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ABSTRACT

The goal of data-driven methods is to remove dependence
on classical models of structured expert judgment and draw
insights to causal relationships directly from the data. This
paper investigates the potential of using data-driven meth-
ods, namely uni-variate multiple linear regression, k-nearest
neighbors, feed-forward neural networks, random forests and
linear support vector regression to predict the end of life
(EOL) and remaining useful life (RUL) of engineering sys-
tems. The algorithms are demonstrated on a real-world large-
scale dataset consisting of a multidimensional time series of
health monitoring indicators collected from a set of com-
mercial aircraft gas turbine engines. A stratified version of
10-fold cross-validation is used to compare the prognostics
performance of the five prognostics models. An experience-
based Weibull model is chosen as the baseline method. Mod-
els are evaluated according to established metrics in the field
including median absolute error, median absolute deviation
and relative accuracy. The prediction results indicate that sup-
port vector regression and random forests are the most accu-
rate models. Neural networks and k-nearest neighbors also
show improved forecast skill compared to the baseline model
while beating the more traditional technique of linear regres-
sion. In regards to error spread, results are not as expres-
sive even though all the selected data-driven methods provide
good results, outperforming the baseline.

1. INTRODUCTION

The importance and validity of incorporating health monitor-
ing (HM) signals (e.g. vibration, noise, and temperature mea-
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surements) to improve the prognostics of engineering sys-
tems, such as gas turbine engines, are well documented. Ex-
amples of such studies include, to name a few, the work of
DePold and Gass (1998), who were among the first to present
an expert system for gas turbine end of life (EOL) and re-
maining useful life (RUL) estimation based on HM time se-
ries, as well as the work of Brotherton, Jahns, Jacobs, and
Wroblewski (2000) who applied neural nets and rule extrac-
tors to automatically discover prognostics indicators from gas
turbine HM signals, and more recently, Zaidan, Mills, Harri-
son, and Fleming (2016) who used in-service gas turbine en-
gine data to demonstrate the value of using fleet-specific HM
data to better estimate degradation trajectories.

Various modeling approaches have been used to extract rele-
vant information from HM time series in the field of gas tur-
bine prognostics. For instance, Li and Nilkitsaranont (2009)
proposed a combined linear and quadratic model with consid-
erable success. These kind of models have the advantage of
being simple to understand as well as being cheap from the
computational standpoint. However, to incorporate the non-
linear dynamics of HM indicators, it is often needed to resort
to more advanced machine learning methods such as artifi-
cial neural networks or support vector regression. Here, it if
of note the work of Xue et al. (2008) who use a nearest neigh-
bor approach to aircraft gas turbine prognostics and the work
of Zaidan et al. (2015; 2015; 2016) who focus on Bayesian
approaches to jet engine EOL and RUL estimation.

Despite the existing literature on data-driven models for gas
turbine prognostics, a comprehensive study comparing the
several approaches seems to be lacking. The aim of this study
is hence to investigate the potential of using different data-
driven, i.e purely empirical techniques, to forecast the over-
hauls of a modern jet engine engine using HM indicators. The
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selected models include a univariate multiple linear regres-
sion (LR) model, a feed-forward neural network (NN), ran-
dom forests (RF), and linear support vector regression (SVR).
The primary purpose of this study is to examine the ability of
the chosen data-driven methods to capture the relationships
between the HM series and the maintenance events of the
jet engines. Concretely, we aim to reinforce the notion that
data-driven methods based on HM series can be considered a
robust modeling alternative to conventional prognostics mod-
els, such as experience-based methods.

The remainder of this paper is organized as follows. We start
in Section 2 with related work and a description of the case
study in Section 3. In Section 4 we describe the methodol-
ogy and in Section 5 we compare experimentally the selected
data-driven methods to an experience-based Weibull baseline
model. Section 6 concludes the paper.

2. THEORY AND RELATED WORK

Modern day maintenance programs in aeronautics are start-
ing to be based on the on-condition concept, where main-
tenance activities occur when the equipment condition de-
mands it (Jardine, Lin, & Banjevic, 2006). The idea is that if
equipment can be evaluated while still in service, the overall
cost of maintenance goes down. On-condition maintenance
reduces the need for prescribed “hard-time” intervals but re-
quires routine monitoring of performance parameters of the
equipment such as the temperature, pressure, vibration, fuel
flow, oil consumption, and rotor speed. Changes in any of
these parameters beyond specified limits can warrant a main-
tenance intervention.

