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ABSTRACT

Recent developments in lithium-ion technology have enabled
a revolution in the automotive industry. Fully electric vehi-
cles (EVs) operate under distinctly variable conditions, re-
quiring high-voltage battery packs to meet their torque/power
demands. Our goal is to provide a simulation engine which,
for a given battery pack size, determines when recharging
or battery pack replacement are needed. To that end, we
study both the State-of-Charge (SOC) and the State-of-Health
(SOH) indicators, using discrete state space models for both.
Predictions are based on a probabilistic characterization of
EV usage profiles, which in turn are a function of generic
user-input, such as mission maps, vehicle mechanical char-
acteristics, driving schedules, and battery pack configuration.
State space models benefit from the incorporation of meta-
models for the ohmic internal resistance and the Coulomb
efficiency of the pack. Both meta-models i) effectively in-
troduce additional phenomenology –such as dependency on
the magnitude of discharged current and depth of discharge
(DoD)–, and ii) provide a link between SOC/SOH and how
each discharge cycle affects the health status of the battery
pack as a whole. The approach for the simulation engine pre-
sented here is stochastic in nature, meaning that prognostics
for the SOC and SOH are generated in a particle filter-based
scheme. Thus risk and confidence intervals can be obtained
for the end-of-discharge and end-of-life respectively

1. INTRODUCTION

Today, the enhance of greenhouse gases in the atmosphere is
one of the main contributors to global warming (Bose, 2010).
This scenario has forced us to look for alternative and en-
vironmentally friendly power sources. An example of this
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new paradigm comes from the electrification of transporta-
tion. Although internal combustion engines are still the stan-
dard, in the last decade several versions of hybrid and elec-
tric vehicles (EVs) have become a real alternative to the pub-
lic worldwide (Macharis, Lebeau, Mierlo, & Lebeau, 2013).
Companies like Nissan, Renault, and Tesla, often in cooper-
ation with their respective national governments, have devel-
oped long range and clean transportation accessible to wide
segments of the market (Wansart & Schneider, 2010).

However, there are still significant challenges to meet. A ba-
sic example relates to range anxiety (Yang et al., 2015), i.e.
the fear that a vehicle has insufficient energy to reach its des-
tination, stranding its passengers. Several strategies are cur-
rently being used to alleviate it, such as the deployment of
extensive charging infrastructure, precise navigation, and ac-
curate range prediction. But the issue of being unable to as-
sign risk or a confidence interval to when the energy storage
system (ESS) will run out of power, persists.

Another important ESS challenge involves the design and siz-
ing of the battery pack. Price, together with considerations
on volume and weight, argues for a limited size or number
of modules (Wansart & Schneider, 2010). Even more impor-
tantly, the future usage profile of an EV is an unknown piece
of information, and thus the manufacturer needs to plan for
different contingencies and always aim for robustness. Under
normal usage, the battery pack of the Nissan Leaf is expected
to have a lifespan of approximately ten years (Zeff, 2016).
However, normal usage may require rather specific condi-
tions, both environmental and driver-dependent, that are not
well-defined. What happens if the EV is driven aggressively,
or charged erratically?, Or even operated consistently under
hostile weather? We are interested in determining when a re-
placement will be required, or equivalently, to predict battery
pack remaining life as a function of future usage profile.

Dealing with these problems means we need to model, esti-
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mate, and make predictions on both the SOC and the SOH
(Xiong, He, Sun, & Zhao, 2013; Pattipati, Sankavaram, &
Pattipati, 2011; Han, Xu, Yuan, & Shen, 2014). Various ap-
proaches to study them have been employed, such as neural
networks, fuzzy logic, or Bayesian methods. Within these,
models ranging from electrochemical to circuit-based and
empirical have been used (Charkhgard & Farrokhi, 2010;
Salkind, Fennie, Singh, Atwater, & Reisner, 1999; Saha,
Goebel, Poll, & Christophersen, 2009; Orchard, Tang, Saha,
Goebel, & Vachtsevanos, 2010). In this work we employ
Bayesian processors on empirical state-space models of the
SOC and SOH. The family of sequential Monte Carlo (SMC)
methods is effective when dealing with nonlinear phenomena,
and as such, long-term predictions are accordingly generated
within a particle filter (PF)-based scheme.

In this paper we build a simulation engine that delivers
stochastic predictions for i) battery pack autonomy, and ii)
battery pack remaining life. How aggressively the vehicle is
driven, its mission, and the configuration of the battery pack
are all generic inputs in our simulation. The stochastic na-
ture of our formulation allows to obtain associated measures
of risk and confidence intervals for the end-of-discharge and
end-of-life. We include lithium-ion battery phenomenology
(Urbain, Rael, Davat, & Desprez, 2008; Miles, 2001; Penna,
Nascimento, & Rodrigues, 2012), and how operational condi-
tions in each discharge cycle affect both the SOC/SOH indi-
cators. We aim to quantify how these conditions significantly
influence long-term evolution, especially for the SOH.

The article is organized as follows: Section 2 describes the
main mathematical tools used in this work. Section 3 presents
the basis of the electrical/mechanical modeling used to gen-
erate usage profiles. Section 4 deals with the battery pack au-
tonomy problem through SOC prediction. The battery pack
remaining life estimation is tackled in Section 5. In Section
6, we summarize our conclusions.

2. THEORETICAL FRAMEWORK

Estimation of SOC/SOH (Xiong et al., 2013; Pattipati et al.,
2011) is important, but their future behavior is critical to bat-
tery autonomy and remaining life. End-of-life indicators al-
low us to take informed decisions on when we need a recharge
or replacement (Han et al., 2014). These indicators, however,
are not directly observable. We need to perform statistical in-
ferences, based on variables we are capable to sense or evalu-
ate. We begin this section by exploring Bayesian inference in
the context of sequential Monte Carlo (SMC) methods. Then
we introduce a PF-based prognosis scheme, and finish with a
characterization of end-of-life indicators.

2.1. Bayesian inference

The evolution of dynamical systems can be described by
state-space models, whether they contain differential or dif-

ference equations:

xk = fk(xk−1, vk−1) (1)
zk = hk(xk, nk), (2)

where Eqns. (1) and (2) correspond to the evolution of the
state vector {xk, k ∈ N} and measurement vector {zk, k ∈
N}. In this formulation, fk : Rnx × Rnv → Rnx and
hk : Rnx × Rnn → Rnz are non-linear functions, with
{vk−1, k ∈ N} and {nk, k ∈ N} corresponding to inde-
pendent and identically distributed process and measurement
noises, respectively.

The Bayesian filtering problem deals with obtaining informa-
tion about the state xk recursively, using the available mea-
surements z1:k until time k. Thus we seek the probability
density function (pdf) p(xk|z1:k), also known as the posterior
distribution of the state vector xk. Let us assume the pdf at
time k− 1, p(xk−1|z1:k−1), is available. Through the predic-
tion and update steps of the filter we can obtain the posterior
pdf at time k, by means of a new observation arriving at time
k and Bayes theorem (Gregory, 2005):

Posterior︷ ︸︸ ︷
p(xk|z1:k) =

Likelihood︷ ︸︸ ︷
p(zk|xk)

Prior︷ ︸︸ ︷
p(xk|z1:k−1)

p(zk|z1:k−1)︸ ︷︷ ︸
Evidence

. (3)

Eq. (3) corresponds to the theoretical solution for the opti-
mal Bayesian estimation. However, an analytical form can
not be computed generally. If the state space model is linear
and affected by Gaussian noises, optimal analytical solutions
(in the mean square error sense) can be obtained. These in-
clude the Kalman filter (Kalman, 1960), and grid-based filters
(Arulampalam, Maskell, Gordon, & Clapp, 2002).

