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ABSTRACT 

System state determination with incomplete sensory 

information set proved to be a technically challenging 

problem. In this paper, authors tackle a problem of this type 

associated with vehicle fuel storage systems and proposed a 

novel feature extraction method. Federal and state 

regulations require fuel storage leak detection mechanism to 

be conducted periodically and regulate its execution rate and 

performance to ensure effective emission controls. Being 

able to robustly determine a fuel storage system’s state in 

terms of its effectiveness of fuel containment is therefore of 

great importance to all vehicle original equipment 

manufacturers (OEM). Prevailing practice in the industry 

utilizes a method relevant to natural vacuum phenomenon 

and is loosely associated with ideal gas law. Commonly 

referred to as “Entry Conditions” in in-vehicle monitoring 

design literature, major noise factors go through stringent 

pre-monitoring evaluations before monitoring program 

execution to ensure ideal test conditions. Differences in 

ambient conditions compounded with varying customer 

drive cycle patterns present great challenge to existing 

monitor designs for the purpose of leak detection. In 

addition, prevailing practices of evaluation in-tank fuel 

pressure and temperature information are generally 

conducted with surrogate or estmiated temperature 

information due to the absence of in-tank temperature 

sensor. All this calls for an alternative feature calculation 

and detection method that are less sensitive to known noise 

factors, can operate with incomplete sensory information yet 

being able provide similar or improved detection capability. 

In this paper, we put the main focus on the derivation of a 

novel method of feature calculation for the purpose of 

detecting presence of a leak in a fuel storage tank. 

1. INTRODUCTION 

Murvay (Murvay, 2012) studied state-of-the-art 

development in terms of hardware (including pressure, 

acoustic, remote and reflective sensing) and software 

methods for gas leak detections. It was concluded that a 

hybrid approach to take advantage of cost effective 

hardware setup (high localization accuracy) with fast 

improving software methods (real-time detection capability) 

would be highly recommended. It also suggests that 

investment in a hybrid approach may be more cost effective 

in the long term as software capability enhancements may 

offset the effect of aging hardware, reducing the need for a 

complete revamp of leak detection setup, something very 

cost prohibitive.  Zhou (Zhou, 2011) proposed a Bayesian 

Belief Rule Based (BRB) system where subject expert 

knowledge and real-time information are incorporated to 

incrementally improve the performance of the system. Such 

a combination of human knowledge and data driven 

refinement to the model is suitable to deal with ever 

increasingly complex real-world problems. Ghazali’s work 

(Ghazali, 2012) focused on instantaneous frequency analysis 

(IFA), where comparisons between Hilbert transform (HT), 

Normalized HT (NHT), Direct Quadrature (DQ), Teager 

Energy Operator (TEO) and Cepstrum performed on 

pressure transients (opening a valve or stopping a pump) 

within a live distribution network were conducted. A 

detection method that includes multiple modeling 

techniques was proposed by (Mandal, 2012). They apply 

rough set theory and artificial bee colony (ABC) trained 

SVM (Support Vector Machine) to carry out classification 

tasks in two stages and yielded robust performance when 

compared with PSO (particle swarm optimization) and 
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EPSO (enhanced particle swarm optimization) based 

learning methods. 

Leak detection mechanism as part of an overall emission 

control strategy is gaining importance in recent years. As 

countries are increasingly pledging reduced carbon 

footprints, one of the main focuses was to incrementally 

reduce and eventually eliminate allowable fuel vapors 

escaped to the ambient air. In the United States, ongoing 

efforts from Environmental Protection Agency (EPA) and 

California Air Resources Board (CARB) requires consumer 

vehicle original equipment manufacturers (OEMs) to equip 

their products with leak detection monitors to improve 

monitoring capabilities within a given timeframe (State of 

California Air Resources Board, 2012). In the meantime, on 

the field performances are under federal and state level 

regulations subject to audits. If sampled results are deemed 

unsatisfactory, fines or even voluntary recalls could be 

imposed. These penalties are undesirable as they undermine 

an OEM not only financially but could also negatively affect 

brand image that take years to even decades to recover if 

such incidents occur. 