A side effect of on-condition maintenance is greater reliance
on statistical analysis and machine learning methods to pre-
dict the frequency and timing of maintenance events and
their corresponding costs. These methods aim to replace
the experience-based models of traditional preventive mainte-
nance. Here, by experience-based methods we mean models
that use life usage data gathered during a significant period of
time to adjust the parameters of reliability models such as ex-
ponential and Weibull (Tobon-Mejia, Medjaher, Zerhouni, &
Tripot, 2012). Historically, the most used experience-based
model is the Weibull three-parameter (α, β, γ) probability
density function (PDF) (Weibull, 1951), which can be for-
mally defined as

fT (t) =

{
β
α

(
t−γ
α

)β−1
e−( t−γα )

β

t ≥ 0,

0 t < 0,
(1)

where α is the scale parameter (or characteristic life), β is the
shape parameter (or slope), and γ is the location parameter
(or failure free time).

Figure 1 illustrates a typical experience-based model with

Figure 1. Experience-based model. Hard-time intervals (T)
expressed in the second timeline are estimated from the life
usage data ({yi}ni=1) in the first timeline.

the Weibull distribution. As shown, the set of removal times
is used to derive the mean time between repairs. In reliabil-
ity models based on the Weibull distribution the mean time
between repairs (MTBR) is computed as

MTBR = γ + αΓ(
1

β
+ 1) (2)

where Γ() is the gamma function defined by

Γ(z) =

∫ ∞
0

xz−1e−x dx.

The time prescribed between two preventive maintenance ac-
tions, ŷi, is computed from the mean time between repairs
(MTBR) according to the criticality and risk of the equipment
such that

ŷi = δMTBR (3)

where δ ∈ [0, 1] measures the degree of criticality and risk of
the equipment

Several authors apply experience-based methods to model
jet engine reliability. For instance, Stranjak, Dutta, Ebden,
Rogers, and Vytelingum (2008) propose a model where en-
gine reliability is determined by combining individual com-
ponent distributions, approximated by the Weibull function.
Here, the whole-engine reliability is a function of the indi-
vidual reliability of the most critical modules of the engine.
A finite mixture model is used to capture the combination of
individual performances.

Ebden, Stranjak, and Roberts (2010) also propose a finite
mixture model to describe jet engine failure modes. Here,
the mixed Weibull distribution is estimated from a large data
set of around 300 jet engines. Estimation is subject to cen-
soring at various times. Parametric uncertainty is derived an-
alytically from the inverse Fisher information matrix and is
mapped visually onto the functions of use in reliability the-
ory such as the hazard function and survival function.
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Figure 2. Direct data-driven prognostics architecture. Data-
driven prognostics proceed in two steps: a training stage
where data are used to create a learning model f and a pre-
diction stage where model f is applied to new observations
to generate EOL or RUL predictions.

An alternative to experience-based methods are on-condition
data-driven models (Schwabacher, 2005). In these ap-
proaches, statistical and machine learning techniques are used
on large sets of performance and degradation data to forecast
the equipment future state. The most direct data-driven meth-
ods divide the on-condition prognostic problem into two se-
quential stages: i) a training stage, in which, a model f is fit
to past observations (X , y) such that

Xm,n =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n

 ,ym,1 =


y1,1
y2,1

...
ym,1

 (4)

where Xm,n denotes the matrix of dependent (covariates)
variables and ym,1 the vector of independent (target) vari-
ables such as the equipment EOL/RUL

and an ii) estimation stage in which, using the model f , the
EOL or the RUL of the system is determined based on new
observations as

ŷ(t) = f(t,x(t),θ(t)) (5)

where t ∈ R is the discrete time variable, x(t) ∈ Rn is the
input vector, θ(t) ∈ Rnθ is the parameter vector, f is the
model’s output function, and ŷ(t) ∈ Rny is the output target
(EOL or RUL).

This data-driven architecture is shown in Figure 2. In the
first procedural step the system is provided with inputs X(t)
and corresponding measured outputs y(t). With these data
and the parameter vector θ(t) the system is able to estimate
function f . After this, the prognostics module determines the
EOL/RUL estimate, ŷ(ti), based on a set of new observations
x(ti). It is important to note that the modeled function
f is only trained on a subset of the observations with model
evaluation being performed on a test set of out-of-model ob-
servations. The 10-fold cross-validation evaluation scheme is
usually used at this stage.

