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ABSTRACT

This work presents the development of a vibration-based con-
dition monitoring method for early detection and classifica-
tion of valve wear within industrial reciprocating compres-
sors through the combined use of time-frequency analysis
with image-based pattern recognition techniques. A common
valve related fault condition is valve seat wear that is caused
by repeated impact and accentuated by chatter. Seeded faults
consistent with valve seat wear are introduced on the crank-
side discharge valves of a Dresser-Rand ESH-1 industrial
compressor. A variety of operational data including vibra-
tion, cylinder pressure, and crank shaft position are collected
and processed using a time-frequency domain approach. The
resulting diagrams are processed as images with features ex-
tracted using 1st and 2nd order image statistics. A Bayesian
classification strategy is employed with accuracy rates greater
than 90% achieved using two and three-dimensional features
spaces.

1. INTRODUCTION

Modern reciprocating compressors are the culmination of
over 100 years of design and manufacturing experience and
are one of the most widely employed compressor technolo-
gies in today’s industry. They operate reliably at a wide range
of pressures, can compress a large variety of gas, and are
highly adaptable thanks to multi-stage capabilities. However,
reciprocating compressors suffer from relatively high main-
tenance costs — sometimes costing more than three times to
maintain than centrifugal compressors. The majority of recip-
rocating compressor downtime and maintenance costs can be
attributed to the compressor valves, which account for 36%
of shut downs and 50% of total repair costs (Schirmer, Fer-
nandes, & Caux, 2004). Continuous condition monitoring of
valves and related components can provide significant reduc-
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tion in overall maintenance costs and provide a basis for pre-
ventative maintenance programs.

The most common approach employed for condition mon-
itoring in reciprocating compressors is through the use of
the pressure-volume (P-V) curve. This is a well understood
method that utilizes the geometry and motion of the compres-
sor to determine theoretically the compressor’s performance.
When measurement of the P-V diagram deviates from the
predicted certain failure modes are likely. While this method
has proven successful it does require the use of real-time mea-
surement of in-cylinder pressure which adds expense and ad-
ditional maintenance. Another typical monitoring method is
through vibration analysis, which look for changes in a ma-
chines typical vibration signature due to a fault condition.
The vibration for reciprocating machines are characterized
by a series of periodic events such as combustion, piston
slap, valve opening and closing, etc, all which produce a
highly cyclic vibration signature (Randall, n.d.). This type
of vibration signal is described as cyclostationary, which is a
non-stationary signal whose statistical properties change pe-
riodically, or cyclically, with time. All cyclostationary sig-
nals exhibit some periodicity in their energy profile, giving
rise to key characteristics which are used to identify statis-
tically significant variation due to changes in operating con-
dition (Antoni, 2009). Due to the cyclostationary nature of
the measurement, time-frequency transforms are used which
retain time and frequency domain behavior of a given sig-
nal, revealing its non-stationary and periodic nature common
in reciprocating compressors. A portion of this research is
based on the concept of compressor’s cyclostationary motion
and time-frequency analysis.

A variety of research has been done investigating valve fault
detection in reciprocating compressors. Liang et. al. devel-
oped a procedure to detect valve faults using the smoothed-
pseudo Wigner-Ville Distribution which revealed character-
istic patterns due to impact response vibration (Liang, Gu,
Ball, & Henry, 1996). Elhaj et. al. investigated early de-
tection of valve leakage through the extraction of detection