Emmission related monitors generally reside in the 

powertrain control module (PCM) therefore contraints such 

as A. During calculation memory requirement, B. 

Computational efficiency and C. Compactness of the code 

often need to be carefully evaluated due to implications in 

terms of cost and practicality during implementation phase. 

In this paper, authors focus on describing a fundamentally 

different way of extracting information from the in-tank 

pressure signal stream as it is one of most critical parts of an 

overall redesign of an in-vehicle monitor.  More 

specifically, we will cover a recursive approach to enable 

monitor design engineers to have access to physically 

meaningful probability density function (PDF) type of 

information continuously in the form of a recursively 

updated histogram or discretized probability density 

function (DPDF) from normalization performed on an 

obtained discretized relative frequency function (DRFF). 

Feature calculations are performed from evaluation of 

certain specific bin(s) of the DPDF from which decisions 

can be made about the fuel tank’s status with repect to the 

presence of a leak. Technique descibed in (Syed, 2009) 

utilizes a low pass filter (LPF) implementation to extract 

driver (non-conditional / overall) behavioral information for 

adaptation of an in-vehicle advisory system. When applied 

to scenarios where possible alternatives do exist, such 

calculation produces conditional relative frequency (RF) 

information which is a precursor of probabilistic 

information. In (Filev, 2011), organization and conditional 

updates of trip specific RF values enable the creation of a 

context senstive predictive system. Proposed feature 

exraction method strictly operates in the probabilistic space. 

It represents a significant step forward and a crucial 

enabling element to improve from prevailing pactice of 

evaluation of pressure signal (or its manipulated version) 

alone (Wong, 2003 and Jentz, 2013). Our preliminary 

analysis suggests proposed feature calculation produces 

meaningful and promising results. The investigation of 

promising alternative feature calculations as the one 

described in this paper is an important first step that shall 

shed more light on how to redesign a leak detection monitor 

in the future. 

The rest of the paper is organized as the following. In 

section 2, current prevailing practices in the industry will be 

discussed where most OEM’s approach can be understood 

as solving a classification problem (leak vs no leak) with a 

single feature commonly derived from in-tank pressure 

signal. In section 3, the derivation and computation 

procedure of obtaining a continuous measure of the content 

of in-tank pressure signal stream in the form of DPDF. In 

addition, proposed feature calculation from DPDF vector is 

desribed in detail. Section 4 covers a simple threshold 

determination based classification process utilizing the 

feature calculation described in Section 3 and preliminary 

results are presented. We conconlude current findings and 

future work in section 5 followed by cited references. 

2. INDUSTRY PRACTICE FOR VEHICULAR LEAK 

DETECTION 

Prevailing principle of fuel storage leak detection design 

relies on well-known “Ideal Gas Equation”, which states the 

governing relationship between system pressure and 

temperature given certain characterizing constants or a 

lumped product is known or estimated (Wong, 2003 and 

Jentz, 2013).   Determination of the presence of a leak in the 

fuel storage system is carried out by evaluation of whether 

expected pressure change is met within certain threshold 

(2005, McLain).  Due to its evaporative nature, gasoline 

vapor / liquid state transition activities does not warrant the 

direct use of the ideal gas equation, therefore, monotor 

specific “Entry Condition” evaluations have to be carried 

out before monitoring program execution.  

After vehicle key-off, when entry conditions are met, the 

system is then sealed by operation of certain actuators such 

as valves.  In this phase, in-tank pressure signal is kept alive 

for evaluation against thresholds that are dynamically 

adjusted to ambient as well as preceding driving conditions 

that led to the current stop. During all this time, parallel 

evaluations of certain run time parameters are common to 

reduce false state determinations and total engine-off battery 

draw. When it is deemed an effective determination cannot 

be reached, execution could self-abort without making a 

determination as to the system’s state. A set of built-in 

counters are required by law to be in place to keep track of 

how often a monitor runs against scenarios it is required to 

do so. The ratio of leak / no leak versus total number of 

successfully full executions are also being tracked. These 

values are subjected to insepctions of government agencies 

and OEM’s periodically. 
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Abovementioned leak detection process can be understood 

as carrying out a classification procedure with a main 

feature that is commonly derived from pressure sensor 

information. The goal of these leak detection monitors is to 

produce a leak indicator value [0, 1] in which 0 represents 

no leak state and 1 represents presence of a sizable leak. The 

original pressure value is subjected to futher common signal 

procesing methods such as signal smoothing, clipping and 

flipping. Other common modifications may also include 

multiple scalers associated with ambient / vehicle 

conditions.  After a series of manipulations, comparison is 

performed with thresholds resulted from calibrations 

conducted with a sweep of main noise factors spaces. 