2.2. Particle filters (PF)

When models are non-linear and noises non-Gaussian, we re-
sort to sub-optimal methods (Creal, 2012). Here the posterior
pdf is represented by a set of random samples, with associated
weights (particles). Let {xi0:k, wik}

Np

i=1 be a set of Np parti-
cles that characterizes the posterior pdf p(x0:k|z1:k), where
{xi0:k, i = 1, .., Np} is a set of support mass points, with as-
sociated weights {wik, i = 1, .., Np}, and x0:k = {xj , j =
0, .., k} corresponds to all the states at time k. The weights
are normalized, such that

∑Np

i=1 w
i
k = 1. The posterior pdf at

time k can then be approximated by:

p(x0:k|z1:k) ≈
Np∑
i=1

wikδ(x0:k − xi0:k). (4)

The expression in Eq. (4) is an empirical distribution that
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approximates the real posterior pdf, p(x0:k|z1:k), and which
weights are chosen through the importance sampling princi-
ple (Doucet & Johansen, 2008).

As the number of particles Np → ∞, the approximation
(see Eq. (4)) converges to the true posterior pdf p(xk|z1:k)
(Doucet, Godsill, & Andrieu, 2000; Creal, 2012; Doucet
& Johansen, 2008). In this way, the importance sampling
method recursively propagates the samples set, along with
its associated weights, whenever a new observation arrives
sequentially. However, this algorithm is often vulnerable to
the degeneracy phenomenon (Arulampalam et al., 2002). A
solution to this problem is given by re-sampling. When re-
sampling operates, a new set of samples {xi∗k } is generated,
through Np re-samples (with replacement), such that:

P(xi∗k = xjk) = wjk. (5)

Although re-sampling reduces degeneracy, it also introduces
negative effects (Doucet et al., 2000; Doucet & Johansen,
2008). The most significant particles, with large associated
weights wik, are sampled many times. This yield to a lack
of diversity amongst particles, with a population that is com-
posed largely by a repetition of a few of them.

2.3. Regularized particle filter (RPF)

A solution to the problem of lack of diversity is given by the
regularized particle filter (Musso, Oudjane, & Gland, 2001).
In the re-sampling stage of the sequential importance sam-
pling algorithm, particles are sampled from a discrete approx-
imation. For that reason, it is possible that over time this
would lead to severe particle collapse, where all of them oc-
cupy the same position in state space. To avoid that, the reg-
ularized PF samples from a continuous distribution instead:

p(xk|z1:k) ≈
Np∑
i=1

wikKh(xk − xik), (6)

where

Kh =
1

hnx
K
(x
h

)
(7)

is the rescaled kernel density K(· ), h > 0 is the kernel band-
width, and nx is the dimension of the state vector. The kernel
and bandwidth are chosen to minimize the MSE between the
true posterior density and the regularized empirical represen-
tation in Eq. (6). In the special case of all particles having the
same weight, the optimal choice for the kernel is the Epanech-
nikov kernel:

K(x) =

{nx+4
2cnx

(1− |x|) if |x| < 1

0 otherwise
, (8)

where cnx is the volume of the unit sphere in Rnx . When the
underlying density is Gaussian with a unit covariance matrix,
the optimal choice for the bandwidth is:

hopt = A ·N−
1

nx+4 , (9)

A =
(
8c−1nx

· (nx + 4) · (2
√
π)nx

) 1
nx+4 . (10)

2.4. PF-based prognosis scheme for dynamic systems

Prognosis schemes can be understood as long-term predic-
tions on a system. Through state-space modeling, it is pos-
sible to describe an indicator’s evolution through time. Let
us consider the n-step prediction for the conditional pdf
p̂(xik+τ |xik+τ−1). This describes the state evolution in the
future time k+ τ, (τ = 1, .., n) when the particle xik+τ−1 is
used as initial condition. Assuming current weights {wit}

Np

i=1

are a good representation of the state pdf at time k, then the
state pdf at time k + τ can be approximated by the law of
total probabilities and weights at time k+ τ − 1, as shown in
Eq. (11):

p̂(xk+τ |x̂1:k+τ−1) ≈
Np∑
i=1

wik+τ−1 · p̂(xik+τ |x̂ik+τ−1),∀τ ∈ {1, .., n}. (11)

The weight of each particle must be modified in each predic-
tion step τ to evaluate Eq. (11). Thus, an update of parti-
cle weights is necessary, but it can not depend on the arrival
of new measurements. One approach to circumvent this is-
sue, and that has proven particularly useful in large predic-
tion horizons (Orchard & Vachtsevanos, 2009), is based on
the regularized PF algorithm (Musso et al., 2001). Instead of
updating particle weights in each prediction step, the uncer-
tainty is represented by a re-sampling of the predicted state
pdf (see Eq. (11)). In this way, the state pdf in future time
steps is characterized by the position of particles, and not by
their associated weights. Consider the discrete approximation
(see Eq. (12)) for the predicted state pdf:

p̂(xt+k|x̂1:t+k−1
) ≈

Np∑
i=1

wit+k−1 ·Kh(xt+k − E{xit+k|x̂it+k−1}),
(12)

where K(· ) is a kernel density function (see the Epanech-
nikov kernel in Eq. (8)). This method proposes a computa-
tionally affordable solution based on the assumptions of un-
correlated process noise and the use of kernel transitions to
describe the state PDF before the re-sampling step. To avoid
a loss of diversity in the particle population we assume the
state covariance matrix Ŝk+τ is equal to the empirical covari-
ance matrix x̂k+τ , and that a set of particles with uniform
weights x̂k+τ−1 is available.
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2.5. Statistical characterization of the End-of-Discharge
and End-of-Life

The main objective of the prognosis algorithm is to charac-
terize the End-of-Discharge (EOD) and End-of-Life (EOL)
pdfs, for the SOC and SOH schemes respectively. The re-
sulting predicted pdfs contains critical information about the
evolution of the fault indicator over time. In the automotive
context, the EOD pertains to when a recharge is needed, while
the EOL relates to the concept of RUL, and when the battery
pack is set to be replaced.

These probabilities depend on both long-term predictions and
empirical knowledge about critical conditions for the system,
usually given as thresholds known as hazard zones (Orchard,
Tang, Goebel, & Vachtsevanos, 2009). Therefore, the prob-
ability of failure at any future time instant k = {eod, eol} is
given by the law of total probabilities:

P(EOD = eod) =

Np∑
i=1

P(Failure|X = x̂ieod) · wieod (13)

P(EOL = eol) =

Np∑
i=1

P(Failure|X = x̂ieol) · wieol. (14)

For SOC prognosis, critical conditions are met when the volt-
age measured at battery pack terminals falls below a certain
threshold. In the case of SOH, failure prognosis occurs at the
cycle when the battery pack capacity drops to a fraction of its
nominal value (in this work we consider a 75% of the initial
capacity).

