condensate water and it is stored at 

condenser’s hotwell. The condensate water is boosted by 

condensate pump and passes through low pressure feedwater 

heater. And then, the water is deaerated by deaerator and 

boosted by feedwater pump. The boosted water passes 

through high pressure heater and economizer and is fed into 

the boiler again. 

3.2. Boiler tube leakage 

Failure of one or more tubes in the boiler can be detected by 

sound and either by an increase in make-up water 

requirement (indicating failure of water carrying tubes) or by 

an increased draft in the superheater or reheater areas (due to 

failure of superheater or reheater tubes) (Sarkar, 2015). The 

boiler tubes can be influenced by several damage processes 

such as inside scaling, waterside corrosion and cracking, 

fireside corrosion and/or erosion, stress rupture due to 

overheat and creep, vibration-induced and thermal fatigue 

cracking, and defective welds (Oakey, 2011). 

The tube leakage from a pin-hole could be tolerated due to 

the adequate margin of feedwater and the leakage can be 

corrected after suitable scheduled maintenance. However, if 

the boiler is continuously operated with the leakage, much 

pressurized fluid leaks out eventually and severe damage to 

neighboring tubes occurs. The tube leakage of boiler, 

superheater and reheater could give rise to serious decline of 

efficiency. In the short term, the tube leakage of superheater 

and reheater is more fatal than that of boiler. When severe 

tube leakage happens, it is difficult to maintain the level of 

the boiler drum properly. If leaking water is spilled into 

furnace, combustion of coal is disturbed. In these cases, the 

plant should be shut down immediately. 

4. EXPERIMENT RESULTS 

In this section, the PCA-based fault detection method is 

applied to an unscheduled shutdown data due to boiler tube 

leakage. The aim of the method is to detect faults or failure 

symptoms just before the shutdown and prevent further 

deterioration of them. The collected dataset consists of 4320 

training and 1054 test samples, respectively, and the 

monitored variables are summarized in Table 1. Each sample 

was recorded in discrete time intervals, i.e., 5 minute intervals, 

and the training samples are collected from normal target 

system. Among a large number of process variables, the 

 
Fig. 3. Simplified schematic diagram of the coal-fired 

power plant. 

 

 

Table 1. Summary of monitored variables for boiler tube 

leakage detection. 

Notation Description Unit 

X1 Generator output MW 

X2 Steam flow t/h 

X3 Main steam pressure kg/cm2 

X4 Main steam temperature oC 

X5 Reheater pressure kg/cm2 

X6 Reheater temperature oC 

X7 Furnace pressure kg/cm2 

X8 Drum level m 

X9 Condenser pressure kg/cm2 

X10 Condenser make-up flow t/h 

X11 Feedwater flow t/h 

X12 Conductivity of condenser A μmho 

X13 Conductivity of condenser B μmho 
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RH Reheater

Eco. Economizer

HP TBN High pressure turbine

IP TBN Intermediate pressure turbine

LP TBN Low pressure turbine

BFP Boiler feedwater pump

COP Condensate pump

Con. Condenser

HP FW High pressure feedwater

LP FW Low pressure feedwater

Gen. Generator

Ext. Extraction



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

5 

monitored variables for boiler tube leakage detection are 

carefully selected by domain experts. After applying training 

step described in Fig. 1 to the training samples, the 

performance is validated using the test samples. 

4.1. Results of the training step 

The standardized fault-free training data is used to calculate 

covariance matrix, eigenvectors, the proper number of PCs 

and Qα. Fig. 4 shows eigenvalues that correspond to 13 PCs. 

As shown in Fig. 4, the PCs from first to third capture 

approximately 60 percent of multivariate data information, 

i.e., important variations, while the PCs from 10th to 13th 

contain lower than 5 percent of the information. In other 

words, most important variations can be captured by several 

PCs and dimensionality reduction is also possible. In this 

paper, CPV method is employed for determining the proper 

number of PCs and Fig. 5 shows the results of the CPV 

method. In Fig. 5, CPVth is set as 90% and indicated by 

horizontal dashed red line. The retained number of PCs is 

decided as 8 by eq. (5). The first eight PCs can capture 93.18 

percent of entire variations. As described in eq. (8), Q statistic 

is calculated by only eight retained eigenvectors. After 

deciding the retained number of PCs, Qα is calculated by eq. 