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

features using Continuous Wavelet Transforms of both vi-
bration and acoustic measurements (Elhaj, Gu, Ball, Shi, &
Wright, 2001). They later combined the monitoring of instan-
taneous angular speed (IAS) and dynamic cylinder pressure
to develop a reliable means of detecting valve leakage (Elhaj,
Almrabet, Rgeai, & Ehtiwesh, 2010). Antoni et. al. has com-
pleted much work on the use of cyclo-stationary modeling for
the purposes of reciprocating machine condition monitoring.
In regards to valve faults, he developed a means for identi-
fying simple fault indicators through the use of the Wigner-
Ville Spectrum (Zouari et al., 2007)(Antoni, 2009). Lin et.
al. examined the use of time-frequency analysis for recipro-
cating compressor vibration signals with a neural network for
automated condition classification (Yih-Hwang, Liu, & Wu,
2006) and later applied this to valve fault classification us-
ing seeded faults (Yih-Hwang, Liu, & Wu, 2009). In 2013,
using the compressor in this work, Guerra et. al. devel-
oped a mechanical-thermodynamic model of the compressor
and investigated health monitoring of discharge valves us-
ing P-V diagrams, dynamic pressure measurements, and fre-
quency domain analysis (Guerra & Kolodziej, 2014). Later,
Holzenkamp et. al. included modeling and simulation of the
main journal bearing as well condition monitoring of com-
mon main bearing faults (Holzenkamp, Kolodziej, Boedo, &
Delmotte, 2016).

The current work advances previous health monitoring re-
search completed by Guerra et. al. by incorporating time-
frequency analysis of vibration measurements into the de-
tection of valve related faults. Using time-frequency anal-
ysis combined with image-based feature extraction an ef-
fective vibration-based method for early detection of valve
wear within industrial reciprocating compressors is devel-
oped. One of the more common valve related fault conditions
is valve seat wear and is investigated at various degrees of
severity on the crank-side discharge valves of Dresser-Rand
ESH-1 compressor (Fig. 1). Using a variety of operational
data including vibration, cylinder pressure, and crank shaft
position, a condition monitoring method is developed to de-
tect the severity of the particular fault. Nominal (healthy)
and fault condition (non-healthy) valves are seeded in the
compressor and operating data analyzed using the Short-time
Fourier Transform. The resulting time-frequency diagrams
are processed as images and fault detection features are ex-
tracted using texture statistics. A Bayes classifier is trained
to identify fault severity and verified through use of valida-
tion data. The effectiveness of each time-frequency method
to reveal fault signatures is evaluated based on classifier per-
formance.

2. TIME-FREQUENCY ANALYSIS

Traditional spectral analysis techniques, such the Fourier
transform, estimate the frequency content of a signal or func-
tion over its entire length. Such methods are ideal for an-

alyzing stationary, or non-time varying, signals. However,
when considering non-stationary signals, such as those pro-
duced by reciprocating machines, it is often valuable to know
how the frequency spectrum of a signal varies with respect
to time. Numerous time-frequency analysis techniques have
been developed to provide both time and frequency informa-
tion of a given signal such as the Short-Time Fourier Trans-
form (STFT), the Wigner-Ville Distribution and Continuous
Wavelet Transform. For this exploratory research the STFT
is employed because of its computation ease and its well es-
tablished acceptance. The following section provides a brief
overview of the STFT.

An STFT is performed by dividing a signal into short time
segments and applying the Fourier transform to each segment.
The resulting spectrum segments are combined to show how
the spectrum of the signal varied with each time step. The
STFT is given in discrete form by,

STFT (τ, fi) =

∞∑
k=−∞

x(k)w(k − τ)e(
−j2πkfi

N ) (1)

where w(k − τ) is a short time window and STFT (τ, fi) is
a complex-valued function representing the frequency spec-
trum and is a function of both frequency and time. The cho-
sen size of w(k−τ) effects the time and frequency resolution
due to the uncertainty principle. The window shape provides

Figure 1. Dresser-Rand ESH-1 Compressor at RIT Compres-
sor Test Cell
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Figure 2. Short-time Fourier transform of non-stationary sig-
nal

a “smoothing” effect to the STFT while window overlapping
is an option for signals with fast time-varying frequency con-
tent to reduce the loss of information at window edges. In
general, the magnitude scale (linear vs log), window size,
window shape, and overlap chosen will all effect the visual
properties of the STFT and can be selected based on the given
application or signal.

