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ABSTRACT

We propose a framework of self-aware machines based on
data collected using the MTConnect protocol. Beyond exist-
ing applications of OEE (Overall Equipment Effectiveness)
reporting, the proposed framework integrates multiple sources
of information for work-piece and machine condition moni-
toring, and equipment time to failure prediction in manufac-
turing processes, and provides feedback to shop supervisor.
Firstly, we propose a method to predict component wear and
failure based on operational data. ICP (Interactive Closest
Point) algorithm is used to find the best matching tool path
given a certain tool number to identify similar machining pro-
cesses. The result of ICP tool path matching, together with
other parameters such as spindle speed, feed rate and tool
number, are used to adaptively cluster the machining pro-
cesses. For each process cluster, a particle filter based prog-
nostic algorithm is used to predict tool wear and/or spindle
bearing failure. Secondly, we propose to use anomaly detec-
tion methods to detect changes in normal behavior of the ma-
chines. Various machine learning algorithms are utilized to
detect anomalies based on real-time data, and a voting mech-
anism is used to decide when to trigger an alarm. Thirdly,
the axes traverse is aggregated to provide a measure of the
wear on various axes in the machine, which is correlated to
errors in position comparing to the commanded positions and
nominal tool paths. Spindle load verse rotating speed is also
examined to facilitate shop floor scheduling to avoid damage
caused by unintentionally excessive machine usage. The pro-
posed framework has been demonstrated using published data
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from two Mazak machine tools.

1. INTRODUCTION

Sparked by IT megatrends, manufacturers are currently un-
dergoing an operational transformation with increased agility
and efficiency. Key technologies influencing this change in-
clude digital manufacturing, cloud computing, mobile appli-
cation, and big data. At the intersection of these technologies
there is an opportunity to create a self-aware machine plat-
form in manufacturing shop floor. With the advancement of
sensing technology and automation, more information can be
derived to facilitate better collaboration and decision making.

Some of the most critical factors, influencing the output of a
machining process, are related to tooling, operating parame-
ters, and the ability of a machine tool to maintain its accuracy
and repeatability. Changes due to wear or failure of criti-
cal machine tool components can lead to significant losses
in production and unexpected downtime. One of the current
barriers of condition monitoring systems is that the collected
sensor data are not well correlated with the in-process ma-
chining operating conditions, which compromises the predic-
tion accuracy. Another barrier is that the typical assumptions
underlying the prediction of time to failure algorithms (e.g.
exponential fault growth) are rarely applicable in real ma-
chining. In addition, existing systems operate independently,
and impose proprietary interfaces and machine communica-
tion protocols that can lead to excessive time consuming and
expensive installations.

The goal of the proposed framework is to develop a self-
aware system capable of integrating multiple sources of in-
formation for work-piece and machine condition monitoring,
and equipment time to failure prediction in manufacturing
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processes. Currently, the primary applications developed us-
ing MTConnect
(MTConnect, 2009) data are focused on the visualization and
reporting of OEE (Overall Equipment Effectiveness) and his-
tory of alarms. The proposed method goes beyond reporting
to provide insight for cell operators on accumulated damage
and use automatic clustering for process grouping with parti-
cle filter based prognostics using time series data to provide
early warning systems for tool wear. Rigid body registration
algorithms are used to automatically identify segments of tool
paths that can be used to predict or reinforce tool wear pre-
diction. Multiple anomaly detection algorithms with a voting
mechanism are used to detect process anomalies across ma-
chines. We believe that machine self-awareness will drive
the value chain from traditional fail-and-fix, preventive main-
tenance, condition based monitoring towards self-adaptive,
self-analyzing and coordinated assets (see Figure 1)

2. THE PROPOSED FRAMEWORK

The proposed framework uses MTConnect data alone to de-
rive information of health condition estimation and predic-
tion for machine components, process anomalies detection
across machines using machine learning methods, provide
shop floor planning recommendation using statistics.

