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ABSTRACT 

Analytics supporting prognostics and health management 
(PHM) work processes traditionally leverage time-series data 
to monitor component states and predict fault progressions in 
order to positively impact performance related to safety, 
profitability and risk management.  Developing analytical 
models for the purpose of monitoring is asset-specific and 
assumes that the data is captured and accessible.  In practice, 
monitoring assets in real-time is reserved for highly critical 
assets, while all assets have transactional data stored in 
enterprise asset management (EAM) systems.  This paper 
reviews methods for measuring transactional data quality and 
for measuring asset performance metrics and health 
indicators from historical maintenance records that can be 
used in PHM initiatives.  Data from both transactional 
sources and from machine-measured sources should be used 
together to derive a complete picture of the maintenance 
strategies and actions in an industrial site. 

1. INTRODUCTION 

Asset Performance Management (APM) are work processes 
that are not only used to manage equipment performance but 
improve it.  The end goal of all APM work processes are to 
satisfy business objectives of the organization, whether it be 
increasing profit through reduced spending or increased 
efficiency, demonstrating compliance, or improving quality 
of services or goods produced.  Asset management involves 
factors which influence the trade-off between costs, 
opportunities, and risks against the desired performance of 
assets in order to optimally achieve an organization’s 
objectives (ISO 55000, 2013). For an industrial organization, 
this could involve using information about an asset to 

improve asset availability, to manage risk, and to reduce 
downtime. 

Prognostics and health management (PHM) is a family of 
APM work processes geared towards using asset information 
and technologies for diagnosis, prognosis and health 
management (Rajamani & Bird, 2016). Diagnostics is the 
process of determining the state of a component to perform 
its function, while prognostics refers to assessing the current 
conditions in order to determine performance life remaining 
in an asset or component.  Prognostics methods answer 
questions related to estimation of the remaining useful life of 
a component and when a fault is expected to occur 
(Schwabacher & Goebel, 2007) (Coble & Hines, 2011). 
Prognostics and diagnostics can refer to individual 
components of a full health management system, which are 
work processes geared at making the informed and 
appropriate decisions about asset management based on the 
diagnosis and prognosis information, as well as also 
incorporating information such as available resources and 
operational demand (Rajamani & Bird, 2016). Health 
management work processes across a system may include 
monitoring and detecting changes in the system’s 
performance, identifying the root cause of the change, 
assessing remaining useful life, initiating mitigating actions 
to prevent or minimize downtime, and/or minimizing factors 
affecting the life cycle costs of the system (Coble & Hines, 
2009) (Saxena, Sankararaman, & Goebel,  2014). 

Goals of prognostics and diagnostics powered health 
management systems are aligned with APM business goals – 
using asset information to maximize uptime, minimize 
maintenance and operating costs (Vachtsevanos, Lewis, 
Roemer, Hess, & Wu, 2006) (Lee, Wu, Zhao, Ghaffari, Liao, 
& Siegel, 2014). Prognostic capabilities using existing 
monitoring systems, data, and information will enable 
improved system for assessing risk and can answer questions 
to help plan for maintenance such as determining whether to 
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continue to operate as usual to the next maintenance 
opportunity, or to modify operations (Hines & Usynin, 2008). 

The classic engineering model for the progression from when 
a potential failure becomes detectable to when it degrades to 
a functional failure (when an asset is unable to perform to 
specifications) is known as the P-F curve, describing the time 
elapsed between potential failure (P) and functional failure 
(F) (Gulati, 2009).   Condition based maintenance (CBM) 
aims to evaluate the condition of an asset by continuous 
condition monitoring with the objective of detecting failures 
at the earliest possible time in order to allow scheduling for 
maintenance.  While early warnings do avoid large 
expenditures from unplanned downtime and functional 
failures, they occur after the fault has already begun and are 
still a reactive process.  Truly proactive processes predict and 
prevent failures from occurring, and prognostics is a 
maintenance strategy more focused in this area (Lee et al., 
2014).  In the P-F curve model, this corresponds to adopting 
a maintenance strategy that acts to extend the time period 
before a potential failure occurs (Casto, 2010). 