A range of data-driven methods has been applied to prog-

Figure 3. The basic components of an artificial neural net-
work. The propagation rule used here is the ‘standard’
weighted summation.

nostics, from multivariate statistical methods to neural net-
works and Markovian processes (Baptista et al., 2016a, 2017;
Schwabacher, 2005). With respect to statistical methods, lin-
ear regression methods have been investigated for gas turbine
prognostics in a number of works (Li & Nilkitsaranont, 2009;
Weckman, Marvel, & Shell, 2006). In their simplest form,
regression for RUL estimation works by fitting the available
data on component degradation (X , y) and then by extrapo-
lating the equipment evolution up to failure as

ŷ(t) = f(t,x(t),θ(t)) = x(t)θ + θ0 (6)

where the parameter vector θ and θ0 are obtained from fitting
the training dataX and output vector y to a linear function f
using an optimization algorithm such as gradient descent.

The main advantage of methods such as linear or quadratic
regression is that their corresponding function f can be plot-
ted in the coordinate plane. This allows to more easily study
the correlations between the input x(t) and the output ŷ(t).
These statistical models have however the disadvantage of be-
ing unable in many situations to capture the non-linear dy-
namics of HM indicators (Riad, Elminir, & Elattar, 2010).

With respect to artificial intelligence techniques, artificial
neural networks is one of the most popular approach to dam-
age estimation (Di Maio & Zio, 2013). A NN consists of a
pool of simple processing units which communicate by send-
ing signals to each other over a large number of weighted
connections (Kröse, Krose, van der Smagt, & Smagt, 1993).
Each unit performs a relatively simple function: receive input
from its neighbors or external sources and use these to com-
pute and propagate a signal to other units. Figure 3 schema-
tizes a typical neuron architecture. In its simplest form, the
total input to a neuron unit k is the weighted sum of the sep-
arate outputs aj(t) from each of the connected units plus a
bias term θ0k:

sk(t) =
∑
j

θjk(t)aj(t) + θ0k(t) (7)

where θjk is the weight of neuron j on unit k
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The output of a neuron unit is computed from an an activation
functionF (e.g sigmoid function), which determines the level
of activation based on the input sk(t) and the current level of
activation yk(t) of the unit

yk(t+ 1) = Fk(yk(t), sk(t)) (8)

Within neural systems three types of units exist: input units
which receive data from outside the network, output units
which send data out of the network, and hidden units whose
input and output signals are transferred within the network.
In the case of prognostics, each input aj of the neural net-
work corresponds to a signal from the input vector x(t) and
the output unit corresponds to ŷ(t). The parameters θ(t) of
the neural network f are learned from a training algorithm
that attempts to minimizes a cost function dependent on the
training data (X , y).

Other machine learning methods are starting to be applied to
EOL and RUL estimation. For instance, Huang, Wang, Li,
Zhang, and Liu (2015) argue that support vector machines
(SVM) represent promising approaches to prognostics. In
support vector regression (SVR) (Drucker, Burges, Kaufman,
A, & Vapnik, 1997) a set of training data (X,y) is assumed
while the goal is to define f as a function that has at most
a ε deviation from targets y in the training data. For a lin-
ear SVR, this function takes a form similar to that of linear
regression:

ŷ(t) = f(t,x(t),θ(t)) = x(t)θ + θ0 (9)

A requirement of this function is its flatness, which means
a small θ. This small w can be obtained by minimizing the
norm, ‖θ‖2 =< θ,θ >. as a convex optimization problem:

minimize
1

2
‖θ‖2C(

∑
i

ξi + ξ∗i ) (10)

where ξi and ξ∗i are relaxation factors and C is a penalty
factor

The applications of SVR to RUL prediction are still mostly
restricted to the prognosis of bearings and batteries (Huang
et al., 2015). An effort to apply this technique to prognos-
tics in aeronautics is the work of Baptista et al. (2016b). In
this study, SVR is shown to be an efficient method for engine
bleed valve prognostics.