(9). Fig. 6 shows the histogram of Q statistics for the training 

samples and Qα for fault detection. In Fig. 6, the value for α 

is set as 0.05 and the calculated value of Qα is 2.5742 and 

indicated by a vertical dashed red line. 

4.2. Results of the test step 

In this subsection, the results of fault detection using the 

PCA-based method are presented. EWMA is used to generate 

alarm signals and its window size is set as 6, i.e., the six most 

recent Q statistics are considered. The detection indices are 

larger than or equal to a predetermined threshold value when 

the conditions of target system are abnormal. Fig. 7 shows Q 

statistics for the test samples and EWMA of them, and alarm 

signals without and with EWMA. In Fig. 7, shutdown time is 

indicated by vertical solid dashed red lines. In Fig. 7 (a), the 

horizontal dashed red line represents the predetermined value 

of Qα and EWMA of Q statistics is indicated by solid purple 

line. The red points in Fig. 7 (b) and (c) represents alarm 

signals without and with EWMA, respectively. As shown in 

Fig. 7 (a) and (b), inconsistent false alarms can be easily 

removed using EWMA. The main reason for the 

improvements is that the trend from past to present can be 

considered for alarm signal generation. In Fig. 7 (a), failure 

symptom region where alarm signals occur intensively is 

indicated by transparent red region and its enlargement and 

corresponding alarm signals are shown in Fig. 8. As shown 

in Fig. 8, due to the sharp increases of detection indices, 

alarm signals are generated for about ten hours just before the 

unplanned shutdown. 

4.3. Performance evaluation 

In this subsection, using four measures, the results of 

performance comparisons for both indices, i.e., without and 

with EWMA, are presented. The four performance measures, 

i.e., accuracy (ACC), sensitivity (SEN), specificity (SPE), 

and precision (PRE), are defined as (Han, Kamber, and Pei, 

2011) 

 

 ACC ,
TP TN

P N





  (10) 
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where 

 
Fig. 4. Eigenvalues of each principal component. 

 

 
Fig. 5. Results of the CPV method for determining the 

retained number of PCs. 

 

 
Fig. 6. Histogram of Q statistics for the training samples 

and Qα. 
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 P the number of fault samples; 

 N the number of normal samples; 

 TP the number of samples that were correctly detected 

  as fault samples; 

 TN the number of samples that were correctly 

  determined as normal samples; 

 FP the number of samples that were incorrectly detected 

  as fault samples; 

 FN the number of samples that were incorrectly 

  determined as normal samples. 

Table 2 lists the comparison results of fault detection 

performance using the four measures. It can be seen from the 

table that the results with EWMA show better performance 

than those without EWMA. The fact that both SEN and SPE 

are improved shows that the method with EWMA achieves 

better performance in both normal and abnormal regions. If 

Q statistic is used separately for alarm signal generation, it is 

assumed that those of present and past are independent each 

other; false alarm rate may increase because the trend of Q 

statistic is ignored. When EWMA of Q statistics is employed 

for detection index, false alarms were reduced since the 

tendency of Q statistics can be considered. 

5. CONCLUSION 

In this paper, PCA and EWMA were combined for detecting 

boiler tube leakage in TPP. To illustrate the performance, we 

applied the fault detection method to unplanned shutdown 

dataset collected from DCS of target TPP. The experimental 

results showed that the method can detect failure symptoms 

right before the shutdown successfully. Furthermore, fault 

detection with EWMA achieves better performance than 

those without EWMA. Since the states of tube leakage 

deteriorate gradually excluding sudden tube explosions, fault 

detection with EWMA is very effective. 

In this paper, to demonstrate the performance, only one 

unplanned shutdown dataset was used. In future research, 

various shutdown dataset will be collected; the proposed 

method will be applied to the collected dataset and field 

application possibilities will be also examined. Moreover, we 

will develop a method that can consider different operating 

modes (e.g., free governor mode) for fault detection and 

diagnosis. 
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Fig. 7. (a) Q statistics and EWMA for the test samples 

on a semi-logarithmic scale (b) alarm signal without 

EWMA (c) alarm signal with EWMA. 

 

 
(a) 

 
(b) 

Fig. 8. Enlargement of failure symptom region in Fig. 7 

(a): (a) Q statistic and EWMA; (b) alarm signal with 

EWMA. 
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