The STFT of an example signal is provided in Fig. (2). It is
referred to in this work, generically, as a time-frequency dia-
gram (TFD) and provides a visual representation of the time-
frequency behavior of a signal. While there are other time-
frequency analysis tools available the STFT is utilized in this
work for its ease of implementation and proven success. The
simulated example in the figure resembles the valve impact
measured by the accelerometer during valve opening events.
(Note: if a FFT was determined from the data the left plot in
the figure results and tells nothing of the temporal component
to the frequency spectrum)

3. COMPRESSOR TEST CELL AT RIT

The experimental test cell used in for this work is a
Dresser-Rand ESH-1 reciprocating compressor located at
the Rochester Institute of Technology’s (RIT) Compressor
Test Cell shown in Fig. 1. The single stage, dual acting
compressor was donated by the Dresser-Rand and installed at
RIT in 2010. One of their smallest industrial compressor, the

Table 1. Dresser-Rand ESH-1 specifications

Model: ESH-1 Max. Temp (◦F): 320
Stages: single Flow Capacity (ACFM): 34
Piston Diameter: 6” Compressor (BHP): 7
Stroke: 5” Weight (lbs): ∼8,000
Max. Pressure (psia): 50 Speed (RPM): 360

ESH-1 is driven by a 10hp electric motor and is commonly
used in the petrochemical industry. Select specifications of
the ESH-1 are shown in Table 1.

The ESH-1 is an intermittent flow, positive displacement air
compressor with a single piston which pressurizes cylinders
on both sides of the piston head, denoted as crank-side cylin-
der and head-side cylinder. The compressor can be operated
under full load (both cylinders being compressed), half-load
(only one cylinder compressed), or no load. Each cylinder has
a set of inlet suction valves which allow air to be drawn in at
atmospheric pressure, and a set of discharge valves which al-
low compressed air to be discharged into a discharge tank.
The valve assembly, shown in Fig. 3, includes 16 individual
valves, each with a poppet valve and spring to keep valves
closed until a pressure imbalance is achieved.

The ESH-1 compressor test cell is outfitted with a com-
prehensive data acquisition system to capture measurements
during compressor operation. The specific sensors utilized
for this work are an accelerometer (Triaxial PCB 356A16)
mounted on the crank-side discharge valve manifold (Fig. 4),
an angular encoder (Photocraft HS20.5QZ) mounted on the
main crank shaft, and two in-cylinder pressure transducers
(Omega PX309-100AI) to measure both cylinder pressures.
Sensor measurements are collected at 20 kHz by a National
Instruments CompactDAQ system with 9213, 9234, 9401,
and 9203 DAQ modules with an interface developed in Lab-
View to view sensor readings and export data for post pro-
cessing.

4. FAULT SEEDING & METHODOLOGY

While compressor valves experience several different fault
conditions, the one chosen for this study is valve seat wear
because of its likelihood of occurrence from field data. The
valve seat as identified in Fig. 3 can experience a gradual loss
of thickness due to poppet impact and torsional rubbing from
the helical spring. This slowly increases the distance which

Figure 3. Poppet Valve Assembly
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the valve poppet travels during opening and closing, increas-
ing gas flow and valve impact force. To avoid introducing per-
manent valve seat damage by purposefully removing seat ma-
terial, the effect was recreated by removing a precise amount
of material from the bottom of the valve poppet. The degree
of valve seat wear is delineated as 0” removed (nominal) from
poppet, 1/32” removed, and 1/16” removed. These poppet con-
ditions are illustrated in Fig. 5.

Table 2. Valve seat wear cases

Fault Case Group 1 Group 2 Group 3 Group 4

Case 1 0” 0” 0” 0”
Case 2 0” 1/32” 1/32” 0”
Case 3 1/32” 1/32” 1/32” 1/32”
Case 4 1/32” 1/16” 1/16” 1/32”
Case 5 1/16” 1/16” 1/16” 1/16”

It is assumed that the sixteen valves in the valve assembly
(shown in Fig. 3) degrade gradually and non-uniformly, gen-
erating mixed degrees of conditions within the assembly. To
accomplish this, the valves are divided into four valve groups
as shown in Fig. 5 - [top] with valves in each group seeded
with the same fatigue severity. Five valve seat wear cases
are seeded by assigning all poppets in a valve group to one
of the three states of wear. The cases investigated are shown
in Table 2. Each fault condition investigated is introduced to
only the crank-side discharge valves while the head-side dis-
charge valves and all suction valves remained in their origi-
nal, healthy state as provided by the manufacture. To main-
tain consistency during data collection, the compressor is op-
erated at full load with constant discharge tank pressure.