Other techniques which could benefit from further explo-
ration are tree-based methods. In these methods the predictor
space is stratified or segmented into a number of simple re-
gions whose splitting rules can be summarized in a tree. The
more popular tree-based methods grow multiple trees which
are then combined to yield a single consensus prediction. For-
mally, such a tree-based approach assumes the existence of f

such that

ŷ(t) = f(t,x(t),θ(t)) =
1

B

B∑
b=1

fb(x(t),θ(t)) (11)

where B is the number of decision or regression trees fb
trained on a sample b of (X,y).

Another approach which has yield promising recent results
is instance-based regression (Xue et al., 2008; Khelif, Ma-
linowski, Chebel-Morello, & Zerhouni, 2014). In instance-
based learning, new problem instances (x(t)) are compared
with instances seen in training (X , y) using similarity-
distance metrics.

Besides the above referred techniques, a large number of
machine learning methods can be found in the literature
(Schwabacher & Goebel, 2007). As an exhaustive com-
parison of all these methods is not feasible we selected the
techniques that showed the most promise for prognostics
(Schwabacher & Goebel, 2007) or that are considered among
the most representative algorithms for machine learning (Wu
et al., 2008).

3. CASE STUDY

In this section, the case study is introduced by describing its
background and data.

3.1. Background

Engine prognostics or the forecasting of engine degradation
which supports the on-condition maintenance is and will con-
tinue to be a challenging task. This follows mostly due to the
uncertainty associated with gas turbine design, environmental
and operating conditions. This study aims to explore the in-
corporation of statistical information to develop a data-driven
approach to EOL and RUL estimation of modern aircraft gas
turbine engines. To show the effectiveness of our approach
we present a field application. In the application, the varying
degradation conditions and maintenance actions that happen
to the engines are considered.

3.2. Data

Common to data-driven approaches is the modeling of the
desired response variable using large volumes of historical
data (Goebel, Saha, & Saxena, 2008). In this case study, our
data set describes the evolution of performance of a set of
commercial jet engines between approximetely ten years in
different intervals of time for each engine. Concretely, the
data consists of a cross-sectional time series in the sense that
for each engine, and as exemplified in Figure 4, we have a
multi-variate series that represents the temporal progression
of the engine HM signals. In the figure, each horizontal
line represents a possible health monitoring variable such as
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Figure 4. Performance data. For each engine, the evolu-
tion of performance is described using a set of engine health
monitoring indicators such as temperature, vibration, rotor
speed. There is also information about the engine mainte-
nance events.

temperature, vibration, pressure. The vertical dashed lines
represent possible failure/maintenance events. These signals
are measured at three different flight phases: one measure-
ment is taken at take-off, another at climb and three other at
cruise. Overall, we analyze data of 1.8 × 106 flights (i.e cy-
cles) (average of 3.35 × 103 ± 103 cycles per engine). This
adds up to around 3GB of raw data.

In addition to performance signals, there is also informa-
tion about the engine overhauls. An engine overhaul can be
defined as a comprehensive inspection that involves remov-
ing and disassembling the engine, testing all its sub-systems,
cleaning and replacing parts as needed and then reassem-
bling the engine (Seemann, Langhans, Schilling, & Gollnick,
2010). For a better sense of the data, please also consider
the histogram of total removal time shown in Figure 5. In
the plot, the data is skewed to the right, indicating that the
mean (354± 285 days) is higher than the median (306± 285
days). This implies that short overhauls are more frequent
than medium-to-long overhauls. The graph also illustrates
how the empirical data sample is well fit to the theoretical
Weibull distribution (black fitted line). This finding indicates
that, the Weibull distribution is most likely the best fit for the
experience-based model.

4. METHODOLOGY

In order to understand the reliability patterns of jet engines,
we perform several experiments using field data, where each
experiment analyzes a different data-driven method. This
section describes the methodology followed to validate the
main hypothesis of this study:

Figure 5. Data exploration. This study analyses performance
level and full overhaul workscopes and ignores maintenance
events lasting less than 1 week. The selected algorithms are
used on a right-sided skewed data set of removals shown in
the plot. As shown, the Weibull distribution is a good fit for
the data.

H: Condition-based predictive data-driven models
based on maintenance data and HM signals are able
to outperform preventive experience-based models.

To investigate this hypothesis we compare two reliability
approaches: (a) experience-based modeling based on the
Weibull distribution (I) and (b) data-driven methods based on
overhaul data and HM signals (II) We aim to show that de-
spite the good fit of the Weibull model to our maintenance
data, data-driven models can derive better estimates of the
equipment EOL and RUL.