One way to represent this information is through the compu-
tation of statistics, e.g. expectation values or 95% confidence
intervals, for either the EOD or EOL pdfs. We also incorpo-
rate a measure of risk (Orchard, Tang, et al., 2009) given by
the just-in-time point or JITPγ%. This metric specifies the
time instant where the probability of failure reaches a spec-
ified threshold γ. Both expectation and JITPγ% values for
the EOD are given by the following expressions:

ÊOD = E{EOD} = E{k |E{x(k)} = fth}, (15)

JITPγ% = arg min
eod

{P(EOD ≤ eod) ≥ γ%} , (16)

where γ takes values of {5%, 15%} to capture the behavior
of the pdf tail, and fth = 5% of the energy remaining in the
pack. Eqns. (15) and (16) are analogous for the EOL case,
but now fth corresponds to the 75% of the initial capacity of
the battery pack.

3. SIMULATING USAGE PROFILES FOR
ELECTRIC VEHICLES

We now explain the simulation procedure to obtain usage pro-
files as a function of generic inputs. First, we describe the bat-
tery pack (Section 3.1) and EV mechanical parameters (Sec-
tion 3.2). This information coupled with the mission map
(Section 3.3), i.e. the terrain characteristics, and the driving
schedule (or how the vehicle will be driven, Section 3.4), al-
low us to obtain the power demand. Power demand (Section
3.5) combined with the battery pack electrical description al-
low us to reach our output: a usage profile or time-series of
current consumption that the ESS must deliver to fulfill the
given mission (Section 3.6). Figure 1 summarizes this pro-
cess.

Figure 1. A progression scheme to simulating usage profiles
for EVs.

We describe the simulation with inputs as realistic as possible.
Along that line, we exemplify for the Nissan Leaf case. All
the complexity and large amount of parameters required to
represent the EV, the ESS, its mission, and driving schedules
is reduced to a current demand, as explained below.

3.1. Battery pack: Electrical characterization

The schematics of a generic ESS consist on the aggregation of
cells into modules, and modules into a pack. Detailed data on
battery pack characteristics is not abundant. However, data-
sheets with rated (nominal) quantities are available, and in the
case of the Nissan Leaf there is additional information com-
ing from the cell manufacturer, Automotive Energy Supply
Corporation (Ikezoe, Hirata, Amemiya, & Miyamoto, 2012)
and from the U.S. Department of Energy and their Advanced
Vehicles Testing Activity Program1 (AVT).

The Leaf’s 24 kWh battery pack consists of 48 modules and
each module contains four battery cells, for a total of 192
cells, in a 96 series of two parallel strings configuration. Each
module contains four lithium-ion battery cells. At a 66.2 Ah
rated capacity, the ESS is expected to have a lifespan of ap-

1See https://avt.inl.gov/
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Table 1. Battery pack characterization: input example for the
2015 Nissan Leaf. Spatial dimensions and weights are given
for completeness, but don’t affect our modeling.

Pack from AVT Description
vmax 403.2 Maximum Rated Voltage (V )
vnom 360 Nominal Rated Voltage (V )
Enom 24 Rated Energy (kWh)
Cnom 66.2 Rated Capacity (Ah)
Pout > 90 Power Output (kW )
ρE 140 Energy density (Wh/kg)
l 1.57 Length (m)
w 1.19 Width (m)
h 0.26 Height (m)
M 294 Weight (kg)

Module (from AESC) Description
l 0.30 Length (m)
w 0.22 Width (m)
h 0.04 Height (m)
M 3.8 Weight (kg)

Cell (from AESC) Description
vmax 4.2 Maximum Rated Voltage (V )
vnom 3.8 Nominal Rated Voltage (V )
Cnom 33.1 Rated Capacity (Ah)
ρE 157 Energy density (Wh/kg)
l 0.29 Length (m)
w 0.22 Width (m)
h 0.007 Height (m)
M 0.8 Weight (kg)

proximately 8 years (i.e. to retain 70% of its capacity for a
decade) (Zeff, 2016). For any given cycle, it can be charged
from total discharge to 80% capacity in about 30 minutes us-
ing a DC fast charger.

We list the input data necessary for battery pack characteri-
zation in Table 1, which sums up the values obtained from
AESC and the AVT. In addition to this, it is important to re-
mark that for a detailed modeling we also need the functional
forms (curves or lookup tables) for discharges of both indi-
vidual cells and the battery pack.

3.2. Vehicle mechanical parameters

To obtain the mechanical power required to complete a mis-
sion, we need to characterize dynamics. And to characterize
dynamics, our simulation requires the mechanical parameters
of the considered EV. These parameters are shown in the left
column of Table 2, and can be specified for any vehicle the
user chooses.

The parameters in the first part of the table account for the
EV motion through the air flow, and therefore will be neces-
sary to model dissipative forces acting against the direction
of motion (aerodynamic and drag). The second part of the ta-
ble mostly accounts for structural and engine parameters that
become relevant for cruise control schemes. Additional envi-
ronmental parameters, which we have considered fixed in our
simulation are listed in Table 3:

Table 2. Mechanical parameters: input example for 2015 Nis-
san Leaf.

Parameter Value Description
m 1525 EV+ driver mass (kg)
Cd 0.29 Drag coefficient (dimensionless)
A 2.27 Surface frontal area (m2)
cr1 0.01 Static drag coeff. (dimensionless)
cr2 1.789e-4 Dynamic drag coefficient (s/m)
nw 4 Number of wheels (dimensionless)
Iw 0.0001 Wheel moment of inertia (kg m2)
rw 0.4064 Radius of a wheel (m)

meq m+
nwIw
r2w

Equivalent mass (kg)

Tm 280 Maximum torque (N m)
wm 285.88 Maximum engine speed (rad/s)

Table 3. Environmental parameters (fixed).

Parameter Value Description
uw 0 wind velocity (m/s)
ρa 1.204 air density (kg/m3)
g 9.81 gravitational acceleration (m/s2)

3.3. Mission Map: Terrain characteristics

The next input of our simulation is the trajectory. We parame-
terize it by two quantities: distance, and elevation profile. The
first refers to the cumulative length traveled in a given dis-
charge cycle, while the elevation profile describes the slopes
the vehicle must go through. The elevation changes are the
major contributor to the ESS energy budget when compared
to the load of lateral accelerations. Our simulation accepts ar-
bitrary entries for the vehicle’s trajectory, and it requires the
user only to define an starting and finishing point in Google
Maps. The slope angle -that describes the elevation changes
through the trajectory- is: θ(r) = dh

dr |r. The elevation profile
of the route is defined as h(r).

0 50 100 150 200
300

400

500

600

700

800

Distance [kms]

El
ev

at
io

n 
[m

]

Original
Interpolated to smallest original distance

Figure 2. Elevation profile h(r) in meters of the route be-
tween Tucson and Phoenix, AZ, North-South direction.

