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ABSTRACT 

By studying the temperature behavior of axle bearings both 
statistically and physically, the research and development 
(R&D) department of Netherlands Railways (NS) has 
successfully developed and implemented a health monitoring 
system for bearings. In an early stage of degradation, 
temperature deviations are detected and the level of severity 
of the degradation is identified through a decision tree. This 
method enables us to detect bearing failures one to three 
months earlier than any other method in use, in more than half 
of the cases. Different handling scenarios per type of 
temperature behavior have been designed in a way that 
minimizes impact on train service.  

1. INTRODUCTION 

NS exploits and maintains approximately 3,000 carriages. 
The maintenance program encompasses first line service, 
running maintenance and overhaul. The latter two types of 
maintenance focus on preventive tasks in order to improve 
the reliability of the trains, whereas first line service focuses 
on routine checks for the components that are directly critical 
for safety (Apallius de Vos, J. & van Dongen, L.A.M., 2015). 
The safety checks are performed during the night at shunting 
yards, by inspecting the outside of the train visually and 
auditory.  

The most important components for safety and thus subject 
for safety checks are the axle bearings in the wheelset. 
Functional failure can be caused by different mechanical and  
electrical failure mechanisms, which in most cases result in 
an increasing temperature of the bearing at a certain rate. A 
hot axle bearing is proven to be increasingly hard to 
recognize visually from the outside of the axle box because 
of the higher resistance to discoloration of recently developed 
conservation materials. Therefore the axle box temperature 
of passing trains is measured by the infrastructure manager 

ProRail, at 27 locations in the Dutch network. This system 
uses infrared sensors and is called HotBox detection. 

In the current setting, when the measured temperature of a 
passing axle box exceeds the limit of 115⁰C the driver of the 
train is commanded by phone to stop immediately. The 
timing of this alarm is late in the process of failure: at this 
temperature, the probability of the bearing causing secondary 
damage to the wheelset has already increased significantly. 
Moreover, the immediate stop of the train causes large 
disturbances in the dense railway network. Despite the fact 
that occurrence of axle bearing failures is rare, the impact on 
service is large enough to justify the investment in a 
predictive method for this type of failure in addition to the 
safety checks.  

Therefore, we have set up a study on the temperature 
measurements of the HotBox detection system. The analysis 
focused on one type of train with bearing problems in a period 
of two years. The failing bearings were noticed by train 
drivers who heard a humming sound or by mechanics during 
routine safety checks, before the temperature of the bearing 
had exceeded the alarm limit of HotBox. The degradation that 
was found for these bearings did not cause functional failure 
of the wheelset yet, but would have led to functional failure 
within time.  

In this paper first the failure behavior of train axle bearings 
and the method for detection are explained. Secondly,  we 
present the design of the handling scenarios for alarms. In the 
end the results of this alarm system are discussed.  

2. TEMPERATURE BEHAVIOR OF BEARINGS 

Failure of train axle bearings can be caused by several 
different failure mechanisms: fatigue, spalling, creep, stress 
corrosion, fretting corrosion, false brinelling, contamination 
of grease, or by craters because of electrical discharge 
through the bearing (Dasgupta, A., & Pecht, M., 1991 and 
Vale, C. et al, 2016). These mechanisms increase the friction 
within the bearing by deforming the components of the 
bearing, by generating debris material, or by changing the 
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properties of the grease. Increased friction always results in 
an increase of the temperature in the bearing.  

However, temperature variations are also part of normal 
behavior of the bearings in the train. These variations are due 
to operational conditions, such as environmental temperature, 
sunshine (see Figure 1), and by the time schedule: the bearing 
cools significantly by the wind while driving and warms up 
while standing still. Furthermore, some bearings can seem 
slightly warmer than others because of an engine or gearbox 
in their direct neighborhood that influences the HotBox 
measurement. Also, the variance as well as the magnitude of 
temperature measurements of intercity and commuter trains 
differ significantly because of differences in operational use 
and in construction of the axle box, as illustrated in Figure 2. 