4.1. Experience-based modeling

The experience-based approach consists in using 10-fold
cross-validation to measure the fit of the Weibull distribution
to the data set of overhaul times. We chose cross-validation
because this sampling technique has been well studied as a
basis for measuring predictive accuracy (Kohavi et al., 1995).
In the implemented cross-validation, the whole data set of
overhaul times {yi}ni=1 is randomly partitioned into k equal
sized subsamples (i.e testing folds). For each fold k, a
Weibull distribution (Equation 1) is fitted to the remaining
k − 1 subsamples. From this fit, the hard-time interval Tk of
fold k is computed with δ set to one (Equations 2 and 3). The
performance of the k model is then computed using different
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Table 1. Description of covariates.

Type Covariate Unit Alias

Environmental Altitude Feet ALT
Outside Air Temperature C OAT

Mechanical
Vibration Intercase IPS BB
Nominal Shaft Speeds % N1, N2, N3
Marginal Shaft Speeds % N1 MW, N2 MW, N3 MW
Shaft Vibrations IPS VB1, VB2, VB3

Performance
Delta pressure in several stations % DP160, DP20, DP25, DP3
Delta temperatures in several stations C DT160, DT25, DT3
Turbine Cooling Air Front and Rear C TCAF, TCAR

Systemic

Delta Fuel Flow % DFF
Engine Pressure Ratio Unit EPR
Oil Pressure PSI OIP
Oil Temperature C OIT
Margin in High-Pressure (HP) turbine temperature C TGT MW

Others Time since removal Take-offs TIME
Number of past removals Unit N REMOVALS

quantitative measures of fit such as the mean error

AcfTk =
1

vk

vk∑
i=1

εyi,ŷi =
1

vk

vk∑
i=1

(yi − δTk) (12)

where vk is the number of testing observations in fold k and
εyi,ŷiεyi,ŷi its the model bias given by the difference between
the real value yi and the predicted value ŷi of observation i.
Tk is computed from γ + αΓ( 1

β + 1) where α, γ and β are
parameters of the Weibull distribution fTk(t) fit to fold k

The results from the k folds can then be averaged to produce
a single performance estimation

AcfT =
1

k

k∑
i=1

AcfTk (13)

Algorithm 1 presents the pseudo-code of the approach.

4.2. Data-driven modeling

The data-driven approach (II) is based on maintenance data
and HM signals of several aircraft engines. Five distinct
models are constructed from state-of-the-art techniques: uni-
variate multiple linear regression (LR), K-nearest neighbors
(K-NN), feed-forward neural networks (NN), random forests
(RF) and linear support vector regression (SVR). Here, the
target of prediction is the estimation of the remaining time to
an overhaul (ŷi) at the ith flight (i.e. cycle).

Formally, we work on a set of past data (X , y) that consists
of m observations. Each observation characterizes a flight for

a given engine − consisting of a set of n covariates as

Xm,n =


Cov1 Cov2 · · · Covn

Cycle1 x1,1 x1,2 · · · x1,n
Cycle2 x2,1 x2,2 · · · x2,n
...

...
...

. . .
...

Cyclem xm,1 xm,2 · · · xm,n

 (14)

ym,1 =


RUL

Cycle1 y1,1

Cycle2 y2,1

...
...

Cyclem ym,1

 (15)

where Xm,n denotes the matrix of dependent (covariates)
variables and ym,1 the vector of RUL values for each cycle
in matrixX

Table 1 presents the list of considered covariates. The selec-
tion of these covariates was steered by discussion with do-
main experts within limits of the available data. The predic-
tors are grouped into five domains according to the type of
effect exerted by the parameter on the engine: maintenance-
related variables, environmental variables, mechanical effects
related to moving engine parts (e.g rotation, vibration), per-
formance effects related to the thermodynamics and fluid me-
chanics of the engine (e.g temperature, pressure), and sys-
temic effects that affect the whole engine.