Figure 2 shows an example for this module based on the route
between two cities in Arizona, USA: Tucson and Phoenix.
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The right panel shows the elevation profile h(r) as a func-
tion of traveled distance (in the North-South direction). Over
191 kilometers -which results in a larger energy requirement
than a full discharge of a new ESS in the Nissan Leaf- the
height change is almost 400 meters. This results in some-
what smooth slope changes, with maximum local variations
of dhdr |r∼ ±10◦.

3.4. Driving schedules

Now the user of the simulation engine needs to specify how
the vehicle is driven. The U.S. Environmental Protection
Agency data provide public chassis dynamometer driving
schedules2 that we will use as strongly differentiated driving
styles in our simulation (Kim, Rousseau, & Rask, 2016). A
summary of the available options for user input can be found
in Table 4 and Figure 3.

Table 4. EPA vehicle chassis dynamometer driving schedules.

Code Description
US06 High acceleration, aggressive driving
HWFET Highway conditions under 60 mph
NYCC Low speed stop-and-go traffic
UDDS Represents city driving conditions
FTP UDDS and then its first 505 s again
HDUDDS UDSS for heavy duty vehicle testing

Time [s]

0 100 200 300 400 500 600 700 800

V
e

lo
c
it
y
 [

k
m

/h
]

0

20

40

60

80

100

120

140
HWFET

US06

NYCC

Figure 3. Examples of different EPA vehicle dynamometer
driving schedules: Red, green and blue lines represent the
HWFET, US06, and NYCC driving styles respectively.

3.5. Power demand for the EV mission

We can now bring together most of the modules described
in this section. The EV mechanical parameters are the ones
listed in Table 2, the environmental variables are those from
Table 3, the mission map will have a constant elevation pro-
file, and we will use the HWFET schedule as our velocity
profile u(t). Under these conditions, the distance traveled by
the EV is 164.92 km, with a mission time of 7,659 s and me-
chanical energetic requirement of 21.69 kWh. Since we use
a constant αeff = 0.9 for the conversion of mechanical into

2See https://www.epa.gov/vehicle-and-fuel-emissions-testing/
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Figure 4. (a) Required Power Preq to keep the EV at HWFET
driving schedule speeds. (b) Histogram of Preq (see text for
details).

electrical energy, the mission requires approximately all the
capacity of the battery pack, i.e. the rated 24 kWh.

For physical modeling (Young, Wang, Wang, & Strunz, 2013)
we include forces such as gravity (fg), aerodynamic (faero)
and drag (both static fr−sta, and dynamical fr−dyn):

fg = m · g · sin(θ) (17)
faero = (1/2) · Cd · ρa ·A · (u(t) + uw)2 (18)

fr−sta = m · g · cos(θ) · cr1 (19)
fr−dyn = m · g · cos(θ) · cr2 · u(t) (20)

with all the symbols previously defined. Being non-
conservative forces, we have the equilibrium equation:

dK(t)/dt = Preq(t)− Pdis(t), (21)

where K is the kinetic energy, Preq is the required power the
engine shall exert to keep the EV moving at u(t), and Pdis is
the power dissipated by non-conservative forces.

Figure 4 shows the required mechanical power the battery
pack and AC motor combination must provide to keep the
EV on the HWFET driving schedule. The Figure also dis-
plays a histogram for the Preq , where we can observe that
the mean consumption falls around 12000 W . This value is
consistent with highway measurements done with the Nissan
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Leaf (Wishart, Carlson, Chambon, & Gray, 2013), and thus
validate our simple dynamical modeling.

3.6. EV current demand: A deterministic usage profile

Finally we obtain the current demand during a given mission.
This is a time series we call usage profile. To do this we
begin by building an approximation for both the open-circuit
voltage (OCV) (Snihir, Rey, Verbitskiy, Belfadhel-Ayeb, &
Notten, 2006; Weng, Sun, & Peng, 2013) and the internal
ohmic resistance of the battery pack, from AESC and AVT
data.
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Figure 5. EV current demand: Simulated for a full discharge
of the battery pack (see text for details).

Then we combine it with the known power demand the ESS
fulfills in a given mission:

Preq(n) = αeff · v(n) · i(n), (22)

where n represents time steps, v is the voltage, and i is the
current. We can combine the OCV and Eq. (22), so the prob-
lem reduces to iteratively solve a system of two equations
and two unknowns. We prove that all the solutions for i(n)
are complex conjugate, except for the one shown in Figure 5.
This current demand is the fundamental building block to
tackle the battery pack SOC/SOH problems.

4. BATTERY PACK AUTONOMY: FILTERING AND
PROGNOSIS SCHEMES FOR THE STATE-OF-CHARGE

In the stochastic formulation of the battery autonomy prob-
lem, we need to provide confidence intervals for the end-of-
discharge (EOD). To achieve the goal we need to consider
operational conditions in a given cycle, and how these drive
the n-step SOC prediction into the future.

An example comes from the internal resistance: we need to
quantify how operational conditions affect it to introduce it
effectively into a SOC prediction scheme (Section 4.1). Es-
timation of the SOC (Section 4.3) is not our objective, but it
provides an opportunity to test the model and the simulated
deterministic profiles obtained in Section 3. A more challeng-
ing issue is the prognosis problem (Section 4.5), where we
predict future values of the SOC to plan and take decisions
on impending device operation. The difficulty arises from

the ignorance about the usage profile on the prognosis stage.
Dealing with that uncertainty means resorting to probabilistic
characterizations of the EV usage profile (Section 4.4).

4.1. Metamodel A: Internal ohmic resistance

A metamodel can be defined as a surrogate model. It defines
the components of a conceptual process, by the development
of the constraints and theories applicable to a class of prob-
lems (Friedman, 1996). We apply this concept to assess the
internal impedance (|zint|, or resistance Rint) of the EV bat-
tery back.

Resistance may depend on many variables, such as temper-
ature, energy stored in the battery, and current demand. We
seek to quantify Rint, given the available information from
a single discharge in a resistance AVT test (Espinoza, 2017).
The first thing to notice is the obvious dependence of the in-
ternal resistance with SOC. We can fit a polynomial function
as:

|zint|(SOC) = 8.14e−9 · SOC4 − 1.94e−6 · SOC3...
+ 1.71e−4 · SOC2 − 0.007 · SOC + 0.226,

(23)
for SOC between 0 and 100%, and |zint| measured in Ω.
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Figure 6. Graphical representation of the obtained model for
the internal resistance of the pack. This 2-D lookup table is
referred as |zint|(SOC, I) from now on. Color-bar shows its
numerical values in Ω.