An optimal maintenance strategy is one that minimizes the 
total maintenance expenditure while minimizing risks (Casto, 
2010) (Whitt, 2009). An asset strategy itself is a maintenance 
plan in place aimed towards reducing risk to production 
through mitigating actions for known risks.  In the context of 
health management, monitoring the health of an asset can be 
used not only for diagnosis and prognosis, but also to assess 
the efficiency and effectiveness of an existing strategy in 
place in order to make modifications. 

Information about an asset can exist in many forms such as 
through engineering knowledge, data, or output from analytic 
models.  In the past century, as sensor technology, analytic 
hardware and software have matured, the availability and 
forms of data providing information about an asset have 
increased.  At the same time, technology capabilities have 
also increased, enabling platforms and architectures which 
expand the possibilities for integrated data-driven processes 
that use analytics to support decision logic.  Data about an 
asset can be collected both automatically and manually, 
possibly involving different people such as maintenance 
technicians, inspectors, operators, or managers, can be 
automatically collected such as sensors, field devices, and 
can be stored in various places and collected in varieties of 
formats (Koronios, Lin & Gao, 2005). 

Data collection and storage methods are typically designed 
for a specific original purpose, and using this data for PHM 
requires acquiring, normalizing, and characterizing the data. 
One approach for characterizing data is to think of asset data 
is in terms of information records, such as the registry of 
equipment and tags and engineering designs, and in terms of 
maintenance and operating information.  Data from 
maintenance and operating activities can further generalized 
into categories depending on the form it takes and the manner 
in which the data was collected. We classify the data forms 

into two categories: transactional data and time-series data, 
and classify the collection manner into two categories: 
manual or machine.  Transactions are collections of 
information exchanges describing events, and transactional 
data for assets may include work orders, work requests, 
financial records, and inventory management. Time-series 
are sequences of values obtained through periodic sampling 
of the data, and each data point is related to the next value 
sequentially in time.  Both data forms can be measured 
manually or by installed equipment sensors for condition 
monitoring purposes. 

Assets with installed sensors for condition monitoring are 
assets determined as both critical and with cost-benefits for 
continuous machine monitoring, making many time-series 
measurements such as vibration or infrared thermography 
readings only available for certain sub-populations of assets. 
Transactional data, such as work orders and failure records, 
are available in some form for all assets.  Many maintenance 
events, from a major shutdown of a highly critical gas turbine 
to replacing a burned out light-bulb are captured in 
maintenance logs.  Fusing information from transactional 
data with measurements from time-series data provides an 
opportunity for developing the most complete picture of the 
lifecycle of an asset and provides the opportunity for stronger 
methods for measuring and predicting field system 
performance (Meeker & Hong, 2014). Methods extracting 
the maintenance and operating history of an asset from any 
available data source may be used to fill in gaps in analysis 
such as providing data inputs for health monitoring for assets 
that may not have sensor data available, identifying 
redundant information in order to improve data accuracy for 
key measurements, and correlating failure patterns and 
maintenance actions with measured signals.   

In order to extract the value from historical transactional data 
it is important to identify and measure the data quality 
problems, many of which are universal across plants.   Data 
quality assessments not only verify completeness, 
consistency, and correct interpretations according to usage 
measures (ISO 14224, 2004), but also enable a measure of 
certainty for the desired analyses and can be used to gauge if 
the desired analysis is appropriate.  The first step in any work 
process using data should be a data quality assessment, which 
can assess which data is good and usable for analysis, and 
which data needs improvements. 

Once data quality is assessed and data with sufficient quality 
for the desired purpose has been identified, metrics, key 
performance indicators (KPI’s) and analytics can be 
developed for health monitoring work processes. 
Transactional information can be used both as part of a health 
monitoring process itself and for evaluating metrics 
measuring and tracking the performance of a PHM initiative.  
Transactional data is available for all levels of assets, and the 
ultimate goal is to introduce a framework integrating 
transactional information with time series data.  In this article, 
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a discussion of transactional data, its quality, and its value to 
PHM work processes will be discussed.   

The rest of this article will be organized as follows.  Section 
2 defines and summarizes different types of asset data 
available. Section 3 reviews data quality challenges and 
measuring data quality.  Section 4 discusses value potential 
for utilizing transactional maintenance records in PHM work 
processes.  Section 5 reviews performance measures and 
methods for justification for PHM and APM initiatives using 
all available data sources.  Section 6 presents a case study 
illustrating the concepts. The paper ends with concluding 
discussions and suggests future research directions. 