Before its use, tuple (X,y) was submitted to a pre-
processing procedure. First, and before any data transfor-
mation, there was a cleaning stage: the techniques of Tukey’s
boxplot (Tukey, 1977) and Medcouple-based outlier detec-
tion method (Brys, Hubert, & Struyf, 2004) were used to
detect overhauls extremely long or short which were consid-
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Algorithm 1 Cross-validation of model I

Precondition: nk = 10 represents the number of folds and yi represents overhaul time at index i

1: function CROSS-VALIDATION(nk, {yi}ni=1)
2: AcfT ← 0 . Let performance be zero
3: for k← 1 to nk do
4: trainSetk, testSetk ← PARTITION({yi}ni=1, nk, k) . Randomly split {yi}ni=1 into nk equal-sized bins
5: α, β, γ ← fitWeibull(trainSetk)
6: T← γ + αΓ( 1

β + 1)

7: AcfT ← AcfT + 1
vk

∑vk
i=1(yi − δT), yi ∈ testSetk . Compute error rate using bias formula

8: end for
9: return 1

nk
AcfT

10: end function

Algorithm 2 Cross-validation of model II

Precondition: nk = 10 represents the number of folds and yi represents cycle i

1: function CROSS-VALIDATION(nk, {yi}ni=1)
2: Acf ← 0 . Let performance be zero
3: for k← 1 to nk do
4: trainSetk, testSetk ← PARTITION({yi}ni=1, nk, k) . Randomly split {yi}ni=1 into nk equal-sized bins so that each

removal is in a different bin
5: f(t,x(t),θ(t))← fit(trainSetk)
6: AcfT ← AcfT + 1

vk

∑vk
i=1(yi − ŷi), yi ∈ testSetk . Compute error rate using bias formula and

ŷi = f(ti,x(ti),θ(ti))
7: end for
8: return 1

nk
Acf

9: end function

ered as missing or incorrect data. The medcouple (MC) is a
robust skewness measure that allows calculating the nominal
data range:

[Q1ceaMCIQD, Q3 + cebMCIQD],MC ≥ 0 (16)

[Q1ceaMCIQD, Q3 + ce−aMCIQD],MC < 0 (17)

where Q1 and Q3 represent the lower and upper quartiles,
respectively, of the data distribution, and IQD = Q3 − Q1
is the interquartile distance, a measure of the spread of the
data similar to the standard deviation. The rule threshold
parameter is taken as c = 1.5, while the other two parameters
are taken as a = -4 and b = 3 (typical values).

Please note that the Medcouple method is appropriate for our
data as we deal with skewed univariate data (Figure 5) while
other outlier detection methods such as the interquartile range
only apply to normally distributed data.

After the cleaning procedure, data were standardized to zero
mean and unit variance. Principal component analysis (PCA)
(Dunteman, 1989) was then used for all methods except the
neural networks model. We selected the number of principal
component features of the PCA according to the cumulative
contribution of the first components. The selected number

of principal components varied per machine learning algo-
rithm. Here, the threshold for the cumulative contribution
was that of 90%. After the pre-processing, data (X,y)
were used to evaluate the performance of the different regres-
sion schemes to engine overhaul estimation. The regression
techniques were only trained on a subset of the observations
to evaluate how well the techniques could generalize to un-
seen observations. Evaluation on out-of-model observations
was performed on the test set. Here, and as for the Weibull
model, we compared the algorithms using a 10-fold cross-
validation setup.

The hyper-parameters of the algorithms were selected by
hand, based on preliminary random experiments. Examples
of hyper-parameters tuned include the number of neighbors
k in the k-Nearest Neighbor algorithm or the distance met-
ric/similarity function, the number of trees in the random
forests or the number of layers and neurons in the neural net-
works.

In order to evaluate the predicted values, we compute accu-
racy using established metrics in the field such as mean error
or bias (ME) or median absolute deviation (MdAE) (Saxena
et al., 2008). The mean error expresses error as

ME =
1

vy

vy∑
i=1

(yi − ŷi) (18)
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where vk is the number of testing observations in fold k and
ME its the model bias for fold k given by the difference be-
tween the real value yi and the predicted value ŷi of observa-
tion i.
The median absolute error expresses absolute error as

MdAE = median
(
{|yi − ŷi|}vki=1

)
(19)

while relative accuracy is a customized metric from the prog-
nostics field (Saxena et al., 2008) computed as

RA(%) =
1

vk

vy∑
t=1

100×
(

1−
∣∣∣ ŷi −median{yi}

vy
t=1

yi

∣∣∣) (20)

For error spread we compute the median absolute deviation
(MAD) as:

MAD = median ( {|yi −median({yi}vki=1)|}vki=1 ) (21)

To sum up, the used data-driven architecture is in Figure 2.
The architecture is provided with inputs X and correspond-
ing measured outputs y. With this data and the parameter vec-
tor θ the system is able to estimate function f(t,x(t),θ(t)).
After this, the prognostics module determines the RUL es-
timates represented as ŷ(ti). The scheme of 10-fold cross-
validation is used to estimate and validate the model.