Compressor vibration is measured while operating with
healthy valves and with increasing degrees of degradation
through deliberate fault seeding. For each fault case inves-

Figure 4. Crank-side discharge valve manifold and triaxial
accelerometer (PCB 356A16)

.

Figure 5. [top] - Valve Groupings, [bottom] - Nominal, De-
graded 1 (-1/32”), Degraded 2 (-1/16”)

tigated, raw vibration data is decomposed into individual ma-
chine cycles using the crank shaft position measurement. A
time-frequency analysis is then performed, resulting in multi-
ple TFD’s for each case. A region-of-interest, representing a
zoomed region of the entire time-frequency spectrum, is iden-
tified on the TFD’s which exhibited observable energy change
between fatigue cases during the time of discharge valve ac-
tivity. The region-of-interest is isolated and processed as an
image by extracted property features from the gray-scale. A
feature vector of image statistics is created for each isolated
region-of-interest and represents a single observation. All ob-
servations for a particular fault case are separated into a clas-
sifier training set and a validation set. The training set is used
to train a linear and quadratic classifier. The validation feature
set is then used to assess the performance of the classifiers to
correctly identify the actual fault case. An overview of the
proposed detection and classification methodology is shown
in Fig. 6.

4.1. Signal Processing

Post data-collection signal processing involves decomposing
the raw vibration signals into individual machine cycles and
performing time-frequency analysis. Figure 7 shows a one
second sample of raw vibration data collected during com-
pressor operation. Also shown is the crank and head-side
cylinder pressures during that time frame.

As expected, the highest intensity vibrations occurs during
the opening and closing of the crank and head-side discharge
valves as each cylinder reaches discharge pressure. Less in-
tense vibration, in between discharge valve activity, is related
to the opening and closing of the inlet suction valves. In
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Figure 6. Methodology overview

preparation for time-frequency analysis, each data set col-
lected is decomposed into individual machine cycles using
crank shaft position measurement to establish the beginning
and end of a crank cycle. An STFT is generated for each cycle
and then averaged over ten cycles to generate a single TFD,
or observation. A five cycle overlap is used to increase the
number of observations per data set and promote TFD consis-
tency. The result is multiple TFD’s per data set representing
experimental observations from the particular fault case.

Figure 7. Raw vibration signal (top) and cylinder pressure
(bottom) 100% load

Figure 8. Cyclic decomposition of vibration and pressure sig-
nals for each fault condition and case

4.1.1. Cyclic Decomposition and Conversion to Angular
Domain

The numbers of data samples per cycle, Ncycle, is determined
via the crank shaft position as provided by the rotary encoder
sensor. The operating rpm of the ESH-1 is essentially con-
stant with negligible variation. Under these conditions the
crank shaft position is a linear function of time and therefore
sample rate. Thus the degrees per sample is Θsample

360◦

Ncycle
.

The number of samples per cycle varied slightly between
data sets but was found on average to be 4012 samples/cycle
with an average Θsample of 0.0897 degs/sample. Based the
Θsample calculated for each data set, vibration and pressure
data is converted to the angular domain and separated into
sets of 360◦ cycles. The total number of cycles extracted for
each fault case varied based on the amount of data available.
Figure 8 shows the raw vibration and cylinder pressures for a
single machine cycle.

Its apparent from Fig. 8 that each fault case has a relatively
unique vibration pattern. Analysis is focused on vibrations
during operation of the crank-side discharge valves, therefore
a shaft position of 0◦ is set to correspond with a piston posi-
tion of top-dead center. This positions the opening of crank-
side discharge valves near mid cycle or bottom dead center
between shaft positions of 120◦ and 220◦.