2. ASSET DATA MODEL 

Asset information can be found in many isolated data 
sources, and we review available asset information in the 
context of how the data takes form and how it is collected.  In 
our data model, we partition asset data into nameplate data 
containing information about assets themselves and 
maintenance and operating data. Maintenance and operations 
data is generated through the process of managing, operating, 
and implementing any process on an asset.  We partition 
maintenance data into transactional data and time-series data, 
which describes how the data take form, and into human and 
machine data, which describes how the data is collected. 

Nameplate data may include detailed records of assets (such 
as functional location, manufacturer, and installation date) 
and their tags, engineering information such as process 
designs, material specifications, expected useful life, design 
applications and operating parameters, piping and 
instrumentation diagrams (P&ID), vendor information such 
as recommended maintenance and specifications, and client 
data such as requirements and generic concepts (Milje, 2011).   

A transaction is an event describing exchange or transfer of 
goods or actions and typical transactions could be financial 
(orders, invoices, payments), work (plans and activity 
records), and logistics (deliveries, storage records, etc.) 
(Wikipedia, 2017). From asset maintenance data, this 
includes maintenance records, results of preventative and 
planned maintenance findings, non-recurring work such as 
failures, backlogs of pending work, time keeping, work 
scheduling, and inventory and spares management.  A major 
source of transactional data generation and storage is using a 
maintenance management system such as Enterprise Asset 
Management (EAM) or Central Computerized Maintenance 
Management Systems (CMMS) (Gulati, 2009). Capabilities 
of CMMS/EAM systems includes work task identification, 
planning, scheduling, and reporting. Databases from 
CMMS/EAM systems include records of maintenance and 
maintenance costs across asset fleets.  Other sources of 
transactional data outside of the CMMS/EAM could be 
financial records detailing expenditures and production 
plans/ losses, production information, and inspections which 

detail human inspections of different assets to satisfy 
compliance and safety protocols.   

Time-series data is a sequence of values obtained through 
successive measurements, and each value is related to the 
next value sequentially in time.  Examples of time-series data 
are regular measurements in time for direct control on a 
process, and could include vibration, pressure, or temperature 
readings.  While two successive points in a time-series are 
related by describing the same value measured at the next 
time point, two points of transactional data can be 
independent values or readings.  

Data can be collected manually or automatically by a 
machine such as an instrument taking sensor readings. In 
general, transactional data generally has a human component 
to its generation, such as maintenance requests and 
inspections, but if a single sensor reading is studied point-
wise as an event, it may be viewed as transactional.  Time-
series data generation may come from humans or machines, 
and how it is collected depends on the application and its 
requirements and technologies. A schematic of the data 
model, partitioned by different data types and collection 
methods, is shown in Figure 1.  For each data-type partition, 
examples are provided. 

 
Figure 1. Asset maintenance data model.  In our model, data 

that is generated and collected dynamically can be either 
transactional or time series.  Data can also be generated 

manually, or directly from machine readings 
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Condition monitoring regularly measures asset condition 
through non-intrusive testing, inspections, and asset 
performance measures (Gulati, 2009). Regularly measured 
conditions of the asset (time series information related to the 
asset’s condition) is collected either through manual 
inspections (visual inspections), spot readings (manual 
readings, route based with portable instruments), or online 
measured data from instrumentation, permanently installed.  

Manually collected time-series data includes time-based 
inspections and spot readings.  Spot readings are time-series 
data generated from using handheld devices to make 
measurements for condition monitoring technologies such as 
vibration monitoring or thickness measurements.  Time series 
monitoring data with a human component involved in the 
generation are practical in scenarios where modes of 
degradation occur on a slower time scale such as weeks, 
months, or years such as some cases for monitoring pipe 
corrosion. 

3. DATA QUALITY 

3.1. Challenges in transactional data quality 

Historical maintenance records are important for providing 
valuable insight in past maintenance on existing pieces of 
equipment (for example, deterioration mechanisms) and 
provide valuable asset information and material for reliability 
analyses. While the value potential from using transactional 
data is unbounded, the abundance of irregular and inaccurate 
data limits the analysis reliability engineers can conduct on 
data sets.  Common data quality issues include missing 
information, and information that is not missing may be 
miscoded, may lack engineering information, or may be 
written against inappropriate systems.  Other data quality 
issues are data isolation causing data islands (Koronios et al., 
2005) (Meeker & Hong, 2014) (He, 2016) (Hodkiewicz & 
Ho, 2016) and that many standards for coding are subject to 
human interpretation.  