Different from abovementioned commonly used feature, 

section 3 describes in detail a recursive procedure 

continously measure in-tank pressure content in the form of 

DPDF from which feature(s) will be calculated for the 

purpose of leak detection. 

3. FEATURE DERIVATION FROM PROBABILITY DENSITY 

CURVE FOR CLASSIFICATION PURPOSE 

The first step in solving a classification problem generally 

has to do with identification of effective features. Feature 

extraction serves at least following purposes: 1) Obtaining 

informative representation of data, 2) Dimensionality 

reduction, and 3) Reduction in noise and redundancy. 

Common feature extraction methods can be grouped into the 

following categories: 1) Time series based features, 2) 

Statistics based features, 3) Frequency based features, 4) 

Mixed domain features, and 5) Model based features. For 

some applications (e.g., vibration analysis), expert and 

domain knowledge play important roles in guiding the 

methodology and techniques involved in the feature 

extraction process. While certain calculation and data 

transformation may be common (e.g., Fourier Transform for 

accelerometer sensing signals), such practice may produce 

signatures associated with certain frequency range. 

Depending on subject problem of interest, simple data 

smoothing, deterministic or moving data window scheme or 

windowed data overlay techniques may be imposed as part 

of a feature extraction procedure. Details regarding signal 

and feature selection process are out of the scope of this 

paper.  

Different from common practice, the authors performed data 

analysis focused on signatures revealed from the probability 

density function of in-tank pressure changes.  This is one of 

the signals typically kept “alive” during leak detection 

monitoring phase after the engine has been turned off and 

the system has been sealed. More specifically, we developed 

a non-parametric method to continuously extract signatures 

indicative of the existence of a leak in a presumably sealed 

setting. The rationale is that change in overall pressure is a 

consequence of accumulated pressure (rate) changes. We 

apply procedures to obtain dprobability distribution function 

in a discretized form from the frequentist’s point of view (of 

relative frequency). This is procedure is implemneted with a 

low pass filter (LPF or 1st order exponential smoothing). 

After initialization phase (where a number of initial signal 

samples have been observed), proposed method gives a 

continuous output of the DPDF with predefined partitions. 

Resolution a DPDF is dependent on pre-determined signal 

range and number of partitions within that range.  

Conceptually, proposed implementation is identical to the 

creation of a histogram with a moving data windown given 

some continuously incoming data stream; the counting 

procedure is carried out by a LPF in which its learning rate 

controls the size of the moving data window. The crisp 

partitions within specified signal range act as “competing 

and possible” scenarios or alternatives where we impose a 

“winner takes all” rule for relative frequency (RF) updates 

for all partitions involved. Through this updating rule, the 

increment of the relative frequency occurs only for one 

partition at a time while the rest of the competing partitions 

receive negative updates. At any given time, a DPDF is 

obtained by normalizing most recent DRFF with the 

summation of its elements. Details regarding this process 

are described next. 

3.1. Recursive Estimation of Discretized Relative 

Frequency Function (DRFF) as Predecessor of 

Discretized Probability Density Function (DPDF) 

3.1. Recursive Estimation of Discretized Relative Frequency 

Function (DRFF) as Predecessor of Discretized Probability 

Density Function (DPDF) 

From a frequentist’s point of view of probability, 

probability density function (PDF) comes from obtaining a 

histogram-like vector (of very fine granulaity or partition), 

namely a DRFF. After a normalization procedure, a DPDF 

is obtained and the summation of its content should be 1 

(sum of total probability of 1). In the simplest case, the first 

step in obtaining DRFF vetor is to partition a signal’s value 

space into smaller non-overlapping ones. For example, if a 

signal X takes values from 0 to 10, an example of such a 

partition would be to define 10 partitions of the signal space 

that spans the following consecutive intervals or bins: 