4.1.2. Time-Frequency Analysis

As seen in Fig. 8, the vibration signal for a complete machine
cycle is non-stationary and appears to be a function of shaft
position. Time-frequency diagrams created via the short-time
Fourier Transform are used to investigate the frequency con-
tent as a function of shaft position. Using Eqn (1), the STFT
representing the raw vibration signal is found for each decom-
posed cycle using a 50 sample window length, 75% window
overlap, and a half sine window shape. To reduce noise and
better reveal stationary periodic behavior, the STFT is aver-
aged over 10 machine cycles as shown in Eqn. (2)

STFTavg(τ, k) =
1

M

M∑
n=1

STFTn(τ, k) (2)
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where M = 10 and τ is now a shaft-position window seg-
ment in the angular domain and not the time domain. A sin-
gle cyclic averaged STFT for each case calculated with one
condition (Case 5) shown in Fig. 9.

The time-frequency diagrams show distinct frequency activ-
ity occurring from 120◦ to 220◦ and from 320◦ to 20◦. These
shaft positions coincide with discharge valve activity from the
crank-side and head-side respectively. The STFT parameters
(window size, shape, overlap, etc) used provide reasonable
angular resolution but with some frequency smearing.

4.1.3. Identifying Region-of-Interest

The STFT shows a wide range of frequency content in the raw
vibration signal during the time of valve operation. However,
it is determined to target frequency regions within each fa-
tigue case which showed cross-case variation with inner-case
consistency. Through careful observation of the TFD in areas
within the discharge valve operation window and through an
ad hoc modal analysis when the compressor is off, a region-
of-interest (ROI) is identified. The nature of the poppet im-
pact with the valve seat is a form of impulse input and as such
one would expect compressor structural natural frequencies
to be present in the measurement.

The frequency range selected is 3 kHz to 4.2 kHz between a
shaft position of 120◦ to 220◦ as shown in the boxed region
in Fig. 9. This region shows noticeable shape and intensity
variation between fault condition cases predominately in the
3.8 kHz area. This frequency is shown for Case 5 in Fig. 9
and likely represents a natural frequency of the compressor
excited by valve dynamics. This ROI is then extracted from
every STFT observation from all cases reducing the image
size drastically while still focusing on the key valve opening

Figure 9. Case 5: all 1/16”wear : A singular STFT observation
(M = 10, 50 sample window length, 75% overlap, half-sine
window, linear scale). Region of Interest (ROI) [box]

event. These ROI’s are then used to determine a feature vector
for each observation.

4.2. Feature Extraction

Feature extraction is a data reduction technique in which a
sub-set of properties, or features, are used to represent a larger
data object, such as an image. These features are compiled
into a feature vector, x̄, which contains k calculated features
xi, where i = 1, 2, ..., k for a given observation as shown in
Eqn. (3).

x̄ = [x1, x2, x3, . . . , xk]T (3)

Feature extraction is generally the first step in pattern recog-
nition problems which seek to identify, or classify, objects us-
ing features which best describe the original object, or class
of object. In this work, the ROI from each TFD is isolated
and image-based statistical features are extracted by process-
ing each ROI as an image. The features chosen to characterize
each image include texture properties that quantify intensity
gradients when the image is converted into a gray-scale repre-
sentation. A feature vector is extracted for every observation
and organized by TFD and fatigue case. The isolated ROI
from a sample TFD and fatigue case observation is shown in
Fig. 10 (see the bottom image for the 1/16′′ wear case).

The texture of an image can be described as smooth, rough,
bumpy, etc. Analysis of the spatial relationships and inten-
sity gradients allow for quantification of such textural de-
scriptions. The texture features extracted are divided into two
groups, 1st order statistics and 2nd order statistics. The gray-
scale representation of the ROI has a range in intensity from
0 (representing black) to 1 (representing white) at discrete
levels. Each TFD is treated as an M × N image with each
element value representing a pixel intensity value I(m,n).
To reduce the value range of I(m,n) and localize intensity
gradients around areas which showed the greatest distinction
among fault cases (and attenuate higher magnitudes which
may have skewed the analysis), intensity values are mapped
to a new min and max according to Eqn. (4).