5. RESULTS

After describing the data pre-processing and modeling ap-
proach we report our findings in this section. Concretely, we
report the results of using the comparative research method to
test the main hypothesis H. The goal here is to find evidence
that the use of advanced data-driven methods can benefit the
field of jet engine prognostics.

5.1. Numerical Results

In Table 2 we present the numerical results of this case
study, namely of the baseline method (Weibull analysis) and
the data-driven models of linear regression (LR), K-nearest
neighbors (K-NN), random forests (RF), support vector ma-
chines (SVM) and neural networks (NN). Please note that
the experience-based model and the data-driven model out-
put different predictions but they essentially target the same
output. For the experience-based model, the returned Weibull
random variable is the predicted length of an overhaul. For
the data-driven model it is the remaining time to an over-
haul or RUL. Accordingly, both models attempt to predict
the same RUL at different times: the Weibull model immedi-
ately after a removal, and the data-driven methods every time
a health monitoring signal is generated. The two models (I
and II) and their errors are therefore comparable.

The first finding from Table 2 is that the results seem to in-
dicate that all algorithms can outperform in accuracy − as

measured by the metric of MdAE, experience-based methods
(Weibull analysis). Concretely and in our case, the median
absolute error (MdAE) of the experience-based method was
clearly surpassed by the data-driven algorithms of NNET, LR,
SVM, K-NN and RF. Here, the best performance was attained
by the RF and the SVM with an average median error of 141
calendar days.

The results regarding the metric of relative accuracy (RA)
were not as expressive as for the median absolute error
(MdAE). The higher accuracies were attained by the RF and
the SVM models with 72% of accuracy. It is worthwhile to
discuss why the models relative accuracy did not differ much.
Please note that RA is a metric closely related to median ab-
solute percentage error (MAPE) (Saxena et al., 2008), in fact,
it is its inverse (RA = 1 - MAPE). Since this latter is scale
sensitive it is important to note that RA will give more impor-
tance to incorrect predictions of small actual values than large
values, especially when working with low-volume data. No-
tice that because ‘actual’ is in the denominator of the equa-
tion, when the actual value is not zero, but quite small, the
MAPE and consequently RA will often take on extreme val-
ues. Since in our case the RA values are reasonable, its values
reinforce the notion that all the algorithms can come up with
a favorable RUL estimation (also when close to the removal).

In regards to the precision of the methods, measured by the
median absolute deviation (MAD), results were better for the
data-driven methods. As the Weibull model outputs the same
single output for every observation − the mean time between
repairs (MTBR) of the training data set, predictions of the
removal overall time deviate considerably from each other,
leading to a high MAD. The remaining data-driven models
were hence able to beat this score having lower errors, except
for the K-nearest neighbor algorithm.

To sum up, the data-driven models were better in absolute
accuracy and also, but not as expressively, in relative accu-
racy. Results were also promising in regards to error spread.
These results suggest that there is enough evidence to support
hypothesis H.

5.2. Illustrative Example

In this section we provide an illustrative example of how the
different tested algorithms compute the RUL of a jet engine.
As an example, consider Figure 6 which shows the applica-
tion of the algorithms to 4 different removals. In the Fig-
ure, the time index i is shown on the x-axis and the predicted
residual life is on the y-axis. The diagonal RUL* depicts the
true RUL. Also depicted in the plot are the predictions of the
several methods, LR, K-NN, RF, SVM and NN. The closer
these predictions to the true RUL* curve, the better the model
accuracy. The less dispersed the predictions around the RUL*
curve the higher the model precision.

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

Table 2. Performance results.

