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ABSTRACT 

Availability and performance of hydrogenerators are key 
features that have driven electrical utilities to implement 
monitoring and diagnostic methods in order to evolve to 
condition based maintenance (CBM). Ten years ago, Hydro-
Quebec has implemented a home-built web-based 
application, called MIDA, to cover most of its power plants. 
MIDA centralizes diagnostic data from several tools, 
aggregates all diagnostic results and calculates a health 
index for each hydrogenerators. Data from MIDA used in 
conjunction with PHM techniques can feed a prognostic 
model that will provide useful equipment information and 
lead to the implementation of predictive maintenance. The 
prognostic framework used for hydrogenerators is based on 
a failure mechanism and symptom analysis (FMSA) 
approach. For the stator, a major component of 
hydrogenerators, more than 100 failure mechanisms have 
been consigned in the form of causal trees or graphs. A 
large number of these failure mechanisms involve the 
presence of partial discharges (PD) before failure occurs. At 
Hydro-Quebec, PD measurements on hydrogenerators have 
been carried out over the past 30 years and a significant PD 
database is integrated in MIDA. The analysis of this huge 
amount of data is of paramount importance to understand 
the behavior and evolution of the discharge activity in order 
to build a robust prognostic approach using physics based as 
well as data driven models. To that end, this paper presents 
case studies that shed some light on key features related to 
the evolution of PD activity in hydrogenerators. The paper 
discusses how to use this data in the prognostic model to 

assess warning signs before failure occurs.  

1. INTRODUCTION  

Hydro-Quebec has an electric generating capacity of 36 GW 
from its 62 hydroelectric power plants. Its generating fleet 
comprises more than 350 hydrogenerators. These important 
assets are worth several million to tens of millions of dollars 
each and are subject to preventive maintenance comprising 
both systematic and conditional maintenance. An integrated 
diagnostic system (MIDA) for hydrogenerators was 
implemented in 2008 based on the aggregation of individual 
health indices of seven diagnostic tools (Hudon, Bélec, 
Nguyen, 2009). As of 2017, more than 320 hydrogenerators 
have their condition assessed with a health index ranging 
from 1 (excellent condition) to 5 (very bad condition). 
MIDA gives a ranking of all generators and thus helps the 
power plant management prioritize the generators for 
maintenance. The MIDA centralized database contains all 
diagnostic measurements performed on each generator.  

The diagnostic data from MIDA can then be used to identify 
symptoms of physical degradation states in a failure 
mechanism and symptom analysis (FMSA) approach 
applied to hydrogenerator prognostics (Amyot, Hudon, 
Lévesque et al., 2014). In this approach, we use the 
symptoms provided by measurements performed on 
hydrogenerators to activate physical degradation states 
within failure mechanisms. Active failure mechanisms are 
those containing active physical states. A failure mechanism 
is defined as a single existing path from root cause to a 
failure mode with a unique sequence of physical states. 
Physical states are defined by a unique set of symptoms and 
associated thresholds. Different failure mechanism can lead 
to the same failure mode and a physical state can be present 
in different failure mechanisms. Figure 1 shows a single 
failure mechanism initiated by a root cause (C1), containing 
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a sequence of three physical states (e1...e3) and ending with 
a failure mode (F1). On the right hand side, sets of 
symptoms and thresholds in rectangular boxes, identify each 
physical state. When these symptoms are measured or 
observed and their severities exceed the associated 
threshold, the related physical state becomes active. 

 

Figure 1. Failure mechanism with symptoms and thresholds 
defining physical states (en). Between parenthesis are 

symptoms specific to each diagnostic tool. S is the severity 
ranging from 1 to 5. (Amyot et al. 2013) 

For complex equipment such as generators, failure 
mechanisms can be best represented as causal trees or 
graphs. In causal trees, physical states are duplicated as 
many times as they appear, which offers an easy way to 
visualize each individual failure mechanism from its root 
cause to its failure mode through a set of physical states. 
The advantage of the causal graph is to show each physical 
state as a node which may have several inputs and outputs. 
It is thus a more compact representation and it allows the 
use of graph metrics (Blancke, Tahan, Komljenovic et al., 
2016). 

It should be noted that the failure mechanisms were 
generated by a panel of experts comprising field 
experienced maintenance personnel as well as scientists 
providing the knowledge of the materials degradation 
processes involved in each component of the stator under 
operational stresses (thermal, electrical, mechanical and 
environmental). About two hundred failure mechanisms 
were identified as likely to occur in the stator. 