I(m,n) =

 Imin, if I(m,n) ≤ Imin
I(m,n), if Imin < I(m,n) < Imax
Imax, if I(m,n) ≥ Imax

(4)

The amplitude spectrum within the ROI vary from approxi-
mately -10 to 40. Various values of Imax and Imin are tested
and evaluated based on visual distinction of the region and
how well object boundaries are identified. Mapping values of
8 and -8 were chosen which appeared to maximize gradients
and object delineation within the region of 3.8 kHz. These
values are maintained for every ROI to ensure visual consis-
tency between cases and faults. I(m,n) is then normalized to
have a value range of 0 to 1, and binned into Ngray discrete
intensity values to facilitate texture feature calculations. Ex-
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Figure 10. Valve Seat Wear ROI images extracted from a
sample TFD for each case: STFT (left), Grey-scale (right)

amples of ROI gray-scale representations using Ngray = 256
is seen in Fig. 10.

Next, 1st and 2nd order statistics are calculated and result in
13 metrics representing each observation. First order statis-
tics provide information about the overall gray level distribu-
tion of the image as a whole (Theodoridis & Koutroumbas,
2008). These include the following five metrics: mean, stan-
dard deviation , skewness, and kurtosis which are the average,
dispersion, asymmetry, and peakedness about mean intensity,
respectively; and entropy which is the measure of histogram
uniformity. Table 3 outlines the image statistic along with the
corresponding equation.

Second order statistics provide additional information about
the relative location of gray levels. To extract these features,
a gray-level co-occurrence matrix (GLCM) is created from
the gray-scale intensity image (also described as a Gray-tone
Spatial-Dependence Matrix by Haralick (Robert M. Haralick,
1973)). The GLCM contains information which characterizes
the texture of an image and the features extracted help de-

scribe the spatial relationship, transitional intensity, and gen-
eral complexity of gray levels within the image.

The GLCM describes how often a pixel of gray value i is
neighbored by a pixel of gray level j within a specified direc-
tion (in degs) and distance (in number of pixels), collectively
described as the offset. When analyzing a gray-scale image
with Ngray discrete intensity levels, the resulting GLCM is
a Ngray × Ngray square matrix with element values p(i, j)
equaling the number of occurrences for a particular pixel in-
tensity pair (i, j) at the specified offset. The matrix p(i, j) is
thus given by

p(i, j)δm,δn =

=

M∑
m=1

N∑
n=1

 1, if I(m,n) = i
and I(m+ δm, n+ δn) = j

0, otherwise
(5)

where i and j are image intensity values, m and n are pixel
position coordinates in the image I(m,n), and (δm, δn) rep-
resent the offset based on the selected direction and distance.
The resulting matrix can also be viewed as a second order
histogram in which gray levels are considered in pairs with
a specified spatial relationship, unlike a first order histogram
where only single gray levels are considered.

The second order statistics shown in Table 3 are calculated
for the resulting GLCM matrices. From each statistic, the
mean and range value across all GLCM matrices are used as
features, resulting in eight total features per ROI.

4.3. Feature Selection

All ROI observations, represented by feature vectors, are di-
vided into five groups by fatigue level. There are 13 total
features extracted from each observation and the total num-
ber of observations for each case are: 244 - Case #1, 271 -
Case #2, 135 - Case #3, 135 - Case #4, and 271 - Case #5.
The irregular number of observations is due to the amount of
data collected resulting in varying number of compressor cy-
cles. Recall, that each observation is the result of the average
STFT of 10 cycles so this still is a relatively large sample size.

All feature vectors are combined into a 13 × Ni case array,
where Ni is the number of observations within that fatigue
case and each row is one of 13 features. From the total ob-
servations in each case, 75% are randomly selected for clas-
sifier training and the remaining 25% used for validation of
the classification model.