AESC data give us voltage vs. SOC curves for constant dis-
charge rates: C/3, C, 1.84 C, and 2.78 C. Since these re-
fer to new cells, we can aggregate them into a pack and cor-
rect for aging effects (Espinoza, 2017). Then we compare
to AVT data. If we attribute the different scaling of AESC-
based curves purely to the different current demands, we can
derive a dependency on current for the internal resistance of
the pack. This can be written as a polynomial fit of the form:

|zint|(I) = −1.87e−9 ·I3−4.84e−7 ·I2+1.3e−4 ·I+0.1518,
(24)

where the current I is saturated below and above 15 and
190 A respectively, and |zint| is measured in Ω. This de-
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pendency is much weaker than the SOC one, but still con-
siderable if we take into account that small changes lead
to large discrepancies when doing n-step predictions for the
SOC. Combining both Eqns. (23) and (24), and assuming sep-
aration of variables, we obtain a model (or 2-D lookup ta-
ble) for the internal resistance as a function of SOC and cur-
rent. A graphical representation is illustrated in Figure 6 for
|zint|(SOC, I). It should be noted that environmental vari-
ables are excluded since we don’t have priors on them.

4.2. State space model for the SOC

The state space (SS) description for the SOC corresponds to
an empirical model based on the reduction of the battery pack
operation into an equivalent circuit (Pola et al., 2015; Rah-
moun, Biechl, & Rosin, 2012). It is discrete in time and has
only two states, x1(k), an unknown model parameter, and
x2(k), the SOC. The output is given by a voltage signal v(k).
We present the model in Eqns. (25), (26), and (27).

State transition equations

x1(k + 1) = ε · x1(k) + ω1(k)

εfiltering = 1, εprognosis =
|zint|(x2(k), i(k))

x1(k)

(25)

x2(k + 1) = x2(k)−
[
VL + (V0 − VL) · eγ·(x2(k)−1) + ...

αVL(x2(k)− 1) + (1− α)VL · (e−β − e−β·
√
x2(k)+ζ)−

i(k) · x1(k)
]
· i(k) ·∆t · E−1crit + ω2(k)

(26)

Measurement equation

v(k) = VL + (V0 − VL) · eγ·(x2(k)−1) + αVL · (x2(k) + ...

−1) + (1− α) · VL · (e−β − e−β·
√
x2(k)+ζ)− ...

i(k) · x1(k) + η(k).

(27)

where the current i(k) [A] and the sample time ∆t[s] are input
variables, and the battery voltage v(k) [V ] is the system out-
put. The quantities V0, VL, α, β, γ, and ζ completely capture
the OCV non-linear behavior, and are to be estimated off-line
(see Table 5). Ecrit is the expected total energy delivered by
the pack (that could be inferred from the nominal capacity or
the integration of a discharge capacity curves). Process (ω1

and ω2) and measurement (η) noises are assumed Gaussian.
As we mentioned, x1 is an unknown model parameter. We as-
sociate this state with the instantaneous value of the module
of the pack impedance, |zint| (or resistance Rint).

A notable feature of this SS model that deviates from (Pola
et al., 2015) is the inclusion of an ε factor in the x1 equation
that enriches the phenomenology of the model. While on a
filtering stage ε = 1 and we have artificial evolution for the

state (Liu & West, 2001); during prognosis we make use of
all prior knowledge and x1 obeys metamodel A.

Table 5. Off-line parameters of the measurement equation of
the SOC SS model

Parameter Value
α 0.0995
β 9.2501
γ 22.5058
ζ 0.0125
Ecrit 76098121.9823 [V ·A · s]
V0 404.0559 [V]
VL 394.7449 [V]

4.3. Regularized particle filter applied to the SOC SS
model

Although not the main objective in this section, estimation
is interesting in its own right. For EVs, reliable information
about the remaining energy on the ESS is critical. Given that
the SOC SS model is non-linear, we resort to a sub-optimal
solution which may also be implemented on-line: the PF
(Orchard & Vachtsevanos, 2009; Creal, 2012). To exemplify
the estimation of both the SOC and the internal resistance dur-
ing a battery pack discharge, we will rely only on current and
voltage measurements. These “measurements” are the pro-
files we have simulated in Section 3, specifically as shown in
Figure 5.

Filtered X1 and V

Time [s]
1000 2000 3000 4000 5000 6000 7000

|Z
in

t
| 
[
Ω

]

0.1

0.15

0.2

0.25
R

particles, reali1

R
est

Time [s]
1000 2000 3000 4000 5000 6000 7000

|Z
in

t
| 
[
Ω

]

0.1

0.15

0.2

0.25

Resampled

R
est

(a)

Filtered X1 and V

Time [s]
1000 2000 3000 4000 5000 6000 7000

|Z
in

t
| 
[
Ω

]

0.1

0.15

0.2

0.25 R
particles, reali1

R
est

Time [s]
1000 2000 3000 4000 5000 6000 7000

|Z
in

t
| 
[
Ω

]

0.1

0.15

0.2

0.25

Resampled

R
est

Time [s]
1000 2000 3000 4000 5000 6000 7000

V
o
lt
a
g
e
 [
V

]

250

300

350

400

V
data

V
est

Time [s]
1000 2000 3000 4000 5000 6000 7000

W
e
ig

h
ts

0.01

0.02

0.03

0.04

0.05
Weights, reali1, resampled

Weights, reali1

(b)

Figure 7. (a) Internal resistance of the battery pack as a func-
tion of time, with particles represented as gray points. Their
weighted mean average is shown as a black line. (b) Voltage
measurement for the battery pack as a function of time (cyan),
with particles represented as gray points.
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Filtered and Predicted X2
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Figure 8. SOC estimation (black curve) rapidly converges to
the real value, from erroneous initial conditions. SOC estima-
tion follows the real value (blue line) for the discharge, with
deviations < 2.5%

Estimation is performed with unknown initial conditions as-
sociated to the SOC. In practice, discharges won’t always
start from a fully charged state. A uniform distribution be-
tween 80% and 90% is assumed as initial condition for x2.
Convergence to the real value is achieved by an adaptive
learning strategy (Orchard, Tobar, & Vachtsevanos, 2009).

Results of the estimation for the pack internal resistance and
SOC are shown in Figure 7 and 8 respectively. In these
we show the propagating pdfs, which are approximated by
40 particles. The internal resistance shows its characteristic
functional form, showing that artificial evolution is an effec-
tive technique at the filtering stage. There is a clear depen-
dence with SOC even though this wasn’t included in the SS
model. Accordingly, voltage is also estimated correctly, with
very small spread of the particles around the simulated data.
SOC estimation shows to rapidly converge to the real value,
from a deliberately poor guess for its initial condition. The
estimation (black curve) closely follows the ground truth (or
real value for the discharge), with deviations < 2.5%.

4.4. Probabilistic characterization of usage profiles based
on Markov chains

When dealing with prognosis, a simplified approach is to per-
form long-term predictions deterministically. The alternative
considered here is to define usage profiles in a future hori-
zon, with probabilistic characterizations of them. This is a
task plagued with difficulties but potentially more rewarding
in terms of accuracy and exactitude of the predictions.

The probabilistic characterization of the usage profile is ba-
sically a model that describes how the vehicle is used. This
is set by the mission map, EV mechanical parameters and the
driving schedule. They are all embedded in the construction
of the deterministic usage profile we obtained from Section 3.
However, to tackle the n-step prediction problem, we go from
deterministic to statistical characterization of the usage pro-
file. For this, we follow (Navarrete, 2014; Pola et al., 2015;

Espinoza, 2017): these propose a general methodology to
model real-world signals with homogeneous Markov chains.
It is important to note that this characterization follows an op-
timal approach that maximizes the number of states, and min-
imizes the estimation error of transition probabilities, consid-
ering that only finite data is available.