Much emphasis in reliability is on failure mode identification, 
which may in practice be very difficult due to little or missing 
information about the failure mechanism or root cause 
(Sikorska, Hammond, & Kelly, 2007). Failure mode data 
analysis relies on consistent failure mode coding practices 
such as those standardized for the oil and gas industry in ISO 
14224 (ISO 14224, 2004).  Failure codes entered in 
CMMS/EAM systems take the form of structured fields for 
which values may be selected from a drop-down menu, but 
in practice, many of these structured fields may be incorrectly 
filled in or missing.  Even more fundamental, the 
characterization of a failure event itself may be miscoded or 
missing.  There is a lot of debate on how to define a failure, 
and as a result these fields may not be filled out.  

CMMS/EAM data may lack important engineering 
information, because reporting was for financial purposes 
rather than answering engineering questions (Meeker & 

Hong, 2014).  Data may also lack in the cases where the 
individuals executing the repair process are incentivized to 
get the equipment running as quickly as possible, leaving 
audit trails as incidental. An example is a compressor may 
have multiple valves, but the work order may fail to describe 
which valve was replaced.  Another example is orders on 
instrumentation may be written against larger equipment.  It 
may be difficult to locate records of when calibration was 
done for a sensor on a vessel when the order was written 
against the vessel and not the sensor. Work orders may also 
be assigned to the wrong piece of equipment or inappropriate 
system, or components removed or replaced may not even be 
assigned to the work order (Sikorska et al., 2007) (ISO 14224, 
2004).   

3.2. Measuring transactional data quality 

All APM workflows (and hence, any PHM workflows) that 
use data to evaluate any quantity – whether it be a simple 
metric or a sophisticated model, should first begin with a data 
quality assessment. It is not desirable to use a performance 
measure that is easy to manipulate to make a user ‘feel good’ 
(Gulati, 2009) (Kumar, Galar, Parida, Stenström, & Berges, 
2013), and poor data quality can erroneously alter many 
common metrics to look good such as leaving dates missing 
can improve the measured amount of downtime and not 
recording failures can improve measures of reliability.  

After determining which data is sufficiently-good for 
analysis and which analyses are possible, you can analyze 
asset performance as far as it will allow, and start improving 
processes for the quality of the rest of the data (Naik, 2016).   
Improving data quality, once the data quality is measured, can 
be done by both changing the process in which the data is 
created and by improving the existing data. 

Frameworks for assessing and improving data quality for 
asset performance applications such as evaluating metrics 
have been developed extensively (Hodkiewicz & Ho, 2016) 
(Hodkiewicz, Kelly, Sikorska, & Gouws, 2006) (Koronios, 
2005) (Gulati et al., 2009). For developing any requirements, 
the first steps are to identify the business goals, identify the 
desired metrics, and to identify and summarize the available 
data.  After this has been done, data measures can be put in 
place, and a measureable review process put into order.  Then 
you can implement a plan for data quality improvement. 

Frameworks for measuring data quality described in the 
literature are traditionally defined in terms of different 
attributes or aspects of data quality which are defined as data 
quality dimensions.  There is no consistent or standard set of 
data quality dimensions, but there are many repeating and 
overlapping patterns which have been extensively reviewed 
and compared.  Review articles of data quality assessment 
methods summarize typically 4-5 dimensions where 
completeness, accuracy/correctness and timeliness are the 
most common dimensions (Chen, Hailey, Wang, & Yu, 
2014) (Lin, Gao, Koronios, & Chanana, 2007) (Weiskopf & 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

5 

Weng, 2013) (Batini & Scannapieco, 2006) (Woodall, Gao, 
Parlikad, & Koronios, 2015). Completeness is the most 
straightforward data quality dimension measuring how much 
data is present and how much is missing.  The other data 
quality dimensions address the question of, “of the data that 
is not missing, how good is it?” 