There are many well documented methods of feature selec-
tion. Some utilize the ability for a given feature to discrimi-
nate between classes as in a standard t− test, others require
the classifier to be part of the selection. For this exploratory
work an exhaustive search method is applied. The dimen-
sion of the classifier is chosen to be three or less to allow
for visualization. Then every feature variable permutation,
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Table 3. 1st and 2nd order statistics for texture-based feature extraction

Statistic Description Equation

Mean (1stmoment) average intensity of image µ = E
[
Im,n

]
= ( 1

N
)( 1
M

)
∑
m,n I(m,n)

Standard Deviation dispersion from the mean intensity σ =
√
E
[
(I(m,n)− µ

]2
Skewness (3rdmoment) asymmetry about mean intensity s =

E
[
(I(m,n)−µ

]3
σ3

Kurtosis (4thmoment) degree of peakedness about mean intensity k =
E
[
(I(m,n)−µ

]4
σ4

Entropy measure of histogram uniformity e = −
∑Ng
k=0 P (Ik) log2 P (Ik)

where P (Ik) =(# of pixels at intensity level Ik) / (total number of pixels in the image).

Contrast measure of local gray
level variation(A. Gebejes, 2013)

∑Ng
i,j |i− j|

2p(i, j)

Correlation measure of local gray
level linear dependence(Robert M. Haralick,
1973)

∑Ng
i,j

(i−ui)(j−uj)p(i,j)
σiσj

Energy
(angular 2nd moment)

measure of uniformity
∑Ng
i,j p(i, j)

2

Homogeneity
(inverse difference mo-
ment)

measure of closeness of element
distribution to diagonal(A. Gebejes, 2013)

∑Ng
i,j

p(i,j)
1+|i−j|

up to third dimension, is attempted on the training data and
the validation successful classification rate calculated. The
group with the highest success represented the set of features
with greatest class distinction. While this is more of a “brute
force” method it does ensure the optimum classifier is chosen
for the desired dimension and given training data at the ex-
pense of minor computational effort. Other feature extraction
approaches are suggested for future work.

4.4. Classification

The general classification method used for this work is a su-
pervised classifier based on Bayes Decision Theory which re-
quires a set of “training” data with known class membership
to infer the most probable class of unknown observations.
It is assumed that the training data is normally distributed
within each class to simplify the classification model. The
classes to which observations are assigned include one of the
five fatigue cases. Two types of Bayes classifiers are investi-
gated, a linear discriminant classifier (LDC) and a quadratic
discriminant classifier (QDC). Performance of the classifiers
are evaluated by comparing the predicted classes of both the
training set and a validation set to their known classes. The
overall classification accuracy is used to assess how well the
proposed methodology and associated time-frequency tech-
nique produced unique fault signatures of the valve seat wear
cases tested.

5. RESULTS

Applying the described methodology, the valve seat wear
fault condition is seeded in the ESH-1 compressor under
five possible cases, representing various degrees of severity,
and vibration data is collected. Raw vibration data is pro-

cessed through a transformation from the time to angular po-
sition domain. Time-frequency diagrams are determined and
image-based features extracted. The resulting features are ex-
haustively search by training linear and quadratic discrimi-
nant classifiers. Each classifier is evaluated on its ability to
correctly classify a validation data set with feature space di-
mensions not exceeding three. Detailed results for four sce-
narios are given as follows with the features resulting in the
highest classification of the validation data using a quadratic
classifier depicted.

Figure 11 shows the classification results from a two-
dimensional classifier (linear and quadratic) trained with
three levels of uniform valve seat wear (0′′, 1/16′′, 1/32′′).
These cases do not consider blended faults but with only two
features (mean & standard deviation) yields a 99.4% correct
classification. Next, is the full blended fault case with only
two dimensions, with Fig. 12 showing the result of 91.4%
correct classification.

To improve on these results a third dimension is added that
still allows for visual representation. The uniform wear con-
dition is repeated in Fig.13 and results in 100% correct clas-
sification this time using mean, skewness, and homogeneity
features. Lastly, the blended wear case is applied with three
features and shown in Fig.14. By adding a third feature the
classification success rises to 98.4%.

