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ABSTRACT

Failure prognostics can provide benefits in operation and
maintenance of equipments by predicting when the compo-
nent is going to fail and consequently acting at the most ap-
propriate time. In several situations degradation estimations
are sparse or missing estimations are present at collected data.
Considering these situations, a failure prognostics method
was proposed considering the usage of the extended version
of the Kalman filter. This method was analyzed with hy-
draulic system reservoir levels indication collected from four
different aircrafts. In this study a prognostic model was esti-
mated by the filter and then future values of hydraulic level
as well as the remaining useful life interval were obtained
considering a set of Monte Carlo simulations and a failure
probability distribution approximation. Results evidenced the
benefit of this method to properly prognose the system.

1. INTRODUCTION

The Kalman filter was initially proposed in (Kalman, 1960)
and is a recursive filter using noisy and even incomplete mea-
surements to estimate the states of a linear system in the time
domain. Inputs of the algorithm are the system information
and optionally some knowledge from the controls on the plant
if it is known. The existence of two independent noises is
considered, one perturbs the information from system (mea-
surement noise) and the other is mixed with linear operator
(process noise).

Several applications of the Kalman filter and its derivations
in prognostics and health monitoring (PHM) relates to fault
prognosis and remaining useful life (RUL) estimation. An
example is included in (Gomes, Leao, Vianna, Galvão, &
Yoneyama, 2012) where a linear Kalman filter is used with
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historical degradation estimations to estimate the rate prob-
ability distribution of the degradation increase. Next, Monte
Carlo (MC) simulations are performed to build the RUL prob-
ability distributions. Another application example is included
in (Leao, 2011) where an alternative of the MC is proposed
using the Unscented transform. Benefits from the usage of
these types of techniques compared to other traditional meth-
ods such as linear or polynomial regression include a bet-
ter consideration of transitory wear dynamics (Lim & Mba,
2015) and spurious data. Also, the implementation of these
techniques requires some parameters definitions such as the
estimation noise which influences the performance of results.
Recommendations of these parameters can be found in (Leao,
2011) and (Vianna, Souza Ribeiro, & Yoneyama, 2015).

Alternative solutions found in literature include the usage of
Particle filter techniques for non linear prognostic problems.
Examples include (Daigle & Goebel, 2013) and (Orchard &
Vachtsevanos, 2009). Its main advantage is to make possible
the approximation of the entire probability distribution, but
as its requires Monte Carlo methods, an increased number
of simulations are required and consequently more computa-
tional capacity is required.

For several applications, such as airlines, degradation estima-
tion intervals are not fixed and missing data may be present
at the collected data for prognostics implementation. In such
situations, the usage of the Kalman filter, as in (Gomes et al.,
2012), becomes more difficult since its recursive approach
considers only fixed intervals. This work proposes a method
to solve this problem by means of the extended version of the
Kalman filter (EKF) introduced in (Jazwinski, 1970). The
EKF is probably the most popular Bayesian estimation for
nonlinear systems. It is based on the linearization of the
model equations to allow the application of the LKF to non-
linear systems. The main purpose of using this method is to
demonstrate how the least computational expensive non lin-
ear bayesian estimation method can solve the RUL estimation
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problem of not fixed time intervals robustly and efficiently
considering an illustrative example of aircraft hydraulic reser-
voir levels.

The remaining sections are organized as follows: section 2
describes the proposed methodology; section 3 presents a
case study considering some aircraft hydraulic level opera-
tional data and section 4 contains the conclusion.

2. FAILURE PROGNOSTICS METHODOLOGY

The implementation of the Kalman filter for failure prognos-
tics considering fixed time intervals and no missing data can
be found in (Gomes et al., 2012). In this application, a linear
prognostic model is considered and is described in Eq. (1)
and Eq. (2).

xweark =

[
1 1
0 1

]
xweark−1 + wweark−1 (1)

zweark =
[
1 0

]
xweark + vweark (2)

In which xweark represents the dynamic of the degradation at
interval k. xweark(1) is the actual value of the degradation
and xweark(2) is its rate of decrease (or increase) per time
interval. Observes that this model represents a linear trend
and if one wish to build a higher order model, one or more
states should be included. The parameter wweark−1 repre-
sents the process vector noise and vweark the measurement
vector noise. The parameter zweark represents the current
degradation estimation.

For the implementation of the LKF at each operation step,
first it is necessary to define the covariance matrices of pro-
cess noise Qweark and measurement noise Rweark. Eq. (3)
and Eq. (4) show a proposal for their definitions.