2.1. Data Collection and Preprocessing

For demonstrating our framework, we use data provided at a
public URL for the MTConnect challenge. A query post (e.g.
http://66.42.196.109:5605/sample?count=2000)
is sent periodically to the MTConnect enabled machine IP ad-
dress. The query returns an XML (Extensible Markup Lan-
guage) formatted file which contains all the data published
from the machine. Since we query periodically, the data re-
turned by a query may contain some data that was also re-
turned as part of a previous query. To avoid data redundancy,
we check the sequence numbers returned from the query re-
sult to record data when it is updated. Using the tags ‘nextSe-
quence’, ‘firstSequence’, and ‘lastSequence’, we ensure that
‘nextSequence’ is greater than ‘lastSequence’ and ‘nextSe-
quence’ increases by the count number compared to its pre-
vious value (e.g. count number is set to 2000 in the query
example shown above). A snapshot of the data XML file is
shown in Figure 2.

A parser is written to obtain the time stamps and values of
the variables from the tags in the returned data file. The vari-
ables that we obtained include x-axis position, y-axis posi-
tion, z-axis position, spindle load, x-axis load, y-axis load, z-
axis load, feed rate, feed rate override, spindle speed, spindle
speed override, and tool number. The data is updated when
the value of a variable is changed. Hence, for a certain time
stamp, there may be no value for a variable because it is not
updated at the time stamp. If there is no value available, the

Figure 1. A vision of self-aware machine.

Figure 2. An example of MTConnect data file in XML for-
mat.

previous value is inserted at the time stamp since the value
hasn’t changed yet. After the parsing and insertion, a vec-
tor of a time stamp and the values of all the aforementioned
variables are obtained. This allows us to get a matrix of data
indexed by multiple time stamps.

2.2. Component Level Health Monitoring and Prediction

One of the characteristics of a self-aware machine is to be
able to detect its components degradation and predict future
failure. The components (e.g. spindle, cutting tool, and feed
axis) on a machine are often used under different machin-
ing processes in a manufacturing shop floor. A machining
process in our research is defined as a cutting tool with the
same tool number sharing similar tool paths with the same
non-zero spindle speed and feed rate (overridden value) asso-
ciated with a certain time period. For each process, the spin-
dle power data were recorded as wear indicators. An adaptive
clustering method is applied to cluster the different processes.
Prediction is made using a filtering method to predict com-
ponent failures with data from the specific process as well
as data from other processes using the same tool. The pre-
diction provides insight into every single process, which not
only guides the maintenance decision makers to take proac-
tive actions on the machine component to avoid unplanned
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Figure 3. Flowchart of component level health monitoring
and prediction.

Figure 4. The tool paths of similar machining processes.

downtime, but also assists the process planners to track the
production drawbacks to improve their process design. The
flowchart is shown in Figure 3.

• Machine and Process Identification
Different machines are using different IP addresses to
publish the data. The identification of the machine will
be determined by the IP address used in the query post
described in Section 2.1. For a specified cutting tool,
the tool path consists of multiple x, y, and z positions.
The spindle speed and feed rate change during machin-
ing. For the same part, x, y, and z positions determine
the shape of the tool path in 3-D space (shape space).
The spindle speed, feed rate and time form another 3-D
space (parameter space). For two machining processes,
if the same cutting tool is used for the entire machin-
ing process and the shape space and the parameter space
are both matching, we assume these two machining pro-
cesses are similar processes. The shape spaces of two
similar processes are shown in Figure 4. There are small
variations in the circled area. This could be happening
because the MTConnect protocol has a limitation in the
sampling rate. Other than that, the entire tool paths of
these two processes are very similar.
We use ICP (Interactive Closest Point) algorithm (Savoye,
2012) to determine how the shape space and parame-
ter space match. ICP is a commonly used algorithm to
align two free-form point clouds in 3-D space. It opti-
mizes the transformation matrices such as scaling, rota-
tion, and translation applied on the target shape to min-

imize the error with the source shape. It has been suc-
cessfully used in many fields such as manufacturing (3-D
surface inspection), and healthcare (medical image seg-
mentation). We use ICP algorithm to find the best match-
ing machining processes. Let us denote the original 3-
D space points cloud as source, the transformed points
cloud as tranform, and the targeted points cloud as
target. The operation matrix of rotation, scaling and
translation are T , b and c, respectively. After the oper-
ation we obtain

transform = b ∗ source ∗ T + c (1)