 
Figure 1: Average temperature of all bearings on one side of 
a train per measurement. A train is measured several times a 
day by HotBox. 

 
Figure 2: Temperature measurements of an intercity train and 
a commuter train. Each line represents one axle bearing. 
 
In order to explore the possibilities for a predictive module, 

the temperature behavior has been studied considering the 
trains in which a bearing failure was found.  

One of the bearing failures is shown in Figure 3, where the 
absolute value of the measured temperature in degrees 
Celsius is set against the amount of days before the bearing 
failure was noticed at the right-hand-side of axle 7.  

 
Figure 3: Temperature measurements of all bearings of a 
train. The bearing marked with a square is degrading. 
 
As this figure suggests, the failing bearing is already showing 
a slightly higher temperature than the other bearings up to 
100 days before the defect was noticed in a safety check. 
Similar results are found for other trains with a bearing that 
had started to degrade: in more than half of the cases the 
temperature of that bearing was structurally higher than 
temperatures of other bearings on that train, for a period of at 
least a month. 

This is remarkable, since in literature temperature 
measurements are commonly considered as unreliable and 
not timely enough to be used for predictive maintenance on 
bearings. This statement is recently anew confirmed by the 
extensive research of Vale, C. et al (2016). Different types of 
vibration measurements, on-board or wayside, are generally 
preferred as predictors for bearing failure. Hence, a failure 
detection method that gives reliable and early predictions 
based on temperature is an important step forward.  

3. FAILURE DETECTION METHOD 

Having understood the temperature behavior of the normal 
and failing bearings, we designed an automatic failure 
detection system. Because of the large variance in 
temperature behavior, some dynamic thresholding is needed 
to detect the first signs of a warming axle bearing adequately.  

Our first attempt at a dynamic detection system was a neuro-
fuzzy system with a self-constructing rule generation 
algorithm (Lee, W.J. et al, 2002). This algorithm clusters 
similar data points and detects deviating clusters 
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automatically. However, the occurrence of failures proved to 
be too infrequent to determine the correct values for the 
required thresholds. Because the thresholds have no obvious 
physical meaning, their value is difficult to estimate. 
Therefore, instead a rule-based classifier was developed in 
the form of a decision tree. Decision tree classifiers are 
capable of breaking down a complex decision-making 
process into a collection of simpler decisions, thus providing 
a solution that is often easier to interpret (Racoul Safavian, 
S., & Landgrebe, D., 1991).  

Before any decision rules are designed, the detectability of 
the elevated temperature of the failing bearing is firstly 
enlarged by calculating the difference between the absolute 
temperature of the bearing with the median of other bearing 
temperatures on the same side of the train. We call this 
temperature difference the side-difference (ΔT). The side-
difference is illustrated for the case that was discussed 
previously, in Figure 4 and Figure 5. 

 
Figure 4: Side-difference for the bearings of a train with a 
failing bearing (7 Right, marked with a cross). 

 
Figure 5: Zoomed version of figure 4, that highlights the large 
deviations in side-difference.  

We have designed a set of rules that indicate the severity of 
the failure from low (alarm level 1) to high (alarm level 4). 
The rules are shown in a decision tree in Figure 7. The 
decision tree applies to slowly as well as rapidly increasing 
temperatures. Firstly the alarm setting for rapid increase in 
temperature and secondly the setting for slow increase in 
temperature is explained. 

To detect rapid increase of temperature, we have set limits to 
the side-difference directly. Since the variance under normal 
behavior is relatively large for the reasons mentioned before, 
the first limit is set to a rather high side-difference of 30⁰C. 
Depending on the frequency of occurrence, exceeding this 
limit generates alarms of level 1, 2 or 3. When the side-
difference raises to more than 50⁰C, the alarm level is 
immediately set to 3. Besides that, an absolute temperature of 
80⁰C generates an alarm of level 4 directly. This set of rules 
detects the rapidly developing bearing failures adequately, 
without generating false alarms.  