Qweark =

[
0 0
0 qwear

]
(3)

Rweark = [rwear] (4)

The parameter qwear must be defined during the filter imple-
mentation. Higher its value, higher will be the estimation
variance of degradation rate and faster will be the response
for degradation rate changes identification. An example of
how this parameter influences estimations will be illustrated
in section 3. Similarly, the parameter rwear must also be de-
fined during the filter implementation and is related to the
degradation estimation variance. Examples of how this pa-
rameter definition influences the results are also included in
section 3.

Once the prognostic model is found, it can be used for future
estimations of the degradation and consequently the remain-
ing useful life (RUL) estimation. In this work a set of Monte
Carlo (MC) simulations are executed considering the prog-

nostic model estimation parameters as well as its covariance
matrix also found during the filter implementation. Time to
failure samples are then found considering a certain degrada-
tion threshold and finally, RUL distribution fit into a certain
probability distribution model (i.e. Weibull).

Considering the situations were degradation estimations in-
tervals are not fixed, or missing data are present at collected
data, the current method can no longer be applied. To solve
this problem a nonlinear model is proposed with the inclusion
of the time interval between last degradation collected and the
current one as a model input. Eq. (5) and Eq. (6) describe
this model.

xweark = fk(xweark−1,∆tk, wweark−1) =
xweark−1(1) + xweark−1(2)∆tk + wweark−1

(5)

zweark = gk(xweark, vweark) = xweark(1) + vweark (6)

In which ∆tk is the degradation estimation interval here rep-
resented as model input. Notice that this model is not linear
and the LKF can no longer be used. To solve that, the ex-
tended Kalman filter is invoked. The model linearization is
based on the partial derivatives matrix (Jacobian) described
in Eq. (7).

∂f(xk−1, uk−1)

∂xk−1

∣∣∣∣
xk−1=x̂−

k−1

=

[
1 ∆tk
0 1

]
(7)

In which x̂−
k−1 is the a priori (predicted) state estimate at In-

stant k−1. The resulting linearized model is described in Eq.
(8) and Eq. (9).

xweark =

[
1 0
0 1

]
xweark−1 +

[
x̂−
weark−1(2)

0

]
∆tk (8)

zweark =
[
1 0

]
xweark (9)

An important observation relates to the process noise
wweark−1 definition, which in this case are not fixed and
depends on the input variable ∆tk. Considering that, the
process noise matrix Qweark becomes

Qweark =

[
0 0
0 ∆tkqwear

]
(10)

in which qwear is the same as presented in Eq. (3).

Now that the linearized prognostic model is defined consider-
ing time intervals not fixed, the EKF can be implemented and
the model parameters estimated. Next section contains a case
study application considering the prognostics of an hydraulic
system reservoir level.
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Figure 1: Aircraft Hydraulic System Levels Examples.

3. AIRCRAFT HYDRAULIC SYSTEM LEVEL MONITOR-
ING CASE STUDY

In this case study a degradation estimation method described
in (Vianna & Malere, 2014) is considered. In this method,
a normalized hydraulic reservoir level from an aircraft hy-
draulic system is estimated by means of a physics model con-
sidering the fluid properties, system dynamic (actuators, ac-
cumulators, etc) and reservoir/system fluid capacities. The
difference between the actual estimated level and the low
level limit is defined as the actual degradation and its vari-
ance represents the system leakage. Fig. 1 shows the levels
estimations collected from operational data of four different
aircrafts used in this case study.

In example 1, it is observed two intervals with missing data
and a increase in leakage in time. Example 2 shows an air-
craft with intense leakage and several hydraulic fluid filling
tasks (sudden increase in level) without fixing the source of
leakage. Example 3 shows a constant leakage with also some
missing data over certain time intervals and example 4 shows
a sudden excessive leakage increase with its identification and
repair after few days and a fluid filling task (again with a sud-
den increase in level).

The states estimation of the prognostic model considering the
EKF implementation is exhibited next. First in Fig. 2, the
estimation hydraulic levels (xweark(1) in Eq. [1]) are shown
together with the observation levels. In this example a value
of 1e−1 is considered for qwear and 1e−4 for rwear. At the in-
tervals with missing data, the prognostic model is not updated
and degradation rate is fixed until next observation. Also, to
properly address the fluid filling tasks, the filter covariance
matrix was reseted and states reinitialized after an abrupt level

Figure 2: Hydraulic Levels Estimation.

variance. The occurrence of this resetting procedure is also
shown in Fig. 2.