0≤x<1, 1≤x<2, 2≤x<3 … 9≤x≤10. As a result, they 

represent mutually exclusive scenarios or value range 

alternatives regarding numeric content of signal X at any 

given moment. When a specific component of data stream 

of signal x is being evaluated, only one of the the 

alternatives will receive the increment in count from the fact 

current x’s value falls into a corresponding region while 

other alternatives will receive negative updates. From (Syed, 

2009), the construction of a count based histogram can be 

approximated recursively with an exponentially weighted 

moving average (EWMA) formulation where counts are 

replaced with relative frequencies (RF). When such 

implementation is in place, content captured in an interval in 

DRFF represents a relative frequency value corresponds to 
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the total number of occurances relative its alternatives (other 

intervals). For example, if α is 0.05 the moving window is 

approximately 1/0.05 = 20 meaning that at any given 

moment the DRFF preserves information from the most 

recent past 20 observations of signal X. The process of 

obtaining DRFF can be represented by following equation: 

     ( )  (   )       (   )         ( )              (1) 

where 〖 DRFF〗 _i denotes relative frequency of a partition 

enclosed by its lower and upper limits, α denotes the 

learning (0≤α≤1), and 〖 Flag〗 _i denotes a binary flag 

value of 0 or 1 indicating whether current value of X falls 

into the regrion defined by the i’th region.  All partitions of 

DRFF go through exactly one update during the evaluation 

of one incoming signal value with Eq (1) and all but one of 

the partitions will experience a value increment due to the 

use of “winner takes all” updating rule. 

DPDF is obtained by normalization procedure performed on 

DRFF with following equation: 

     ( )  
     ( )

∑      ( )
 
   

⁄                               (2) 

With equation (2), DPDF is obtained from updated DRFF 

from which subsequent feature calculation will be 

performed.  

A numerical example comparing LPF vs actual counts based 

DPDF is shown in the Figure 1. 

 

Figure 1: Comparison of recursively obtained DPDF vs 

Actual Count generated DPDF 

 

In Figure 1, a total of 150 random integers ranging from 0 to 

20 were populated. 

3.2. Extracting Probability Density Content from In-

Tank Pressure 

3.2.1. Focus of 1st Sealed Stage 

During experiments to generate representative datasets, the 

fuel storage system (fuel tank) goes through a series of state 

transitions that either expose or seal the system from the 

atmosphere. The rationale for the transitions contains 

proprietary information, and hence, will not be discussed 

here. Our research development focused on the 1st seal 

stage of all datasets. The reason being that subsequent 

changes are dependent on information collected during a 

prior state, making comparison between datasets not 

realistic. In addition, we identified that the early stage in the 

1st sealed phase is much more informative; therefore, we 

will focus on data collected in the first 300 seconds of each 

dataset. In addition, we have found that the contrast 

(separation) between classes reduced for the proposed 

method very quickly after 300 seconds into the 1st sealed 

phase. 

3.2.2. Pressure Change between Samples vs Pressure 

Change Rate 

The determination that a system has entered its 1st sealed 

state is conducted by monitoring a set of flags associated 

with actuators’ (valves) states that could be either open or 

closed. When the system is deemed to have entered its 1st 

sealed phase, the difference between previous and current 

in-tank pressures (inch mercury) is calculated continuously. 

Since our data collection system collects information at a 

(almost) constant rate of 10 Hz (every 100 milliseconds), 

pressure change rate in this case is proportional to pressure 

change between samples, and therefore, we omit the 

normalization division operation to simplify the calculation. 

3.2.3. Obtaining Vector Probability Density Content 

First of all, the signal numeric space is defined as 100 

equally spaced (0.0003) partitions ranging from -0.015 to 

0.015. α is set to be 1/500 or 0.002, which is equivalent of 

imposing a moving data window containing the last 500 

samples as it moves through the data stream. Since the 

normalization process effectively only scales DRFF through 

division of its element sum, the overall shape DRFF will be 

identical to DPDF. A snapshot of DPDF serves as a visual 

example is shown is Figure 2 according to partitions based 

on aforementioned definition. 
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Figure 2: DPDF obtained from normilzation of DRFF 

covering value range [-0.015, 0.015]. Each partition is of the 

width of 0.0003. 