The causal graph of the hydrogenerator stator is 
schematized in Figure 2 (a). Failure mechanisms are paths 
taking their origin in root causes (yellow dots) through 
physical degradation states (white dots) towards failure 

modes (red dots). The last physical states before failure 
modes occur are aligned on the same level just above the 
level of failure modes. Amongst them, the grey dots 
represent physical states that are related to PD activity, one 
of the symptoms from diagnostic measurements in MIDA. 
These last physical states involving PD are present in 85% 
of all stator failure mechanisms. In hydrogenerators, PD 
comes from different types of sources in the stator insulation 
system. Each type of PD source has its own percentage of 
presence as last physical state in the graph. For example, as 
it can be seen in Figure 2 (b), slot PD activity which is 
recognized as being harmful to the stator groundwall 
insulation, are present in a large part of these mechanisms. 

 

Figure 2. (a) Schematic view of the stator failure 
mechanisms graph. (b) Percentage of last physical states for 

each type of PD. 

To carry out a prognostic, it is necessary to determine the 
transition times between each pair of physical states (nodes) 
pertaining to a failure mechanism in the graph. This can be 
achieved by using expert elicitation and/or by using data 
from our physical state activity database. This database 
contains dates at which measurements were made and 
physical states were found active.  

In the context of preventing a failure, the transition time 
between the last detectable physical state and the failure 
becomes of utmost importance. It should be pointed out that 
hydrogenerator failure rate is in the range of 1.5%, but when 
it occurs it can be excessively costly or even lead to 
premature replacement of the asset. This motivates the 

Physical state symptoms and 
thresholds 

C1 
Contamination 

e1 
Contamination in 
stator end arms 

e2 
Electrical field 
concentration 

e3 
Gap partial 
discharges 

F1 
Breakdown 

Visual inspection: (4) S > 1.0 
Ramp voltage test: (1) S >3.0;  

(3) S <2.0 
PDC: (2) S >3.0 (4) S <2.0 

PDA: (1) S >3.5 
Ozone:  S > 3.5 

Visual inspection: (3) S > 1.0 
PRPD: (5) S > 1.0 

Post-mortem dissection analysis:  
(10) S > 1.0 

 
Transition state 

(No observable symptoms) 
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detailed analysis of diagnostic data, specifically related to 
PD behavior through time, in order to improve the 
prognostic model for hydrogenerators.  

2. PARTIAL DISCHARGE ANALYSIS  

PD activity occurs within voids in insulation and around 
insulating system exposed to high voltage. This 
phenomenon is the result of local concentrations of 
electrical stress. It is always present in the stator insulation 
of air-cooled hydrogenerators due to the design and 
manufacturing process. Each PD event is a minute local 
electrical discharge that will slowly erode the stator 
insulation system and will lead to breakdown in years to 
decades. The PD impulses can be detected on-line from 
sensors connected to the generators. During normal 
operation, it is therefore possible to detect different sources 
of PD which present different risks of premature failure. 
Identification of the source of PD activity is thus essential 
for improving the diagnosis of high voltage 
hydrogenerators. An analogy would be the diagnosis of the 
heart using an electrocardiogram where different 
characteristic signatures can be recognized and associated 
with health issues. As for the medical specialist, 
identification of PD sources requires a good knowledge of 
the system to diagnose. Understanding of PD phenomena 
has progressed considerably in recent years, suggesting that 
PD measurements could now be used to improve prognostic 
models for hydrogenerators. 

Over the past 30 years, Hydro-Quebec has built an extensive 
Partial Discharge (PD) database including two types of 
measurement instruments. One of the instruments used is 
the Partial Discharge Analyzer (PDA) which gives a simple 
2D representation of the PD activity as illustrated in 
Figure 3 and is measured yearly by plant personnel. Here 
the graph shows the discharge rate (PD/s) as a function of 
the amplitude in mV of positive discharges (in red) and of 
negative discharges (in yellow). Up to now, over 20 000 
measurement files have been recorded using the PDA 
technique on about 170 hydrogenerators. 

 

Figure 3. Example of a PDA measurement result. 