For the slow increase of temperature that is shown in the 
graphs, the rules described above only account for the end of 
the failure development. To detect the first part of failure 
development as well, extra rules are added to generate alarms 
of level 1 and 2. Since the limit of the side-difference cannot 
be lowered without generating false alarms, a different 
method for detection has been designed.  The early failure 
development is characterized by the fact that the failing 
bearing has the highest temperature of all bearing 
temperatures in each measurement. The side-difference 
might only be a few degrees Celsius, but this bearing is 
consistently the hottest one within a measurement, over a 
period of several weeks. Therefore, for each bearing side-
difference, the deviation with the median of all side-
differences of the train is calculated. The median is used 
instead of the average to exclude the high side-difference of 
the failing bearing. If the side-difference of one bearing 
deviates more than 3.5 standard deviations from this median 
for at least 10 measurements within 30 days, alarm level 1 is 
generated for that bearing. A doubling of the frequency 
results in alarm level 2.  

With this addition to the set of rules, both the early and the 
later stage of failure development are included in the decision 
tree. Furthermore, slow as well as fast developing failures are 
both detected as soon as possible. If one temperature 
measurement leads to more than one alarm level in the 
decision tree, the alarm with the highest level is generated. 

The results of this set of rules on the case that is shown in the 
graphs in this paper, are displayed in Figure 6. The first alarm 
is generated more than 90 days before the bearing failure was 
noticed during the safety checks.  
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Figure 6: Alarms for a train with a failing bearing (7 Right) 

4. DESIGN OF HANDLING SCENARIOS 

For each alarm level a handling scenario has been designed 
in a way that minimizes the disturbance on the train service 
schedule and the unavailability of trains. In the PHM 
system’s  architectural framework that Kunche S., Chen, Ch., 
and Pecht, M. (2012) describe, the design of handling 

scenarios is included in the steps of Prognostics assessment 
and Advisory generation.  
 
To simplify the handling of this rare-occurring failure, the 
handling scenarios are equal for each alarm level, except for 
the pre-warning level 1. The handling is as follows: take the 
train out of service within time t, replace the axle in the depot 
and send the train back on track. The bearings in the axle are 
investigated by bearing engineers and the outcomes are 
evaluated in order to monitor the general behavior of the 
bearings. Moreover, this feedback is essential for continuous 
validation and improvement of the developed decision tree.   
 
The only difference between the handling scenarios is the  
time t at which the train is taken out of service to replace the 
axle. The alarm of level 1 would have occurred falsely three 
times in the last two years, so this alarm level is not yet 
operationalized. The possibility of only inspecting the axle at 
alarm level 1 (without replacing it) has been taken into 
consideration, but this alarm level occurs at such a timely 
state of degradation that visual or auditory inspection will not 
show anything. A test drive with accelerometers is also 

Figure 7: Decision tree of the rule-based classifier. The hexagons are nodes and the squares are the leaves of the tree, which 
show the outcome of the decisions. The top hexagon is the root. A blue hexagon (large dashed lines) concerns absolute 
temperature Tabs, a red hexagon (solid line) contains rules on the side-difference ΔT and the green hexagons (small dashed 
lines) contain rules regarding the frequency. When a measurement leads to more than one alarm level, the highest alarm is 
generated. 
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considered, but costs in terms of engineering capacity and 
unavailability of the train are high. The occurrence of failures 
is too low to optimize the decision tree for alarm level 1 in 
order to improve the performance. Therefore alarm level 1 is 
currently evaluated for further optimization, but not yet 
operationalized.  
 
To optimize the benefits of this alarm system, the time 
between detection and functional failure should be used to 
minimize the operational impact of the occurrence of the 
failure. Within five days, the operational control center is 
always able to find a convenient timeslot to arrange the 
logistics of taking the train out of service without impact to 
the general service. Hence, at alarm level 2 the train is taken 
out of service at the most convenient time within five days. 
At alarm level 3, the train is taken out of service before the 
end of the day. At alarm level 4, the velocity of the train is 
restricted immediately and the train is taken out of service at 
the next intercity station.  
 