3.3. Data quality for PHM 

When executing a PHM work process, the available data may 
include both sensor readings and transactional information, 
so data quality assessment frameworks must also extend to 
time-series data.  While challenges in transactional data 
quality largely stem from human error components, time 
series data collected from machine readings has its own set 
of challenges.  Examples include faulty readings from sensors 
due to sensor failures, out-of-calibration, or distortion in the 
data collection and processing pipeline by faults in systems 
which compress data between collection and the consumer. 
Data collected by sensors may not always be accurate 
because sensor calibration and integrity checks may be 
overlooked by maintenance (Lin et al., 2007).  Environmental 
conditions, ageing, and degradation may also affect the 
accuracy of sensor data (Smarsly & Law, 2014), and faulty 
sensors can cause false positive or false negative diagnoses 
in health monitoring processes.  After any type of disruption 
(such as a repair or replacement on a critical asset), putting 
the sensor back on is often the last step and may result in 
periods of time where sensors remain offline.  

In developing and executing a PHM work process that uses 
sensor data in conjunction with transactional data, the 
framework for data quality measures must be developed to 
involve data quality checks for both data types, and 
sufficiently-good data can be determined in this way.  There 
is also the opportunity to employ data source agreement data 
quality methods by identifying possible redundancies in 
information between the two data source, and then use these 
methods to fill in missing data– such as fill in missing 
information from transactional data such as missing dates 
from time series readings. A schematic of this concept is 
shown in Figure 2. A specific example will be described in 
the case study. 

 
Figure 2. Fusing all available asset data can give the most 

complete measure on an asset, and identifying redundancies 
across different data sources can be used for improving data 

quality.   
 

4. TRANSACTIONAL DATA IN A PHM WORK PROCESS 

Transactional data is useful for identifying failure 
information necessary for root cause analysis, and for 
correlating failure event characterizations from a human 
perspective with observations measured by sensors and other 
monitoring devices.   Knowledge mining past historical 
events can provide knowledge-based insights on failure 
modes and maintenance patterns across assets (Hodkiewicz 
& Ho, 2016).   

Central to prognostic goals is estimation of remaining useful 
life of an asset, which depends on many factors including the 
time duration an asset survived before failure, operating 
conditions, and the different failure modes specific to an asset 
type.  Traditional remaining useful life estimates are failure 
mode specific due to very different physical behaviors 
inherent in different failure modes (O'Connor & Kleyner, 
2012) (Meeker  & Escobar, 1998) (Abernethy, 2006). 

Incorporating time-series data in remaining useful life 
models to provide more information about an asset’s usage to 
generate more accurate estimates is a vast area of research in 
the field of prognostics with journals, societies and 
conferences dedicated to the topic. (Goebel, Daigle, Saxena, 
Sankararaman, Roychoudhury & Celaya, 2017) 
(Schwabacher, 2005) (Schwabacher & Goebel, 2007) (Hong 
& Meeker, 2013) (Coble & Hines, 2009) (Coble & Hines, 
2011).  There is a wealth of valuable information that could 
be extracted from the transactional data to generate effective 
and data-driven asset strategies for monitoring and managing 
a fleet of assets. 

5. MEASURING BENEFITS OF A PHM INITIATIVE 

The benefits and goals of a PHM initiative align with the 
benefits and goals for APM, and may be reviewed 
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synonymously.  Justification for a PHM or APM initiative are 
linked to measuring and evaluating processes and strategies.  
These evaluation measures quantify the value created by the 
process from the initiative, justify the investment for the 
initiative, make revisions on resource allocations, and align 
with compliance (Parida & Tretten, 2017) (Parida & Kumar, 
2009) (Parida, Kumar, Galar, & Stenström, 2015). Strategic 
alignment with business goals may be cost oriented, but may 
also take operations, quality, and environmental/safety 
concerns into account.   

Many standardized metrics and KPI’s that have been 
developed to evaluate PHM performance are focused on 
assessing the performance and certainty for a prognostic 
method (Saxena, Celaya, Balaban, Goebel, Saha, Saha, & 
Schwabacher, 2008)  (Saxena, Celaya, Saha, Saha, & Goebel, 
2010)  (Leao, Yoneyama, Rocha, & Fitzgibbon, 2008). 
Values from these metrics can be used in conjunction with 
transactional data (such as measures of cost or reliability 
performance) to model the effects of prognostic performance 
and PHM benefits.  Metrics that measure the success of a 
PHM initiative can focus on either maintenance and 
reliability measures or business measures such as cost 
benefits depending on the business goals. 