4.5. Prognosis scheme applied to the SOC SS model

When no measurements are acquired, the uncertainty of a cur-
rent state must be propagated using a regularized PF-based
approach, as described in Section 2.4. The goal is to statis-
tically characterize the EOD through an expectation value,
95% confidence intervals, and JITPs (Section 2.5). All this,
starting only from the known initial condition at k0 = 0
of a fully charged battery pack, SOC SS model knowledge,
and a probabilistic characterization of EV usage profiles via
a Markov chain model. Due to the stochastic nature of PF-
based predictions, independent randomized realizations are
necessary for the statistical characterization of the EOD.

Previous works (Pola et al., 2015; Olivares, Cerda, Orchard,
& Silva, 2013) have tested what are the appropriate parame-
ters for the regularized PF-based prognosis algorithm in the
case of lithium-ion batteries. These parameters are i) the
number of particles to portray the states pdf satisfactorily in
each prediction step, ii) the number of iterations of the prog-
nosis to estimate the EOD accurately, and iii) the number of
Markov chain realizations to represent uncertainty precisely.
By means of a simplified SS model, and direct comparison
between an optimal approach (Kalman filter) and the PF, they
settled for 40 particles and one iteration of the prognosis al-
gorithm for each of 25 independent Markov chain model re-
alizations. In this work, we arrive to similar conclusions. Us-
ing sensitivity tests to determine convergence of our results,
we maintain the 40 particles, and perform prognosis for 50
independent realizations of the probabilistic characterization
of the usage profile. Both the accuracy and precision of the
EOD depend strongly on this last parameter, and due to i) the
highly variable current demand in each Markov chain, and
ii) that the prognosis horizon covers a whole discharge of the
battery pack, we double their number of realizations. All the
parameters used in our long-term SOC prognosis are listed in
Table 6.

Table 6. Example of Long-term SOC prognosis parameters

Parameter Value
Number of particles Np 40
Realizations of Markov model 50
Realizations of prognosis 50
Process Noise (ω1, ω2) [N (0, 0.17),N (0, 0.12)]
Hazard zone (SOC) 4-6%
x1 initial condition 0.15
x2 initial condition 100%
k0 prognosis start 0 s
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Table 7. Example of Long-term SOC prognosis parameters

#s E{EOD} 95% c.i. JITP5% JITP15%

1 6957 [6658, 7286] 6681 6732
2 7058 [6492, 7477] 6540 6691
3 7070 [6585, 7471] 6620 6754
4 7172 [6924, 7474] 6954 7049
5 7291 [6923, 7492] 6952 7082
6 6855 [6525, 7263] 6559 6649
7 7137 [6639, 7478] 6696 6886
8 7242 [6957, 7478] 7041 7114

Table 7 shows (a fraction) of our results for the E{EOD},
95% confidence intervals, JITP5%, and JITP15% for 10 out
of the 50 realizations of the prognosis algorithm. It is worth
noting that E{EOD} is indeed a random variable, and that
only in a couple of realizations the algorithm overestimates
the EOD ground truth (7193 s). This is a positive aspect of our
implementation as, in the case of EVs, underestimating the
time when a recharge is needed results in not being stranded
(and contributes to alleviate the effects of range anxiety).
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Figure 9. Top: prognosis result for internal resistance (pur-
ple). Confidence levels are shown in green, while individual
particles are displayed as gray points. Bottom: prognosis re-
sult for the voltage (purple). The measured voltage is shown
in blue, while individual particles are again displayed as gray
points.

Figures 9 and 10 illustrate the combined results for all 50
independent and randomized realizations of the algorithm.
Figure 9 shows the long-term prognosis for both the inter-
nal impedance module and voltage of the battery pack. Here
we observe two important features. The first is that the in-
ternal resistance follows a very similar trend to the one in
Figure 7(a): this effectively means that the results of the
more complex SS model (with εprognosis) include those of
the simpler case (with εfiltering). Second, we can see how
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Figure 10. Top: SOC long-term prognosis (purple), while its
ground truth is displayed as a blue line. Confidence levels are
shown in green, and individual particles as gray points. Bot-
tom: Statistical characterization of the EOD pdf. This is the
result of 50 independent realizations of the algorithm. Verti-
cal lines show EOD confidence intervals, expected value, and
its ground truth.

the predicted voltage achieves a much better agreement with
its ground truth than in previous investigations (Pola et al.,
2015), especially at the low-energy end of the curve. The ex-
planation resides in a) the implementation of the metamodel
for the internal resistance, which yields to inevitable better
results for its long-term prediction, and b) a good parameter-
ization of the OCV curve at the low-SOC interval, with the
addition of the ζ parameter).

Figure 10 illustrate the SOC long-term prognosis and EOD
characterization. From the latter, we can extract values of
E{EOD} = 7059 s, [6534 − 7467 s] 95% confidence in-
terval, JITP5% = 6611 s, and JITP15% = 6765 s. The EOD
ground truth is 7193 s, so again we see how the overall perfor-
mance of the algorithm stays in the conservative side essen-
tial for EVs, and how the JITPs are effective in characterizing
the tail of the EOD pdf. The obtained confidence interval is
∼ 13% of the EOD ground truth, which is expected for a
prediction horizon that encompasses a full battery pack dis-
charge in which highly variable current demands need to be
met.
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The obtained statistics and their comparison to ground truth
values give us confidence as to using our simulation engine as
an effective tool to determine battery autonomy. The problem
of when an EV will need a re-charge is now one we can an-
swer within an stochastic formulation that helps the decision-
making process.

5. BATTERY PACK REMAINING LIFE: PROGNOSIS
SCHEMES APPLIED TO THE STATE-OF-HEALTH

Our last objective is to predict battery pack remaining life
as a function of i) pack size, and ii) operational conditions
through cycles. Given this information, we can establish
when a replacement will be required. Again, we work within
an stochastic formulation of the problem, looking to provide
measures of risk and confidence intervals for the battery end-
of-life (EOL). The lithium-ion battery pack is one of the most
important components in EVs, and its replacement is expen-
sive. Therefore, the offered warranty must be financially
feasible for the company to offer, but attractive enough for
drivers to actually buy the EV.

Figure 11. Scheme illustrating how individual cycle condi-
tions, namely DoD and current demand affect the Coulomb
efficiency and, in turn, the evolution of the SOH.

The purpose of our simulation engine is to provide a pre-
diction for each set of EV operating conditions. Thus in
the n-step SOH prognosis, we consider how individual cy-
cle conditions affect the capacity of the pack. Specifically we
build a metamodel which receives depth-of-discharge (DoD)
and current demand from the SOC scheme. These inputs are
translated into a dependency for the Coulomb efficiency (Sec-
tion 5.1). In turn, it is this parameter which drives the SOH,
as is evident from the simplified model in Section 5.2. The
prediction and remaining useful life (RUL) analyses are de-
veloped in Section 5.3. Figure 11 illustrate this process, por-
traying the link between SOC and SOH developed in this pa-
per.