The ICP algorithm optimizes the operation matrix of T ,
b and c so that the difference (denoted as d) between
tranform and target is minimized. The difference shows
the extent to which source and target are different. The
smaller the difference, the better the match/overlap be-
tween source and target. The difference between the
shape spaces is denoted as ds, and the difference between
the parameter space is denoted as dp. The matching mea-
sure is denoted as da = [ds, dp].

• Process Clustering
Machines are usually programmed to perform different
jobs under various machining processes depending on
the tasks. To compare the condition of the machine, we
need to group the similar processes into a cluster with
in which the analysis is performed to derive the health
condition. The data stream may contain a brand new
process that has not been experienced before. An adap-
tive clustering method is used to automatically cluster
the machining processes into different clusters. If a new
machining process is detected (i.e. it does not belong to
any existing process clusters), a new process cluster is
assigned. If a machining process belongs to an existing
cluster, the process is assigned to that cluster and the cen-
troid of the cluster is updated. To determine whether a
process belongs to an existing cluster or not, a T2 limit is
applied on the matching measure da. Let the mean value
of the matching measure of an existing cluster be d̂a and
the covariance be s. The T2 statistics for the matching
measure of a process is calculated by

T2 = (da − d̂a) ∗ s−1 ∗ (da − d̂a)′ (2)

The T2 control limit is calculated by

T2limit =
(N − 1)(N + 1)p

N(N − p)
Fα(p,N − p) (3)

where Fα(p,N − p) is the 100α% confidence level of
F -distribution with p and N − p degrees of freedom. If
the T2 statistic is below the T2limit, the process belongs
to an existing process cluster; otherwise a new cluster is
created for the process.
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Figure 5. Degradation of cutting tool No. 63.

• Degradation Detection
After similar processes are grouped into clusters, we can
perform degradation detection within each cluster. We
assume that the spindle power increase is proportional to
the increased severity of tool wear for similar machin-
ing processes. The local trend of the power increase
may vary (e.g. there may be stochastic variations lo-
cally). However, the overall trend of the power should
be increasing over time. Hence, a monotonicity criterion
is used to detect the increasing trending of the spindle
power. Monotonicity is defined in (Coble & Hines, 2009)
as:

Monotonicity(F ) =
#d/dF > 0

n− 1
−#d/dF < 0

n− 1
(4)

where F is the measurement, n is the number of mea-
surement in a period of time. F represents a feature and
d/dF is the derivative. The maximum value ofMonotonicity
equals to 1 only if the feature is monotonically increas-
ing. The value of monotonicity indicates the increasing
trend of the spindle power, which indirectly indicates the
degradation of the cutting tool. Figure 5 shows the de-
tected trend of the cutting tool number 63.
This analysis will be performed within all the process
clusters. If multiple processes belong to a same cutting
tool and degradation trend has been detected with these
processes, it is more certain that the cutting tool is wear-
ing.