The second instrument uses the Phase Resolved Partial 
Discharge (PRPD) technique, which gives a three 

dimensional (3D) representation of the PD activity. A 
typical PRPD result is shown in Figure 4. In this pattern, the 
PD amplitude is plotted against the position with respect to 
voltage phase angle and a color code is used to show the 
pulse count. PRPD measurements are carried out as needed 
to improve the recognition of the active PD sources 
previously detected with the PDA. More than 5000 
measurement files have been recorded using the PRPD 
instrument on about 100 hydrogenerators. 

  

Figure 4. Example of a PRPD measurement result. 

The goal of this paper is not to elaborate on the knowledge 
of PD, but for readers who would want to learn more on PD 
detection and signal interpretation for generators, they can 
read the technical specification (IEC, 2012), the standard 
(IEEE, 2000) and the technical paper (Hudon & Bélec, 
2005). Differences between recognizable PD sources are 
listed in Table 1. Each PD source has its own set of 
characteristics based on the pulse amplitude (Q), discharge 
rate (PD/s), overall PD intensity (NQN : Normalized 
Quantity Number), ratio of positive to negative pulses 
(NQN+/NQN-) and typical shape of the 3D PRPD patterns. 
Although PRPD facilitates source recognition especially 
when several sources are superimposed, its greatest value 
over the PDA is to be able to discriminate between corona 
PD activity and slot PD. This is highly relevant, because, as 
shown in Figure 2 (b), the presence of slot PD activity will 
activate close to 50% of PD related failure mechanisms in 
the prognostic approach. 

The maximum pulse amplitude (Qmax) and the PD intensity 
(NQN) are most of the time, the main criteria used in the 
industry to quantify PD (Stone & Warren, 2006). However, 
analysis of our database shows that these criteria alone are 
too coarse to feed our prognostic approach. As we will show 
with the next case studies, sometimes even a switch in 
discharge behavior should be used as trigger to indicate 
warning signs of imminent failure. 
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Table 1: Recognizable PD sources with the two types of 
instrument used at Hydro-Quebec. 

PD Sources Characteristics PRPD PDA 

Internal PD+ = PD- � 
� 

Delamination PD+ = PD- � 

Copper-
insulation 

interfacial PD 
PD+ < PD- � � 

Gap 
PD increase at 
high amplitude 

� � 

Corona PD+ > PD- � 
� 

Slot PD+ > PD- � 

 

It is important to understand such characteristic warning 
signs precursor to failure, but one of the challenges is that 
breakdowns are not that frequent. When failures occur they 
can be catastrophic, so preventive maintenance has been 
used in the past with success, but at a great cost. Predictive 
maintenance is a much more efficient and less expensive 
means of keeping failure risk low. However, it requires a 
detailed knowledge of failure mechanisms and a reliable 
prognostic model that uses diagnostic data. 

3. CASE STUDIES 

3.1. Case study 1 

The first case study was made on unit 2 from a power plant 
of six 13.8 kV / 56 MVA hydrogenerators commissioned 
between 1950 and 1955. The stator’s insulation of these six 
units was made of asphaltic resin mixed with mica flakes, a 
main stream technology in the fifties. All units from this 
power plant have been a major cause of concern due to the 
detection of high ozone concentrations in ambient air near 
the units generated by intense PD activity. Some areas even 
exceeded the safety limit of 100 ppb for personnel working 
in their vicinity. In order to have few more years of 
operation before rewinding all of them, it was decided in 
2007 to perform an inversion of the neutral and phase lead 
terminals of the stator on all units except on unit 1 (Millet, 
Nguyen et al., 2009). A phase-to-ground failure occurred on 
phase B of unit 2 in May 2016, 9 years after the overhaul. 
PD measurements were made on unit 2 using the PDA 
almost yearly since the overhaul in 2007 and PRPD 
measurements were also carried out to recognize which type 
of PD sources were active.  

In December 2008, three types of PD sources were active in 
unit 2, gap PD, corona PD and delamination PD. During the 
following years, these three types of PD sources were most 
of the time superimposed in the PDA patterns and their 
relative individual contributions varied from one year to the 

next. The evolution of the PD intensity on Phase B 
represented by the NQN values between 2008 and the last 
PD measurement made in January 2016, is presented in 
Figure 5. This last measurement was made just before the 
failure in May 2016. Because several PD sources are 
simultaneously present, this case is the perfect example why 
PD intensity alone cannot be used as the only criteria to 
trend activity. As can be seen in Figure 5, the PD trend is 
completely different when the larger gap PD contribution is 
removed from the analysis. It should be pointed out that 
even at much higher magnitude, gap PD represent less risk 
than other types of PD.  