5.1. Metamodel B: Coulomb efficiency

The Coulomb efficiency can be understood from the physics
of an electrochemical system. Essentially it describes the
ion transfer efficiency between cathode and anode (Bard &
Faulkner, 2001). During charging, lithium ions are trans-
ferred to the carbon (graphite) anode, forming a layer called
solid electrolyte interface. This layer is not removed com-
pletely during a discharge, and thickens as cycles go by. In
an analogous process, the cathode also develops a restric-
tive layer known as electrolyte oxidation (Urbain et al., 2008;
Miles, 2001).

From an empirical point of view, the Coulomb efficiency ηC
is a measure of how much usable energy is expected for the
discharge in progress relative to the capacity exhibited dur-
ing the previous cycle (Olivares et al., 2013). Again, we re-
sort to the concept of metamodeling to describe the Coulomb
efficiency. A priori, ηC depends on operational and envi-
ronmental variables (Bond, Burns, Stevens, Dahn, & Dahn,
2013), such as temperature, pressure, rest times between cy-
cles, depth of discharges, and current intensity for both charge
and discharge processes. We select the most important opera-
tional variables to enter the ηC metamodel: DoD and current
intensity demand during the discharge process.
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Figure 12. (a) Capacity curve simulation for different val-
ues of the Coulomb efficiency (b) Metamodel (or 2-D lookup
table) for ηC(DoD, I).

Since no information about Coulomb efficiency for the Nis-
san Leaf battery pack is available, we put ourselves in three
scenarios, i) one in which ηC strongly depends on DoD and
current magnitude, ii) one in which the dependence is weak,
and iii) an intermediate case between i) and ii). Figure 12(a)
shows what a simulation of a capacity curve for a battery pack
(C0 = 66.2 Ah) might look like for different values of ηC .
We choose grids in both DoD:{0%, 50%, 100%} and current
intensity:{1 A, 25 A, 50 A}, and by means of piecewise lin-
ear interpolation between the three points in each of these
grids, we obtain ηC from the simulation as a function of DoD
and current, respectively. Combining both dependencies, and
assuming separation of variables, we obtain a model (or 2-D
lookup table) as shown in Figure 12(b). It is worth noting that
this may give rise to capacity curves with variable Coulomb
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Table 8. SOH SS model parameters

Parameter Value
α2 0.15
β 1
x1 initial condition 66.2
x2 initial condition 0.2
Process Noise ω1 N (0, 0.05)
Process Noise ω2 N (0, 0.05)
Measurement Noise ν N (0, 0.1)

efficiencies (i.e. not necessarily a straight line): It all depends
on the operational conditions of individual discharge cycles.

5.2. State space model for the SOH

We focus on an empirical SS model. Previous investigations
(Olivares et al., 2013) have tested Bayesian filtering and PF-
based prognosis that include self-regeneration phenomena. In
this work we adopt the simplified approach of (Olivares et al.,
2013), where degradation is described by a linear Gaussian
dynamic system:

State transition equations

x1(k + 1) = ηC(DoD, I) · x1(k) + ω1(k) (28)
x2(k + 1) = α2 · x2(k) + β · U(k) + ω2(k) (29)

Measurement equation

y(k) = x1(k) + x2(k) + ν(k) (30)

where k is the cycle index; x1 is a state representing the bat-
tery SOH; x2 is a state associated with additional available
SOH due to regeneration phenomena; ηC is the Coulomb ef-
ficiency, and α2, β are model parameters. U is an external
input, where U(k) = 1 if a regeneration phenomenon is de-
tected at cycle k or U(k) = 0 if not. Finally, y(k) is the
measured SOH. Process (ω1 and ω2) and measurement (ν)
noises are assumed Gaussian. Parameters employed here are
listed in Table 8.

The external inputU must be statistically characterized by oc-
currences of the self-recharge phenomena in a given dataset.
Olivares et al. examined 68 of them from accelerated degra-
dation tests at the NASA Ames Prognostic Center of Excel-
lence. We don’t count with such dataset and thus have con-
sidered3 U(k) = 0 ∀k for prognosis-purposes.

5.3. Prognosis scheme applied to the SOH SS model

For long-term predictions, evolution in time is determined by
i) the sizing of the lithium-ion battery pack, ii) the usage pro-
file model, and iii) individual cycle conditions as the DoD and

3However, we have kept the equations in their original form in the code, so
it is an easy implementation when the external input can be characterized

current demand. When no measurements are acquired, the
uncertainty associated to the state pdf is propagated through
a prognosis algorithm. In our case the system is both lin-
ear and Gaussian, so we use the prediction equations of the
Kalman filter (Kalman, 1960). They are the optimal solution
for this problem, and are specified by:

x̂(k + 1) = A · x̂(k) +B · u(k) (31)
P (k + 1) = A · P (k) ·AT +Rww (32)

where x̂(k) represents the state expectation, A and B are ma-
trices that define the state equations and can be built from the
values listed in Table 8, P (k) is the state covariance matrix
at the k − th cycle, and Rww is the process noise covari-
ance matrix, also in Table 8. We can iterate these equations
and compute an n-step prediction for the SOH, defining the
hazard zone at a capacity of 49.65 Ah (75% of C0). This
is consistent with Nissan’s claim of battery packs retaining
70− 80% of their capacity after a decade.

The goal is to statistically characterize the EOL through an
expectation value, 95% confidence intervals, and JITPs. All
this starting from i) the known initial condition of a new bat-
tery pack, and ii) a fixed mission range of 105 km, with the
usage profile model of Section 4. As aging progresses ca-
pacity will diminish, making DoDs much higher, and at some
point turning the mission unfeasible. Since DoD increases
gradually, a gradual decrease in Coulomb efficiency would
be expected as cycles go by. The simulation engine, however,
has the capacity to set mission ranges arbitrarily, and also to
use different model usage profiles for different cycles. These
are input options that the user can choose.

Having chosen the intermediate dependence for ηC(I,DoD)
(Figure 12), now we can list the steps of the SOH long-term
prediction scheme and then analyze its results:

• a) Start from the initial conditions listed in Table 8.

• b) For the discharge cycle, run the prognosis scheme ap-
plied to the SOC SS model (see Section 4 for details and
the steps of that algorithm).

• c) From all prognosis and Markov chain realizations in
b), extract an average for the DoD and current in that
discharge.

• d) Use average DoD and I magnitude to evaluate meta-
model B, ηC(DoD, I).

• e) Using the obtained value for ηC(DoD, I), run the pre-
diction stage of the Kalman filter, Eqns. (31) and (32), to
evolve the SOH.

• f) Having updated the capacity of the battery pack, go
back to b), and iterate.

• g) Iteration finishes when capacity has gone down the
hazard zone (75% of C0), and EOL statistical character-
ization is achieved.
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Figure 13. Top: SOH long-term prognosis (blue line) and its
95% confidence level at each cycle (green lines). The dash-
black degradation curve represent the evolution of the system
if a constant ηC(DoD = 50%, I = 25 A) had been consid-
ered for all cycles. The horizontal dash line represent 75%
of C0. Bottom: EOL characterization, the blue vertical line
represents E{EOL} = 948 cycles, while the red lines show
the 95% confidence interval between cycles [817− 1103].