• Degradation Prediction
If a degradation trend is detected, we can extrapolate the
trend to infer the remaining cuts under the same process
given a preset threshold of the power. A particle fil-
ter (Chen, Zhang, Vachtsevanos, & Orchard, 2011) can
be adapted for the prediction due to its capabilities to
cope with system non-linearity and estimate prediction
uncertainty. The prediction is made using a continuous
Bayesian update method assuming the fault growth fol-
lowing a physics-based system degradation model (e.g.
the Paris’ Law), which is widely used as the fatigue crack
growth model. The system degradation was assumed to

be a first-order Markov process, i.e. the current state was
only dependent upon the last state. In this case, we ob-
served that the degradation trend was closely following a
second order polynomial model such as:

Xk = aktk + bkt
2
k + ck (5)

where Xk is the system state (tool wear in this case), tk
is the time at step k, and ak, bk, ck are the parameters of
the second order polynomial model. We can write Eq.(5)
into the format of a Markov model as follows:

Xk = aktk + bkt
2
k + ck

= ak(tk−1 + ∆t) + bk(tk−1 + ∆t)2 + ck

= aktk−1 + bkt
2
k−1 + ck

+ak∆t+ 2bktk−1∆t+ bk∆t2

= Xk−1 + (ak + 2bktk−1)∆t+ bk∆t2 (6)

The parameter identification and state estimation can be
performed in parallel. The prediction (median of the par-
ticles) of the remaining cuts for the degradation situation
shown in Figure 5 is 13 give 70% of spindle power as the
threshold. This information can alert the maintenance
team to change the cutting tool before it fails.

2.3. Process Anomaly Detection Across Machines

Anomaly detection (Barnett & Lewis, 1994), (Hodge & Austin,
2004) is an important concept for a self-aware system. An
anomaly is simply an exception or deviation from the typi-
cal usage (tools, power, speed etc.) and does not necessarily
imply a malfunction. For example, machining a new part or
using a new tool or working with a new type of material may
all be deviations from the previous usage of a machine. How-
ever, these are intended (and desired) deviations - on the other
hand, if the power usage is unusually high despite unchanged
job parameters then it may point to an underlying condition.
So a self-aware machine can indicate to the operator that it is
experiencing a significant deviation from its typical behavior
- the operator can decide whether the deviation is a cause for
concern. In fact, the operator can annotate the behavior for
future use. So if the anomaly is just a desired new behavior
then it can be labeled as such and the machine will know not
to flag it in the future. On the other hand, if it is an indica-
tion of an underlying condition then it can be labeled with the
diagnosis and the machine can flag it appropriately in the fu-
ture. In this section, we show how anomaly detection can be
performed on MTConnect data to identify deviations in us-
age. While not as informative as the approaches mentioned
in Section , anomaly detection can be very scalable as it need
not rely on models of failure.

As mentioned in Section 2.3, we analyze data from an MT-
Connect stream. Let us look at a snippet of this data shown
in Table 1. The first six columns provide a time stamp for the
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data while the remaining columns provide details about the
job (tool ID, feed rate, spindle speed, tool path, and spindle
power) - we use the job parameters for our analysis. In the lit-
erature, there are a number of popular approaches to anomaly
detection. Here, we consider three: 1) self organizing maps
(SOMs), 2) regression, and 3) Mahalanobis distance.

2.3.1. Self Organizing Maps (SOMs)

SOMs (Kohonen, 2001) are a natural way to organize an in-
coming stream of data into a grid of cells - a (typically Eu-
clidean) distance metric is used to assign new data instances
to cells containing similar data. As data accumulates, some
cells will become very dense and will represent the typical
behavior/usage of the machine. If a new data instance is as-
signed to sparsely populated cell then that would indicate a
deviation from the typical behavior/usage. If this behavior
is desirable or intended then the cell can be labeled as such.
Otherwise, it can indicate undesired behavior or malfunction.
For this data, a SOM is shown in Figure 6. While the data
is high-dimensional, for ease of visualization we have only
shown spindle speed (x-axis) and spindle power (y-axis). We
start with a 7x7 grid evenly distributed on the space spanned
by the expected range of the variables. Then we assign points
to the cells in an incremental manner based on the Euclidean
distance. After a data point has been assigned, the cells are
warped to have a greater resolution in areas of high density
(i.e. areas representing usual behavior) - please see (Rougier,
Boniface, & Universit, 2011) for more details. The gray lines
in Figure 6 represent the Voronoi partition (http://en.wikipedia
.org/wiki/Voronoi_diagram) of this grid where each
partition represents the extent of the corresponding node - a
data point within a partition is assigned to the node associ-
ated with it. Due to the warping, the structure of the data
clearly stands out. The lower left corner has small and dense
cells representing the typical usage of the machine. The space
of large spindle speeds and power is very sparse. There is a
clear anomaly in the top right corner corresponding to spindle
power of 87 units and spindle speed of 3127 rpm - in addi-
tion, there are many sparse cells corresponding to higher than
usual values of speed and power. If a new data point falls in a
sparse or hitherto unseen region, it can be flagged for review.
The operator can choose to investigate and annotate the cell
for future reference.