Given the seeded fault nature of the work the result is excel-
lent. It is noteworthy that the chosen features depicted are
ones with the highest classification rate. All four cases show
multiple feature permutations met with success greater than
90%. It is expected that future field trials of the proposed
methodology may result in fewer candidate features.
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Classified
all 0” all 1/32” all 1/16” Totals

A
ct

ua
l all 0” 53 (52) 0 (0) 0 (1) 53

all 1/32” 0 (0) 34 (34) 0 (0) 34
all 1/16” 0 (0) 1 (1) 67 (67) 68
Totals 53 (52) 34 (34) 67 (68) 155

Figure 11. Classification Performance & Confusion Matrix
for (3-class, 2-features): Validation (circles) - QDC: 99.4%,
LDC: 98.7%, Training (dots) - QDC: 97.2%, LDC: 96.7%

Classified
all 0” 0 / 1/32” all 1/32” 0 / 1/16” all 1/16” Totals

A
ct

ua
l

all 0” 51 (48) 0 (0) 0 (0) 0 (0) 2 (5) 53
0” / 1/32” 0 (0) 64 (62) 0 (0) 4 (6) 0 (0) 68
all 1/32” 0 (0) 0 (0) 31 (30) 2 (2) 1 (2) 34
0” / 1/16” 0 (0) 2 (1) 7 (6) 25 (27) 0 (0) 34
all 1/16” 1 (1) 0 (0) 3 (2) 0 (0) 64 (65) 68
Totals 52 (49) 66 (63) 41 (38) 31 (35) 66 (72) 257

Figure 12. Classification Performance & Confusion Matrix
for (5-class, 2-features): Validation (circles) - QDC: 91.4%,
LDC: 90.3%, Training (dots) - QDC: 94.2%, LDC: 94.0%

6. CONCLUSION

The aim of this work is to develop a vibration-based condi-
tion monitoring method for early detection of valve seat wear

Classified
all 0” all 1/32” all 1/16” Totals

A
ct

ua
l all 0” 53 (52) 0 (0) 0 (1) 53

all 1/32” 0 (0) 34 (34) 0 (0) 34
all 1/16” 0 (0) 0 (2) 68 (66) 68
Totals 53 (52) 34 (36) 68 (67) 155

Figure 13. Classification Performance & Confusion Matrix
for (3-class, 3-features): Validation (circles) - QDC: 100%,
LDC: 98.1%, Training (dots) - QDC: 99.3%, LDC: 98.9%

Classified
all 0” 0 / 1/32” all 1/32” 0 / 1/16” all 1/16” Totals

A
ct

ua
l

all 0” 53 (53) 0 (0) 0 (0) 0 (0) 0 (0) 53
0” / 1/32” 0 (0) 67 (67) 0 (0) 1 (1) 0 (0) 68
all 1/32” 0 (0) 0 (0) 33 (33) 1 (1) 0 (0) 34
0” / 1/16” 0 (0) 0 (1) 1 (1) 33 (32) 0 (0) 34
all 1/16” 0 (0) 0 (0) 1 (2) 0 (0) 67 (66) 68
Totals 53 (53) 67 (68) 35 (36) 35 (34) 67 (66) 257

Figure 14. Classification Performance & Confusion Matrix
for (5-class, 3-features): Validation (circles) - QDC: 98.4%,
LDC: 97.7%, Training (dots) - QDC: 97.0%, LDC: 96.3%

in reciprocating compressors. Vibration data was processed
using time-frequency analysis and image pattern recognition
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techniques are used to extract fault identifying features. Re-
sults indicate the short-time Fourier transform provides an ex-
cellent ability to capture fault signatures which are success-
fully quantified using image-based statistical features. The
method produces features which results in greater than 90%
classification rates in just two and three-dimensional feature
spaces. The performance achieved is particularly encour-
aging when considering the mixed fatigue gradients inves-
tigated. The process developed produced promising results
with room for optimization and investigation to assess limita-
tions and expand capabilities.

Future work is planned by considering other common valve
failure modes like poppet spring fatigue. In addition blended
fault conditions need to be addressed since it is unlikely that
the wear conditions are uniform across the valve. Finally,
preliminary work has already begun to utilize more features
either through intelligent selection or by feature extraction
(PCA).
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