Unfortunately, it is not possible to discriminate corona PD 
from delamination PD when using PDA results alone. Thus 
without other data than the amplitude and the rate of PD 
obtained from the PDA results, it is not possible to assess 
which failure mechanisms are truly active. 

 

Figure 5. Evolution of PD intensity on phase B of unit 2 
between December 2008 and January 2016.  

At the last PD measurement made in January 2016 (in 
Figure 6 (right)) just prior to the failure, a new type of PD 
activity, showing signs of copper-insulation interfacial PD 
became active as suggested by the predominance of smaller 
negative PD pulses. Figure 6 (left) shows that this 
asymmetry was absent of the PDA results on phase B in 
March 2015. At that time, and for all previous 
measurements, delamination PD was the main cause of 
activity.  

Instead of using the PD amplitude as criteria, the ratio of the 
NQN+ on the NQN- (NQN+/NQN-) was used to assess 
when the PD activity changed from one physical state to the 
next. The evolution of this ratio for phase B (after removing 
the gap PD contribution) is illustrated in Figure 7. From the 
PD database, we estimated that when the ratio is between 1 
and 1.3, the main PD source is related to internal or 
delamination type, whereas above 1.3, it indicates the 
presence of corona PD or slot PD. Similarly, when the ratio 
goes below 0.90, the discharge process is mostly related to 
copper-insulation interfacial PD. We see that in some cases, 
the change in PD process is a better indicator of imminent 
failure than trending only overall PD intensity.  
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Figure 6. PDA results on phase B of unit 2 in March 2015 
(left) and in January 2016 (right).  

The transition from the internal delamination PD to the 
cooper-insulation interfacial PD was observed in January 
2016, four months before the failure. However, this 
transition may have occurred at any time after the PD 
measurement in March 2015 when copper-insulation 
interfacial PD activity was still not active. This information 
(left-censored) is useful to help determining time to failure, 
but it must be analyzed with all other similar cases to give a 
transition time distribution that it is possible to implement in 
our prognostic model. 

 

Figure 7. Evolution of NQN+/NQN- ratio on phase B of 
unit 2 between December 2008 and January 2016. 

Our hypothesis is that in the case of unit 2, the failure 
mechanism is coming from a thermal root cause. This is not 
surprising because the neutral side of the hydrogenerator has 
never been exposed to electrical aging, but was exposed to 
the same thermal aging than the phase lead terminals. The 
same profile was also observed on phase A and C where no 
failure has yet happen 18 months after the same transition. 
In addition, unit 3 of this power plant also showed the same 
transition from delamination PD to copper-insulation 
interfacial PD on phase A and B, since March 2015. Such 
right-censored data is also useful in the determination of the 
distribution of transition time. Figure 8 shows the failure 
mechanism (right) from which delamination PD physical 
state was split in two states by adding the transition to 
copper-insulation interfacial PD. 

 

Figure 8. Failure mechanism involved in case study 1. 

3.2. Case study 2 

The second case study concerns unit 2 from a power plant of 
six 13.8 kV / 244 MVA hydrogenerators commissioned in 
1975. The stator’s insulation of these units is made of 
modern epoxy resin and mica paper. In comparison with the 
previous case study where the groundwall insulation was 
based on asphaltic resin, epoxy resin is harder and does not 
easily delaminate. A phase-to-ground failure occurred on 
phase A of unit 2 in October 2010 when slot PD activity 
was identified using PRPD measurements.  

The first PDA measurement was made after 19 years in 
service, in March 1994. It showed the characteristic 
asymmetry typical of slot PD activity (see Table 1), but 
there is no way of knowing for how long this PD source had 
been active. The next PDA measurement was carried out in 
February 2002 when internal PD was dominant with slight 
gap PD. In the following years, internal PD stayed dominant 
in the PDA results. In October 2009, one year before failure 
occurred, there was a transition to copper-insulation 
interfacial PD. The evolution of the NQN+/NQN- ratio on 
one parallel circuit of phase A is illustrated in Figure 9. 
Again this data had to be cleaned from the high amplitude 
pulses coming from gap PD contribution. In this case, the 
NQN+/NQN- ratio indicates a transition from slot PD, 
active in March 1994, to internal PD, active for at least six 
years from February 2002 until March 2008. The last 
transition to copper-insulation interfacial PD activity 
became active in October 2009.  