2.3.2. Multivariate Regression

Another way to look at this problem of self-awareness is from
the perspective of relationships between the variables. In a
control system such as a CNC machine, the high level re-
quirements (e.g. the tool path) are translated into low level
specifications (e.g. feed rate, spindle speed etc.) which are
then met using control inputs (e.g. spindle power). So it
may be quite normal for power usage to be high if the re-
quired speed is high. If we can learn the normal relationship

Figure 6. A Self-Organizing Map for MTConnect Data from
a Mazak Machine

Table 2. Processed MTConnect Data

tool ID dur-
ation

spindle
speed

feed
rate

dist-
ance

spindle
power

0 0.083 400 1.19 0.81 13
0 0.70 1131 26.84 194.82 7

. . . . . . . . . . . . . . . . . .

between the different variables then it should be possible to
raise a flag when the variables of a new data instance exhibit
a significantly different relationship. In this section, we show
how multivariate regression may be used to learn the relation-
ship between variables.

Before performing regression, we need to pre-process the data.
In Section 2.3, we mentioned that ICP path matching as a ap-
proach for analyzing the tool path - it ensures that the analysis
performed is invariant with respect to affine transformations
of the tool path. The primitive for our regression analysis is
not the entire tool path but rather the sampling interval of the
data collection process - executing the entire tool path may
take many minutes but the data being analyzed is sampled ev-
ery few seconds. So rather than analyzing the entire tool path,
we analyze the distance traveled by the tool during a sampling
instance. This is just a design choice - domain expertise can
be used to pick a different primitive. After pre-processing, we
get data of the following form:

Here tool ID is a categorical variable1 while the others are real
numbers - we try to learn a model to predict spindle power
based on the other variables. There are many modeling ap-

1There are 36 distinct tool IDs: 0, 10, 102, 104, 107, 108, 109, 111, 112,
115, 117, 118, 120, 17, 2, 20, 24, 25, 3, 32, 4, 44, 45, 5, 52, 58, 63, 65, 69,
70, 74, 77, 88, 90, 92, 98
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Table 1. MTConnect Data

year month day hour minute second tool ID feed
rate

spindle
speed

x y z spindle
power

2014 1 23 14 51 28 0 1.19 400 2.11 -32.46 -70 13
2014 1 23 14 51 33 0 1.19 400 0 -32.46 -69.14 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

proaches for regression but we are specifically interested in
two characteristics: 1) ability to provide a prediction inter-
val for new data points, and 2) ability to build accurate mod-
els without making assumptions about the nature of relation-
ship between the variables. The first requirement (prediction
interval estimation) is necessary for defining anomalies (de-
viations) in a structured manner but the second requirement
(assumption-free modeling) is just a convenience to enable
automation. There are many options but quantile regression
forests (Meinshausen, 2006) are ideally suited for this sce-
nario and that is what we used for this analysis. They provide
a reasonable fit to the data and give us the ability to estimate
prediction intervals based on user defined quantiles. Let Qα
be defined as

Qα(x) = inf {P (Y ≤ y|X = x) ≥ α} (7)