Notice from this result that the algorithm could identify the
variations in degradations since estimations are close to ob-
servations even for those situations of abrupt changes. Also,
the filling processes and other variances were also properly
identified and covariances and states reseted at the right sit-
uations. Finally, it is possible to observe from the results
that estimations presented lower variances compared to ob-
served degradations (as expected). Notice that this variance
can present variations as different values of the parameter
rwear is assigned at the filter implementation.

Results of the degradation rate estimations (xweark(2) in Eq.
[1]), here represented as the hydraulic system leakage, are
presented in Fig. 3. Also in this case, covariance and states
resets are exhibited.

In this implementation, at each reset, the degradation rate
(xweark(2)) is assigned a null value (no leakage) and if the
system present any degradation rate, the filter incrementally
observes degradations and identifies its value. This process
is better identified in example 3 from Fig. 3 where the hy-
draulic system presents a constant degradation rate (leakage)
and due to some missing data, covariance and states are re-
seted and a null value to degradation rate is assigned. As new
observations and filtering steps are implemented, increased
leakage estimations are observed. The variance of the degra-
dation rate estimation as well as how fast the filter can take to
estimate sudden changes in its value depends on the param-
eter qwear value assigned. Fig. 4 shows the results obtained
for several values of this parameter considering example 4.

From these results, it is possible to see that higher values of
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Figure 3: Leakage Estimations.

Figure 4: Process Noise Influence in Leakage Estimations for
Example 4.

qwear result in higher variance of the degradation rate, but
on the hand sudden variations in degradations are identified
faster as seen between days thirty and forty for example 4.
Notice that the higher values of qwear could not even identify
the increased degradation rate before repair and fluid filling
around day forty.

A similar analysis was made considering variations in the
rwear parameter considering also example 4. Fig. 5 shows
this result.

It is possible to observe that increased values of rwear

resulted in lower variances in degradation estimations
(xweark(1)).

Figure 5: Measurement Noise Influence in Level Estimations
for Example 4 and first 30 days of analysis.

Once the prognostics model is obtained, future estimations in
degradation can be obtained and consequently RUL estima-
tions at each observation interval. Fig. 6 shows the observed
and estimated RUL considering a low level limit of 40%. In
this case a Weibull probability distribution fitted by means of
a maximum likelihood estimation (MLE) algorithm was con-
sidered. The Weibull distribution plays an important role in
the analysis of reliability and survival data and its great flexi-
bility makes it suitable in numerous applications (Blischke &
Murthy, 2000). Successful applications for RUL distributions
fitting in PHM analysis include (Alves, Oliveira Bizarria, &
Galvao, 2009) and (Vianna et al., 2015). Also 20.000 MC
simulations and a confidence interval of 85% were consid-
ered. In this figure, the y axis represents the RUL in days
and the x axis the estimation date, whose origin is at the ac-
tual failure, here described as the time that the hydraulic level
reached its limit. The blue solid line represent the true RUL
and red dotted line the estimated RUL. Also the confidence
interval is plotted (red solid bars) considering the Weibull dis-
tribution. Notice that the confidence interval is not symmetric
as the time to failure histogram from the MC simulations and
consequently the Weibull distributions are also not symmet-
ric. For more details around this interval estimation method,
see (Alves et al., 2009).

It is possible to observe from this result that although RUL
estimation were higher than actual values in Fig. 6, all confi-
dence intervals results contained the actual RUL estimation,
so the prognostic model could predict correctly the actual fail-
ure considering the given confidence.

4. CONCLUSION

This study proposed a prognostic method considering degra-
dation estimations intervals not fixed and missing data using

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Figure 6: Hydraulic Low Level Prognostics for Example 3.

the extended version of the Kalman filter. In this approach, a
discrete state space model for the degradation trend was built
in which the time interval between each degradation sample
is considered as input. Considering that this model is not lin-
ear, the EKF had to be invoked which required the current
model linearization. A case study was conducted with field
data considering an aircraft hydraulic system level monitor-
ing algorithm. Results were presented for four different ex-
amples collected from operational data of four different air-
crafts. Analysis of degradation and leakage estimation was
considered as well as the influence of these parameters con-
sidering different set up parameters such as the process noise
and measurement noise. Also, RUL intervals were estimated
considering an hydraulic low level event. This estimation was
based on a Weibull distribution obtained from Monte Carlo
simulations of the prognostic model found during the filtering
step. It was possible to conclude that given the data set, the
proposed method could properly prognose the system failure.
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