Transactional data is useful for building a business case and 
measuring the cost benefits and financial success of a PHM 
initiative.  Benefits from any PHM initiative may include 
prevention of unplanned downtime, abilities to prevent 
accidents, reduced maintenance cost; all of which are non-
monetary.   While sensor data can be used to monitor an asset 
or components, financial success will be measured using 
information such as maintenance spending, production 
outputs, and failure frequency.  
 
Challenges in building a business case include how to assign 
monetary value to these non-monetary benefits. Available 
data is transactional in nature and includes maintenance 
reports, inspection reports, surveys and service bulletins 
(Banks, Reichard,  Crow, & Nickell, 2009) (Banks & 
Merenich, 2007).  Different types of costs may be measured 
in a cost benefit analysis (CBA), such as direct costs, indirect 
costs, and costs at various points of the life cycle of an asset. 
Applications of CBA for PHM initiatives have been 
described in the literature (Feldman, Sandborn, & Jazouli, 
2008) (Leao et al., 2008). CBA helps define requirements on 
various aspects that specify the cost-benefit equation and 
many studies have been developed for PHM systems (Saxena 
et al., 2010) (Sun, Zeng, Kang, & Pecht, 2012) (Esperon-
Miguez, John & Jennions, 2012 (Kahlert, Giljohann & 
Klingauf, 2014) (Carter & Kennedy, 2016) (Scanff, Feldman, 
Ghelam, Sandborn, Glade & Foucher, 2007) (Ashby & Byer, 
2002) (Kacprzynski, Roemer, & Hess, 2002). 

5.1. Measuring performance efficiency 

Maintenance performance metrics (MPM) are metrics that 
are used to measure the efficiency and effectiveness of 
maintenance strategies and frameworks (Parida & Kumar, 
2009). There are many categories or pillars of metrics used in 
industry that have been extensively reviewed (Kumar et al., 
2013) (Parida et al., 2015) and standardized definitions for 
best-practice have been established by the Society of 
Maintenance and Reliability Professionals (SMRP) (SMRP 
Best Practices, 2017). 

There are three major factors that asset performance is based 
on:  the operating environment, the maintenance plan, and 
reliability (Gulati, 2009). One possible approach for 
characterizing performance metrics is in terms of goals 
aligned with each of these factors and how different data 
supports these measures. The operating environment refers to 
performance efficiency of the overall asset system or process, 
and considers both the physical operating conditions and the 
skill of the operator.  Gulati (2009) cites the result of several 
studies which suggest that 40% or more of failures are due to 
operator errors.  The maintenance plan refers to the strategy 
for maintaining the asset, and the inherent reliability refers to 
the design. These three factors are all linked together for 
optimal asset performance, so overlap between measures and 
different information from the different data types to evaluate 
these measures may occur.  We focus in detail on measures 
of performance related to the operating environment. 

The major APM/PHM goal for performance efficiency is 
coordination between operations and maintenances to 
achieve business goals of optimal performance such as 
eliminating breakdowns, and ensuring safety and high quality 
product.  Performance efficiency is the measure between the 
actual output compared to the expected or planned output, 
and metrics to evaluate efficiency measure the gap between 
the ideal and actual performance.  The main measure for 
performance efficiency is Overall Equipment Effectiveness 
(OEE), and is measured based on availability, performance, 
and quality (Gulati, 2009) (Muchiri & Pintelon, 2008). 
Availability is the ratio of actual operating time to the 
scheduled time, and is related to utilization, which is the ratio 
of actual operating time to the total time elapsed.  
Performance is measured as the ratio of actual production to 
availability, which is penalized by slow-downs (such as a 
pump not pumping to capacity).  Quality is the ratio of 
sellable production output to actual production output 
(penalized by defects for instance).  