The occurrence of lower alarm levels shortly after an alarm 
is generated does not influence the handling: the bearing 
could have cooled down in the meantime but could still be 
degrading. Of course a higher alarm does influence the 
handling by shortening time t to t’ that suits the higher alarm 
level.  
When four or more bearings of one train during one 
measurement register a temperature of more than 50⁰C, the 
cause is attributed to the measurement system itself and the 
alarms are suppressed. This phenomenon has unfortunately 
happened several times in the last year for some locations, 
and would generate false alarms if not suppressed.  

5. RESULTS 

Finally we investigate the reliability of our algorithm. The 
decision tree without alarm level 1 is applied to HotBox data 
of all 131 trains of the same train series over two years. This 
resulted in 60 million temperature measurements which 
yielded 7 cases of alarms. The results are listed in Table 1. 

 
Table 1: Results of decision tree level 2 to 4 

 Failure No failure 
Alarm Correct result: 6x 

Highest level: 
4, 3, 3, 2, 2, 2 

False positive: 1x 
Highest level:  
2 

No alarm False negative: 5x 
 

Correct result 

 
The results show that the decision tree enables us to predict 
more than half of the bearing failures. The first alarm 

occurred in every case one to three months before the current 
detection methods had found the defect.   
 
Additionally, eleven cases of strange behavior of a 
measurement station were found, in which four or more 
bearings registered a temperature of more than 50⁰C. 
Furthermore two cases of bearing failure occurred in a period 
of time in which the concerned train was not driving past any 
HotBox measurement location for more than three weeks, so 
these bearings are not considered in the results. This point is 
further discussed in section 6.  
 
Although the HotBox data for the false negatives is examined 
elaborately, the failure of these bearings was not detectable 
in the data, no matter what kind of rule or module would have 
been designed. Perhaps an increase in density of HotBox 
measurement stations would have helped, but it is likely that 
some specific failure mechanisms lead to such a rapid 
temperature increase that a system based on way-side 
temperature measurements will not be able to detect them 
early in the failure process. These failing bearings were 
discovered by mechanics or train drivers. It shows that this 
sensor system cannot replace human inspections yet.  

6. DISCUSSION 

The decision tree that has been developed in this work 
performs very well for the examined train series. However, 
the application of this method to other series requires some 
further research tailored specifically to that type of train. 
Preliminary investigations show that relatively more alarms 
occur while hardly any bearings have shown to be defect. 
Analysis of the data behind these alarms suggests that the 
alarms are not really false: the involved bearings do show a 
structurally elevated temperature for a longer period of time. 
The fact that this behavior was unnoticed in operation is not 
surprising, since the alarm level does not exceed level 2 and 
at some point in time the deviations always disappear. In most 
cases, this disappearance coincides with the general 
preventive replacement of the axle. This phenomenon is 
discovered recently and more research is needed to explain 
this behavior before the alarm system can be operationalized 
for these train series. Other causes of elevated temperature, 
such as failing gearboxes, cables or brakes, will be considered 
as well as the possibility of extremely slowly heating 
bearings.  
 
Secondly, in order to improve the detection capability of the 
HotBox system, more measurement locations should be 
installed. It regularly occurs that trains are not registered by 
any measurement location for a week. The HotBox system 
was installed mainly for cargo trains and is thus mostly 
available on cargo tracks. The business case and location 
strategy for an extension of the system will be investigated. 
Moreover, the addition of other types of sensors, such as 
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vibration, is considered in order to improve detection 
capability. 
 
Lastly, bearing failures are currently registered more 
elaborately in order to be able to connect each failure 
mechanism to specific temperature behavior in the future. 
With these improvements, the remaining useful life could be 
estimated more accurately.  

7. CONCLUSION 

A decision tree based on way-side measurements of axle 
bearing temperatures has proven to be able to generate correct 
and timely warnings for bearing failures. Combined with 
handling scenarios that were designed with the operational 
process in mind, the implementation of this alarm system will 
lead to less impact on service in the case of bearing failure. 
However, human inspections are still required to detect all 
types of failure mechanisms in bearings. Further research will 
be done to extend the implementation towards other train 
series.  
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