 

3.2.4. Identification of Effective Features from DPDF for 

Classification Purpose 

From Figure 2, we noticed an interesting fact that close to 

75% of pressure change readings are assigned to the 

partition centered at 0 for this particular experimental 

dataset. This is not a coincidence but a result of the 

sensitivity of the pressure sensor in the existing product.  

The next step is to perform the same computational 

procedures to all datasets. With predefined partitions as 

described in 3.2.3, resuling DPDF from all datasets are 

inherently of the same size making it straightforward for us 

to calculatae the mean and standard deviations separately 

for two populations: leak vs no leak datasets. As a result, we 

obtained two sets of means and standard deviations for each 

partition using following equations: 

      
  

∑        
 
   

 
                                               (3) 

       
√
∑ (              

)  
   

   
                             (4) 

i denotes a particular partition, j denotes a dataset and K 

represents total number of datasets. Since we peforms such 

calculations for leak and no leak datasets separately, K will 

take different values if we have an unbalanced datasets 

where total numbers of leak and no leak datasets are 

different. From (3) and (4), we obtained population mean 

and standard deviation of each defined partition. We employ 

the well-known 6σ definition to show the range spans μ-3σ 

and μ+3σ for each partition separately for leak (blue line) vs 

no-leak (black line) datasets as shown in Figure 3. 

 
Figure 3: Visualation of  DPDF content of Leak (Blue) vs 

No-Leak (Black) Datasets. For each partition, upper bound / 

lower bound are obtained with μ+3σ and μ-3σ to visualize 

the location of the mean value and its spread 

simultaneously. 

Selective use of content from DPDF partitions for the 

purpose of distinguishing between leak and no leak 

(classification) datasets need to fulfill at least following 

criteria: 1) Potential content from a partition should exhibit 

class separation potential and 2) Potential content from a 

partition should have likelyhood of taking values (non-

zero). The first criteria suggests that patterns shown in 

DPDF should have some class separating capability such as 

μ_leak ≤ μ_(no-leak) such as the partition around 0.015 as 

shown in Figure 4. Or, as shown in Figure 3, the partition 

around zero that the spreads are different between classes, 

which indicates standard deviations of no-leak datasets may 

be generally smaller than those of leak datasets. The second 

criteria has to do with selection of content elements that will 

take value in the sealed process making sure such content 

will available to determine the overall system’s state in 

terms of the presence of a leak. This criteria is a basic yet a 

necessary one to ensure content availability of a partition 

from DPDF from which subsequent feature calculations are 

based on.  

Following aforementioned criteria, we will mainly focus on 

the features extracted from DPDF partition near the zero. 

This is due to the overall low DPDF values of almost all 

other partitions indicating risks of them to take value on a 

consistent basis. 
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Figure 4: Zoom-in view of Figure 3 focus on partitions on 

the positive side. For partition centered at 0.015, with some 

overlapping the means of leak vs no leak populations exhbit 

certain level of difference. 

3.2.5. Continuous Evaluation of DPDF Content Derived 

Features for Leak vs No-Leak System State 

Determination 

One advantage of using recursive equation for feature 

extraction is the enablement of continuous assessment of the 

system of interest. In Figure 5, DPDF partition content 

around zero for multiple leak (upper figure) and no leak 

(lower feagure) datasets (as described in 3.2.4) are shown in 

time domain where we can visually validated the continuous 

class separation capability. 

 
Figure 5: Continuous Evaluation of Content derived from 

DPDF partition around zero. DPDF content (Y-axis) as 

shown is presented in terms of probability where 1 equals 

100%. Upper figure includes only datasets with no leak. 

Lower figure includes only datasets with leak. 