While the metric definitions that are input to OEE evaluation 
are theoretically sound, in practice, accurate evaluation 
requires available and clean data.  Calculations of availability 
require both the equipment runtime and the scheduled 
runtime, which may not be straightforward information to 
obtain or extract from the data.  Transactional data in the 
forms of work orders in a CMMS/EAM contains 
maintenance start and completion dates which may be used 
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to estimate the downtime.  However, these dates may not 
indicate the true start and finish dates due to delays in data 
entry or may be missing.  Process historians measure 
cumulative equipment runtime, but utilization estimates from 
historians may be missing qualitative features such as if a 
stop time was planned or unscheduled.  Further, while 
historian estimates may be precise, they typically will not be 
available for all assets, which is needed to provide a complete 
picture of the entire operations process.  The ideal picture is 
to design and develop methods that fuse all available asset 
data to provide the most accurate measures across an entire 
fleet or production process, and estimating availability and 
downtime are discussed in more details in the case study 
below. 

6. CASE STUDY 

Using transactional data from the CMMS/EAM systems in 
combination with other sources of data can allow companies 
to create a virtuous data improvement cycle. In this case 
study, we walk through an example of how identifying 
redundant information from different types of data on the 
same asset can be used to extract more information about that 
asset.  As discussed above, a common data quality issue in 
CMMS/EAM data is due to open and close dates on work 
orders frequently left missing or not accurate.  While data 
providing exact time windows for when an asset is running 
may be extracted from a process historian, process historian 
data may not be measured for all assets in a process, only 
highly critical assets.  For those assets, knowledge in which 
equipment stops are scheduled and which are unscheduled 
may not be readily available from the time series readings.  
For those assets which have available data from both sources, 
there is potential to compare information for data 
improvement knowledge which can be used to clean up work 
history data for all assets, as well as develop a more complete 
picture of those assets refining asset utilization to scheduled 
and unscheduled downtime. 

Our example is based on information about a rotating asset in 
an industrial application.  To protect sensitive proprietary 
information, we present either abstractions of the actual 
measurements or simulate data based on the actual 
observations made on the data.  We abstract the time-series 
measurements recorded in the historian of gross load in terms 
of if the asset is running (100%) or down (0%).   

For this case study, we compare complementary information 
from the work history records and the process historian over 
approximately a 2 year period of time.  We assume that the 
asset is scheduled to run 24 hours a day, 7 days a week.  
Under this assumption, the availability measured from the 
work history records should match the utilization measured 
by the process historian. We compare estimates of 
availability and downtime measured over this time span in 
Table 1 for the same asset calculated from the work history 
records and from the sensor data. Mechanical downtime is 

calculated as the average total downtime per month, and the 
mean idle as the average total idle time per month.  

Table 1. Comparison of maintenance metrics for a gas 
turbine over 29 months from work history data alone (left) 

and time series data alone (right). 
Transactional Data Time series Data 

Availability (%) 91% Utilization (%) 88% 

Unavailability (%) 9% Idle (%) 12% 

Mechanical Downtime 2.9 
days 

Mean Idle 3.7 
days 

Mean time to repair 
(MTTR) 

2.0 
days 

  

 

In general for this asset, the metrics compare favorably, but 
investigation of the differences provides interesting 
observations.  The metric mean time to repair (MTTR) 
measures the average length of time from when a corrective 
work order is written to when the work to repair an asset 
begins.  This metric may be estimated from the transactional 
data but impossible from the process historian data, and is 
valuable as an input parameter for planning models as well as 
a performance measure. 

We next compare the two sources of information (historian 
measurements of runtime and work orders (WO)) over time 
to identify similarities and differences between work order 
events and asset stops.  We show a sample of a 100 day 
interval to interpret these scenarios with respect to the 
observed data in Figure 3.  A sample of the corresponding 
work order events are in Table 2. 

 
Figure 2. Time-series information about an asset’s runtime 

over 100 days.  A value of 100% means the asset is online at 
this time and a value of 0% means that the asset was offline. 
The corresponding work orders (WO) during this time are 
found in Table 2, and the cases are summarized in Table 3. 