Then Qα represents the α−quantile for the conditional dis-
tribution of a variable Y conditioned on a vector variable
X. If Y is the variable being predicted (spindle power in
our example) then Qα defines its α−quantile conditioned on
the prediction variables X (tool ID, duration, spindle speed,
feed rate, and distance in our example). For this analysis,
we use [Q0.025,Q0.975] as the prediction interval and desig-
nate a new data instance as anomalous if the actual spindle
power lies outside the prediction interval. Compared to the
SOM approach, this approach has the advantage that we ex-
plicitly model the relationship between spindle power (depen-
dent variable) and the other variables (independent variables).
The notion of prediciton interval is also a big advantage as
it provides a systematic approach to detecting outliers. The
prediciton interval will be small if we have a high confidence
in our prediction so even small unexpected deviations outside
the prediction interval may be flagged. On the other hand,
it has the disadvantage that we can only flag anomalies in the
value of the independent variable conditioned on the indepen-
dent variables - we cannot flag anomalies in the independent
variables themselves (since they are considered inputs into
the model). Typically, excessive deviations in the control sig-
nal are good indicators of underlying conditions so this is not
a big drawback.

For this dataset, the quantile regression forest achieves rea-
sonable accuracy in predicting the spindle power (R2 = 0.74).
However, we are not interested in the actual predictions per
se but rather in large errors in those predictions (i.e. values
that lie outside [Q0.025, Q0.975]. The graph in Figure 7 shows

Figure 7. Outlier Detection using Quantile Regression Forest

such deviations. As in the case of SOMs, the instance where
the spindle power is 87 stands out as a clear outlier. Most
of the other outliers are cases where the actual value lies just
outside the prediction interval.

2.3.3. Robust Mahalanobis Distance

If the data are assumed to be samples from a multivariate nor-
mal distribution then Mahalanobis distance can be used to de-
tect outliers. In that case, outliers are data points that are sam-
ples from a different distribution rather than extreme values of
the multivariate normal distribution. This has the advantage
that we don’t need to choose a cutoff point for labeling a point
as outlier - we simply look for points that likely came from
a different distribution (see (Filzmoser, Garrett, & Reimann,
2005) for more details). Of course, the normality assump-
tion may not be satisfied in reality - in fact, it is not satisfied
for the data set being used here. In that case, we can still
use Mahalanobis distance to look for outliers without relying
on distributional assumptions. One approach is to transform
the data into the principal component space and look for the
outliers in the space spanned by the top few principal compo-
nents. Since principal components are aligned with directions
of maximal variance, that makes it easier to spot the outliers.
Also, by looking in the reduced space of the top principal
components, it increases the signal to noise ratio. Using ap-
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Figure 8. Mahalanobis Distance Based Outlier Detection

propriate normalization (see (Filzmoser, Maronna, & Werner,
2008) for more details), the Euclidean distance in the princi-
pal component space is equivalent to Mahalanobis distance
in the original space. In the absence of any distributional as-
sumptions, (Filzmoser et al., 2008) proposes a measure of
outlyingness of a data instance based on its Mahalanobis dis-
tance. We use that same measure in our analysis here.

The results are show in Figure 8 - the outliers are shown in
red2. The instance where spindle power is 87 is again identi-
fied as a clear outlier in addition to some others.

2.3.4. Ensemble of Outlier Detection Methods

In this section, we discussed three outlier detection approaches,
namely, self-organizing maps, multivariate regression, and
robust Mahalanobis distance. There are many other other
methods that could be applied. All these methods make dif-
ferent assumptions and have different strengths and weak-
nesses. We can combine them into an ensemble that can raise
flags based on some predetermined policy. For example, if
the cost of failure is very high then the ensemble may flag a
data instance as an outlier if any member of the ensemble de-
termines the data instance to be an outlier (this would be an
OR policy). Alternatively, if the cost of disruption of work-
flow outweighs the cost of failure then the ensemble may flag
a data instance as an outlier only if all members of the ensem-
ble agree (this would be an AND policy). In most scenarios, a
good policy might be for the ensemble to flag a data instance
as an outlier if a large fraction of the ensemble members agree
(this would be a MAJORITY policy).