During the same period of time, the evolution of the global 
PD intensity showed a slightly decreasing trend as presented 
in Figure 10. Again, no clear indication of a possible failure 
can be assessed by only trending the PD intensity 
represented by the NQN values. 

March 2015 January 2016 
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Figure 9. Evolution of NQN+/NQN- ratio on phase A 
parallel circuit A2 of unit 2 between March 1994 and April 

2010. 

 

Figure 10. Evolution of PD intensity on phase A parallel 
circuit A2 of unit 2 between March 1994 and April 2010. 

The transition time interval between internal PD and 
copper-insulation interfacial PD can be used as left-censored 
data in the prognostic model to determine time to failure. 
Indeed, even though this transition has been detected during 
the PD measurement made in October 2009, it may have 
occurred at any time after the previous PD measurement in 
March 2008.  

Figure 11 shows the split of last physical state before 
breakdown into internal PD and copper-insulation PD. The 
different PD sources are related to the behavior of the 
NQN+/NQN- ratio. 

 

Figure 11. Failure mechanism involved in case study 2. 

Other units in the fleet indicate the same pattern from slot 
PD into internal PD. For instance, Figure 12 illustrates an 
example from one parallel circuit of phase C of a 13.8 kV / 
210 MVA hydrogenerator where a transition from slot PD 
activity into internal PD occurred. This unit must be 
carefully monitored in order to capture the activation of the 
last warning sign related to the transition from internal PD 
into copper-insulation interfacial PD. 

 

Figure 12. Evolution of NQN+/NQN- ratio on phase C 
parallel circuit C1 of a 13.8 kV/210 MVA hydrogenerators 

between March 2005 and February 2017. 

4. DISCUSSION 

The use of a prognostic model based on FMSA gives the 
possibility to pick active mechanisms out of the bulk of all 
possible failure mechanisms. In addition, within each active 
mechanism, the model allows to track the degradation 
process by using transition times between pairs of physical 
states before failure. Physical states close to the end of the 
failure mechanism are more critical than those close to the 
root cause, since they constitute the last warning signs 
before failure. In the proposed model built for 
hydrogenerators, the very last physical states before failure 
occurs are related to PD activity in 85% of all failure 
mechanisms. It is therefore on these physical states that 
considerable efforts are devoted.  

Results presented in this paper indicate that it is essential to 
understand the fine details of each degradation process in 
order to properly correlate the PD diagnostic data to the 
physics of the degradation. In some cases, coarse data such 
as PD intensity, as often used in this industry, may be an 
acceptable indicator of incipient failures, but in both case 
studies presented in this paper, it is demonstrated that 
monitoring and trending of PD intensity is not an adequate 
criterion to assess the imminence of a failure. It is only by 
following the transition from one type of PD to another, 
using accurate features that it is possible to provide warning 
signs before failure. Regardless of the prognostic approach, 
it is always important to identify a set of relevant data 
before performing analysis of large data sets constituting the 
whole PD database. Once the determinant factors to track 
are identified, here specific transition of discharge mode, the 

6 years or more of internal PD 

At least 6 years of slot PD 

At least 5 years of 
internal PD 
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next step is to perform a complete analysis of the PD 
database with the help of appropriate data driven methods. 
The use of these techniques should make it possible to 
determine the frequency of occurrence of specific transition 
between each PD process over the entire database. 
However, since failure rate of generator is low and 
measurement data is relatively scarce we have to deal with 
left as well as right censored data to evaluate all transition 
times in our proposed prognostic model for 
hydrogenerators. 

5. CONCLUSION  

In the hydrogenerator’s prognostic model based on FMSA, 
the last physical state before failure is in most of the cases 
related to PD activity. Data analysis has shown that we must 
first understand the degradation process and look for 
patterns, and then use data driven methods to extract 
specific parameters. The two case studies presented in this 
paper pointed out the importance of understanding the 
physics of degradation in order to assess warning signs 
coming from PD measurements. Then, accurate features can 
be used as an input for data driven methods to explore the 
PD database and refine more accurately the prognostic 
model. 
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