Experience-
Based
(Weibull)

Linear Re-
gression
(LR)

K-Nearest
Neighbors
(K-NN)

Neural
Networks
(NN)

Random
Forests
(RF)

Support
Vector
Machines
(SVM)

Mean Error (ME) 113.16 ±
49.92

-153.18 ±
56.48

-113.29 ±
48.84

-175.23 ±
74.63

-164.57 ±
53.12

-31.97 ±
52.26

Median Absolute Error (MdAE) (days) 206.26 ±
49.92

171.20 ±
11.39

166.91 ±
14.59

165.97 ±
8.19

141.57 ±
11.64

141.26 ±
11.27

Relative Accuracy (RA)(%) 63.88 ±
0.26

68.21 ±
0.06

68.08 ±
0.04

68.94 ±
0.14

72.07 ±
0.03

71.89 ±
0.05

Median Absolute Deviation (MAD) (days) 306.09 ±
49.92

178.09 ±
25.98

216.46 ±
23.20

175.15 ±
36.49

208.49 ±
27.25

149.42 ±
24.93

Analyzing Figure 6 it can be seen that all algorithms can come
up with reasonably good estimates of RUL although these es-
timates can vary considerably from one algorithm to another.
For instance, the LR, the simplest approach, has a tendency
to output similar predictions to similar points− here, by sim-
ilar points we mean observations close in time. This tendency
results in the LR predictions usually following a more or less
well-defined horizontal trajectory.

In contrast with the LR, which works by finding the best fit-
ting straight line, the K-NN method uses a similarity search
approach to find the best neighbors. Here, predictions tend to
have a higher degree of noise as the output of the algorithm
is the average of the k-nearest neighbors. Nevertheless, the
overall absolute accuracy of the model is considerably higher
than that of the LR.

The predictions of the RF model have a distinct pattern from
the remaining models. The method works by having more
dispersed predictions along the RUL* line than the remain-
ing methods. This follows from the way regression decision
trees operate. Since decision trees work by a series of local
decisions and a random forest is an ensemble of randomly se-
lected decision trees− to avoid overfitting− the output of the
RF model can deviate considerably. Nevertheless, the model
accuracy is good and tends to improve near the removal, as
the error spread diminishes.

The results of the NN algorithm in Figure 6 are also promis-
ing. The model is especially good at long-term predictions
even though it often fails to provide accurate estimation near
the engine removal.

Fig. 6 also shows the predictions of SVR, which also follow
the targets well. As illustrated, this is the best model among
the five, as its predictions deviate the least from the perfect
correlation line of RUL*.

6. CONCLUSION

Five different methods for jet engine prognostics models were
tested on a proprietary data set. The used methods were

linear regression (LR), K-nearest neighbors (K-NN), neural
networks (NN), random forests (RF) and support vector re-
gression (SVR). All methods showed a reasonable good per-
formance. The predictions of the SVR method resulted in
the best values for the median absolute error and median ab-
solute deviation metrics. The good agreement between the
modeled remaining life and the observations for the tested
techniques lead to the conclusion that data-driven models can
potentially be used as an alternative to traditional experience-
based methods such as Weibull analysis. It can be said that
data-driven techniques are worth further exploration in the
field of engineering prognostics.

We hope that with this work we can promote the widespread
adoption of data-driven techniques not only for gas turbine
prognostics but also for other industrial fields. Capital inten-
sive assets such as engines requiring predictive maintenance
are common in the industry and could well benefit from the
use of advanced machine learning. This work hence aims
to contribute to a better understanding of traditional machine
learning methods and its utility to prognostics in general.

The tested techniques have great potential for improvement
especially in the fields of parameter selection and general-
ization to other prognostics situations. As future research,
we intend to study formal methodologies for validation of
data-driven approaches, and investigate fusion of prognos-
tic estimates such as ensemble methods. It is also our in-
tention to perform a deeper analysis of the tested data-driven
models with metrics related to prediction horizon, sensitiv-
ity to damage state estimation, confidence distribution, evo-
lution of distribution around actual time of failure, and stabil-
ity/robustness of the prediction.

ACKNOWLEDGMENT

This work was partially supported partly by the MIT Portugal
Program and FCT - Fundacao para a Ciencia e a Tecnologia
(SFRH/BD/52347/2013).

9



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

Figure 6. Remaining useful life prediction trajectory of the 5 data-driven algorithms for 4 removals.
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NOMENCLATURE

Nomenclature used in paper follows.

EOL End of Life
HM Health Monitoring
K-NN K-Nearest Neighbors
LR Linear Regression
MAD Median Absolute Deviation
MAPE Mean Absolute Percentage Error
MdAE Median Absolute Error
MTBR Mean Time Between Repairs
NN Neural Networks
RA Relative Accuracy
RF Random Forests
RUL Remaining Useful Life
SVR Support Vector Regression
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