Figure 13 (top) illustrate the SOH long-term prognosis. It is
important to note how our choice of an intermediate depen-
dence for ηC(DoD, I) (Figure 12) governs future behavior.
If we were to use a constant ηC(DoD = 50%, I = 25 A)
through cycles, effectively neglecting operational conditions,
we would have obtained the dash-black line as the degrada-
tion curve of the system. That would result in an overesti-
mation of the RUL of more than 200 cycles! This is the
reason why taking into account metamodel B -and thus the
interplay between SOC predictions and SOH evolution- is so
important. Figure 13 (bottom) shows the EOL characteriza-
tion. We can extract values of E{EOL} = 948 cycles, 95%
confidence interval between cycles [817−1103]. JITP5% and
JITP15% occur at cycles 835 and 873, respectively, charac-
terizing the tail of the EOL pdf. The obtained confidence
interval is ∼ 30% of the expected EOL. It is the consequence
of uncertainty propagation in a simulation engine that i) per-
forms long-term prognosis for SOH (and the SOC in every
individual cycle), and ii) considers the interplay between op-
erational conditions, and how these affect both metamodels

for internal resistance and Coulomb efficiency (and, in turn,
the SOC and SOH).

Now we present another run of the engine, to illustrate how
results change with another prescription for the Coulomb effi-
ciency. First we choose the strong dependency of ηC on DoD
and discharged current intensity. We aim to maximize the in-
formation found in the SOC prognosis step, so instead of just
extracting averages for the DoD and current, we obtain prob-
ability mass functions (pmfs) for them. A kernel smoothing
function is applied to the pmfs (Bowman & Azzalini, 1997)
to derive pdfs. The situation changes from having scalars (in
the previous run) to pdfs now.
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Figure 14. (a) SOH long-term prognosis (blue line) and its
95% confidence level at each cycle (green lines). The hori-
zontal dash line represent 75% of C0. (b) EOL characteriza-
tion, the blue vertical line represents E{EOL} = 338 cycles,
while the red lines show the 95% confidence interval between
cycles [318− 365].

The new results are presented in Figure 14. There is a strik-
ing difference with respect to those of Figure 13, due to our
choice of an strong dependence for ηC(DoD, I). This trans-
lates, as expected, into a much reduced remaining useful life
for the battery pack (top-left panel). As now we are intro-
ducing a pdf instead of an scalar for ηC , the state expectation
propagation x̂(k) is not longer Gaussian. Due to this same
reason, the EOL pdf is not symmetric as in the previous run.
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Figure 14 (bottom) shows the EOL characterization. We can
extract values of E{EOL} = 338 cycles, 95% confidence
interval between cycles [318 − 365]. JITP5% and JITP15%

occur at cycles 320 and 326, respectively, characterizing the
tail of the EOL pdf. This much reduced expectation for the
useful life does not correlate with the Nissan Leaf actual per-
formance, making the case for a strong dependency of meta-
model B weak.

5.4. Final considerations

As in the previous section, the obtained statistics and their
comparison to real-life values for the Nissan Leaf give us
confidence as to using our simulation engine as an effective
tool to determine battery pack remaining life. The problem
of when a replacement will be needed is now one we can pro-
vide answers within an stochastic formulation that helps the
decision-making process.

6. CONCLUSIONS

When claims on range or remaining useful life for a battery
pack are made by auto companies, operational conditions are
often not depicted clearly. The public need to take these
claims as conservative expectations, as no statistical details
are given. What happens if the EV is driven aggressively?
Or is charged erratically, or always operated until all energy
is drained? How do these conditions affect both the recharge
in a cycle-by-cycle basis, and the prospects of an expensive
battery pack replacement in the long-term?

We have developed a simulation engine able to answer these
questions. Given a series of user-defined inputs, it can deter-
mine battery autonomy and remaining life from an stochastic
point of view, i.e. it provides expectation values, confidence
intervals, and risk measures for the EOD and EOL. This is
sufficient to take informed decisions about the state of our
car. We have taken into account operational conditions on in-
dividual cycles, and how they affect single discharges and, in
turn, the overall evolution of the SOC and SOH (driven by
the metamodels A and B, on internal ohmic resistance and
Coulomb efficiency respectively).
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NOMENCLATURE

AESC Automotive Energy Supply Corporation
AVT Advanced Vehicles Testing Activity
DoD Depth-of-Discharge
EOD End-of-Discharge
EOL End-of-Life
ESS Energy Storage System
EV Electric Vehicle
HWFET Highway Fuel Economy Schedule
OCV Open Circuit Voltage
pdf Probability Density Function
pmf Probability Mass Function
PF Particle Filter
RUL Remaining Useful Life
SIS Sequential Importance Sampling
SMC Sequential Monte Carlo
SOC State-of-Charge
SOH State-of-Health
SS Space-State
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APPENDIX

We briefly establish a laboratory methodology for the dis-
charge of lithium-ion cells. More details and results are given
in (Espinoza, 2017). The methodology needs to characterize
i) the Coulomb efficiency parameter that govern degradation
curves, and ii) the internal impedance of a given type of cell.
In the absence of exhaustive empirical data, these quantities
have been assesed by metamodels A and B.

For i), we investigate the Coulomb efficiency dependency on
DoD and current. This can be derived from the slope of the
capacity curve on degradation tests that extend over the useful
life of the battery. For ii) we characterize the internal resis-
tance as a function of SOC, current and aging. This can be
derived from special calibration discharge cycles, with spaced
current pulses.

(a) (b)

Figure 15. (a) Schematic of a 2-D grid of DoD and current
magnitude, where each point represents an experiment of a
discharging cell. (b) Typical degradation curve for a lithium-
ion cell. In our design, every cycle along the green line would
be a discharge at a given DoD and current level. Blue circles
would represent calibration cycles, spaced at regular inter-
vals.

To understand the proposed experimental design, let us con-
sider Figure 15(a). Schematically, this represents a 2-D grid
(DoD and current), with each black point representing a dis-
charge. Lithium-ion cells can have useful lifes of > hun-
dreds of cycles, and we are looking for significant degra-
dation to obtain the slope of the downward capacity curve
ηC(DoD, I). It is easy to see why testing for dependencies
on more independent variables, or dimensions (than DoD, I),
is not viable for reasonable time-scales.

Figure 15(b) illustrates a typical degradation curve for a
lithium-ion cell. In our proposed experimental design, each
cycle at the green line would be a discharge at a given DoD
and current level, i.e. a black point from the previous plot.
These would be repeated over time, until interrupted at regu-
lar intervals for two calibration cycles. The interval is set at
40 cycles (or 5% of the expected useful life), We know these
are intended to provide information about the internal resis-
tance, but what do we mean exactly by a calibration cycle?
This type of cycle corresponds to a full discharge, and feature
a series of pulses as a function of time (or SOC). These need
to be sufficiently spaced, such that the battery does not exhibit
a capacitor-like behavior. The intensity of the pulses will give
us the Rint dependency with current magnitude. And if we
repeat these calibrations cycles along the capacity curve, over
many cycles we will also acquire a dependency on aging, thus
obtaining Rint(SOC, I, τ).
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