4. CLASSIFICATION WITH A SIMPLE THRESOLD SETTING 

AND RESULTS 

Existing datasets to test out the method contains data 

streams that are collected for calibration purpose of existing 

strategies. Due to current monitor’s design, datasets 

collected for this purpose tend to put more focus on datasets 

with leaks. There are 14 data files labeled as system that has 

been verified to have no leak and 53 data files that have 

induced leak.  When applied to existing monitor, nearly half 

of all dataset will be thrown out without being evaluated due 

to failures to pass one of the entry condtions in place. 

For simplication purpose, we will refer to DPDF0 for the 

probability value obtained from the partition around zero. 

We employ method described above to calculate DPDF0 

continuously at a particular common execution phase of 

current strategy where the system was commanded to be 

sealed. 

              
∑     (       )
 
 

 
                                     (5) 

              
∑     (       )
 
 

 
                                      (6) 

              √(
∑ (   (       )              )

  
 

   
)   (7) 

              √(
∑ (   (       )              )

  
 

   
)     (8) 

The characterization of PDC0 from no leak dataset involves 

using 10 no leak data files. From these files, means and 

standard deviations of maximum and minimum values of 

each PDC0 profiles are obtained. Currently, upper and 

lower thresholds are estimated separately taking the 

common form as the following: 

                                                (9) 

                                                 (10) 

For each dataset, DPDF0 profiles are evaluated continuously 

against Threshold_Upperand Threshold_Lower. System is 

deemed to be leaky if at any given time “either” threshold is 

exceeded.  

Identification of thresholds k1 and k2 are performed with 

following procedure. We divide both datasets with leak and 

datasets with no leak into 2 equal sized groups (training and 

validation). As a result, each group contains 7 no leak 

datasets. In addition, training group contains 26 leak 

datasets and validation group contains 27. We enumerate k1 

and k2 values between -3 to 3 with 0.1 increments to 

identify potential pairs of k1 and k2 producing reasonable 

results. In this case, we define a reasonable performance as 

being able to at least classify all no leak datasets correctly. 

After that, passing pairs are ranked based on their detection 
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rate for leak datasets. In this process we found that among 

31*31 = 961 pairs there exist 20 pairs of k1 and k2 to have 

the same results. For these pairs, the overall prediction rates 

are the same at 100% meaning all leak and no leak datasets 

were identified correctly. They tend to have k1 around 0.9 ~ 

0.18 and k2 to be either -0.7 or -0.8.  

Table 1. k1 and k2 pair test sequence and detection rates for 

leak datasets, no leak datasets and when combined. 

 

  
 

Using these pairs we obtained best overall detection rate of 

88% that is slightly worse yet very similar to the result of 

the original leak monitor. The two k1 and k2 pairs produced 

best result during validation have the same k1 to be 0.9 and 

k2 to be -0.7 and -0.8 respectively at sequence #1434 and 

#1495. One thing to note is that application of the proposed 

method does not require a large set of entry conditions 

before monitoring procedures being executed. In other 

words, proposed feature calculation with a simple 

thresholding method result in significantly improved 

monitor applicability in comparison with current design.  

Table 2. k1 and k2 pair validate sequence and detection 

rates for leak datasets, no leak datasets and when both are 

combined. 

 

 

5. CONCLUSION AND FUTURE WORK 

We have proposed a novel method to obtain an effective 

feature from discretized probabilistic density function 

continuously. Using a simple threshold mechanism, 

different thresholds are setup such that exceeding either one 

indicates the presence of a leak in the system. Compared 

with existing strategies that use a set of entry conditions to 

determine whether to execute a test or not, proposed method 

produced similar detection rate while significantly increases 

applicability (no entry conditions has to be imposed).  

In addition to the simple threshold setting approach 

presented in this paper, continuing effort will be focused on 

evaluating the usage of more effective data classification 

methods such as SVM, Bayesian Classifiers, Fuzzy 

Classifiers or LVQ with proposed feature.  The eventual 

goal is to redesign computation procedures that minimizes 

false positives/negatives (robustness), enhances system 

performance (performance) in real-world settings with 

broad coverage (applicability).  We believe continual effort 

in this field will ensure future technical advancement in this 

fundamental yet critical aspect in emission reduction and 

control. 
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