2This multivariate analysis included duration, feed rate, spindle speed, dis-
tance, and spindle power but we only show the spindle speed and power in
the graph for ease of visualization.

2.4. Shop Floor Planning Recommendation

Another aspect of machine self-awareness is that the machines
are able to compare their usage and performance with each
other. The information can be fed back to the shop floor plan-
ning trying to avoid damage due to unintentionally excessive
usage by rescheduling the machining tasks.

The spindle data can be used to estimate spindle damage as
the bearing life is proportional to load3 ∗ rpm (revolutions
per minute). The aggregate axes traverse provides a measure
of the wear on various axes in the machine (an estimate of the
way damage). This can be correlated to error in position if
either commanded position is available via MTConnect pro-
tocol or nominal tool paths are available to switch the axis to
condition based maintenance. This recommendation provides
insights by shop defined rules ifor switching parts between
machines if any axis travels beyond a threshold greater than
twice that of a comparable machine in the same time frame.

Figure 9 contains an overview about a cell of machines. The
machines are identified by the individual MTConnect Stream.
We use the data from two machine provided by MTConnect
challenge (http://66.42.196.109:5605/current
and http://66.42.196.109:5606/current). The
figure has three distinct sets of information presented: rec-
ommendations for the cell based on data, histogram plot of
spindle rpm (revolution per minute) weighted by the load at
the specific rpm, and total traverse compared across different
feed axes on the machine. MTConnect provides insight into
usage of machines both absolute and relative to each other in a
cell when aggregated over time. The histogram of the spindle
loads weighted by the time spent at various spindle speeds
provide a relative estimate of remaining useful life (RUL)
of the spindle bearings. This information can be fed back
to the scheduling systems depending on the shop’s mainte-
nance policy. For example, if all machines will be taken down
around the same time for service, this can be used to balance
the spindle loads across machine. Similar analysis can be
employed to balance travel of various drive axes by shifting
parts appropriately. These include rotating the fixtures based
on current state and scheduled tool paths.

This helps shop supervisors balance usage across machines
at a deeper level than utilization to reduce excessive damage
accumulation on a single machine in a cell while reducing un-
expected downtime for individual machines. The recommen-
dation will enable manufacturing shops to move from sched-
uled maintenance to condition based maintenance based on
true damage accumulation.

3. CONCLUSION AND DISCUSSION

The framework we have developed is scalable with broad
applicability for milling, drilling, turning machines in vari-
ous configurations. It can be configured from cell level to
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Figure 9. Shop floor recommendation for spindle and axis
planning.

plant level with minimal effort and is applicable for small and
medium-sized or large enterprises. It also has broad based
applicability for various industries including fabricating in-
dustrial components, such as automotive engine, medical de-
vice, or aerospace parts. Only part of the MTConnect data
is considered in our research. More variables can be used to
obtain the machine health information from a broader view.
The sampling rate has certain limitations as mentioned in the
previous section. More information can be derived by com-
bining operational data with external sensor data (e.g. vibra-
tion, acoustics signal) to gain more insight about the machine
component health, e.g. (Liao & Pavel, 2012) and (Liao, Ed-
mondson, & Ludwig, 2012).

Machine self-awareness could shift the industry from a re-
liance on a preventative paradigm (checking performance and
replacing parts on a set schedule, regardless of whether there
is an immediate need for these activities), to a predictive paradigm
(schedule maintenance before failure actually happens). Self-
aware machines will positively impact production time, cost,
and quality of any manufacturing plant by reducing unplanned
downtimes, adapting for work-piece variability, and enabling
specification of fault-tolerant process plans.
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