 
When comparing the actual data between the two sources 
(historian and WOs), we identified two perspectives for 
comparing the data.  The first view is by comparing the 
occurrence (or non-occurrence) of a work order with the 
equipment’s online/offline status, and the second by 
comparing the actual data between the two data sources in the 
case a work order exists.  For the first scenario, there are four 
possible combinations between on/off and exists or not, 
which we summarize in Table 3. 
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Table 2. Sample work history events for the asset during a 

100 day window.  Cases 1-4 are defined in Table 3. 
Observed 
case 

Event short 
descriptions 

Event 
Type 

Event 
start 
day 

Maint. 
complete 
day 

Case 1 Place exhaust 
thermocouple wire 
into the piping 

Repair 21 23 

Case 1 Annual visual 
inspection 

PM 22 22 

Case 1 Disassembly and 
assembly of 
bearing 
instrumentation 

Repair 22 29 

Case 2 Replacement of 
extension cable 

Repair 61 71 

Case 3 A repair on day 
100 (there were 
stops around days 
85 and 95 not 
accounted for in 
work history) 

Repair 100   

 

Table 3. Different possible data quality scenarios from 
combinations of equipment online/offline and a work 

history record existing or not. 

 Work order exists  Work order does not 
exist 

E
quipm

ent O
ffline 

Case 1: Equipment is 
offline and there is a 
work order 

• There is data from 
both data sources 
supporting a 
maintenance event  

• Compare estimates 
of availability and 
downtime for 
further data quality 
checks 

Case 3: Equipment is offline 
and there is no work order  

• Is it idle or unscheduled 
downtime? 

• If Downtime: Possible 
data quality problem 

• If Idle: Not necessarily 
a data quality problem  

E
quipm

ent O
nline 

Case 2: Equipment is 
online and there is a 
work order 

• Work possibly 
performed while 
machine is Online 

• Downtime estimate 
from time-series 
data is zero; 
compare against 
work order 

Case 4: Equipment is online 
and there is no work order  

• Normal Operation 

 

 

Cases 1 and 2 describe where there is a work order written, 
but are differentiated by the asset’s online/offline status.  
Case 1 is when the equipment goes offline, and in this 
scenario, we can compare the downtime measurements 
between the time-series and the work order.  In the example 
(Figure 3), it appears a scheduled shutdown occurred and 
other maintenance activities were conducted at the same time.  
This shutdown was probably scheduled, and availability 
estimates (as well as the continuous scheduled running 
assumption) could be modified to account for this and 
improve metric accuracy.   Case 2 covers when there is a 
work order, but the equipment is running.  We observe in this 
example that an extension cable was replaced, which may not 
merit downtime. Case 3 describes when a work order was not 
written, but the asset goes offline.  In this example there were 
stops around days 85 and 95 not accounted for in the work 
history. This should be investigated as a possible data quality 
problem.  Case 4 is the case of normal operation. 

To further investigate cases 1 and 2 where a work order was 
written, we can compare estimates of downtime between the 
work order estimate and the historian.  We calculate the ratio 
between the estimates historian downtime and the work order 
downtime and plot the ratio for each work history item in 
Figure 4.  A value of 0 signifies case 2 (equipment stayed 
online), and a value greater than 0 represents case 1. Different 
regions which describe different types of relationships 
between downtime estimates from the different data sources 
are highlighted.  The green region identifies repair events 
where the two downtimes are congruent, while the red and 
yellow regions identify events where the CMMS/EAM data 
needs to be rechecked for accuracy.   
 
The potential to use these sources of data together as data 
quality measures exists.  In this case study, 22% of work 
orders had a ratio approximately 0, while 64% had consistent 
downtime estimates.  These measures could be used to 
measure and track data quality improvements. Using 
transactional data from the CMMS/EAM in conjunction with 
sensor data as inputs to help automate this process will 
improve data quality, which in turn will improve metric 
accuracy.   
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Figure 3. Comparison of downtime estimates for work 
history between the maintenance record data and the 

downtime measured from the process historian.   

7. CONCLUSION 

Transactional data provides a rich source of information 
about an asset to enrich, scale, and evaluate a PHM work 
process.  Transactional data is generated through many 
forms, but generally has a human component to its generation 
which means that there is both a wealth of knowledge within 
transaction records but also introduces errors and 
inconsistencies in the generation process.  While historical 
transactional data may be available in wealth, there are many 
data quality challenges to face to enable meaningful 
analytics.  However, identifying which data is sufficiently-
good is enough to take advantage of evaluating data-driven 
metrics and analytics, while executing data cleanup 
initiatives will help to get you there.  Using all information 
sources about an asset can further enrich the information 
about an asset and its lifecycle, which can improve the 
potential of prognostic and diagnostic models for executing 
effective health monitoring systems, improve data quality, 
and measure the outcomes. 
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