
 

1 

Case Studies in using Consumer Analytics with PHM Strategy 

Sameer Vittal1, Mark Sporer2 

1GE Power, Atlanta, GA, 30068, USA 

Sameer.Vittal@ge.com 

2GE Renewables, Greenville, SC, USA 

Mark.Sporer@ge.com 

 
ABSTRACT 

As part of the “Digital-Industrial Revolution”, the world is 

seeing the rapid transformation and digitization of the 

world’s energy value network – from generation, through 

transmission & distribution, to end user consumption. This 

new paradigm comprises of new business products and 

services built on data flows that accompany energy flows; 

where the insight gained from sensors and analytics drives 

better decision making and customer outcomes. This is what 

drives the digital strategies of Original Equipment 

Manufacturers of large industrial assets like power plants, oil 

& gas equipment, aviation fleets, etc.   

In this paper, we look at how analytical methods originally 

developed in the consumer industry can be applied to 

industrial data. This helps guide the development of 

Prognostics & Health Management strategies that are tuned 

to customer preferences and value models, in addition to 

engineering inputs. These methods complement, rather than 

replace, FMEA-driven strategies that are traditionally used in 

PHM systems design.  

1. INTRODUCTION 

Traditional PHM systems are designed “bottom up”, starting 

with a FMEA, and then progressing through a series of trade 

studies where sensors, anomaly detection and remaining life 

algorithms are selected and integrated to reduce unplanned 

failures from specific failure modes. The methods do not 

typically consider marketing or survey data, qualitative 

customer information, or other exogenous economic 

variables that are needed to “sell” the PHM system and 

realize it’s true value. The availability of retail and e-

commerce generated data on the other hand, has led to the 

maturity of many consumer analytics techniques like Latent 

Class Analysis, Text Mining, Multiple Correspondence 

Analysis, Choice and Conjoint models, etc., that work with 

traditional data mining classification and clustering methods 

to parse out preferences and differentiate products from a 

customer’s perspective. These methods and workflows can 

also be applied to industrial data, and can help drive PHM 

systems architectures that can be customized to consumer 

segments, increasing their adoption, usage and ultimately, 

business value.   

In this paper, we provide an overview of consumer analytics 

techniques that are relevant to industrial data, and show how 

they can be applied via two cases studies. The first is based 

on risk-based segmentation of bearing failures observed in 

wind turbine fleets while the second case study deals with 

usage-based segmentation analysis of coal-fired power 

plants. In both cases, we hope to offer insights that would not 

be available using traditional PHM design methods. Finally, 

it is hoped that these case studies would motivate the use of 

consumer analytics methodologies within the broader toolkit 

of PHM system design methods. 

2. BACKGROUND  

2.1. Traditional FMEA based System Design Methods 

and Actuarial Engineering Approaches 

The traditional approach to assessing engineering risk is 

through the use for FMEA’s. They formed the cornerstone of 

the “RCM” approach to asset management, as originally 

explained by Moubray (1997). Jardine & Tsang (2006) 

provide a comprehensive overview of how Weibull-based 

part lifing methodologies can be used for intelligent asset 

management. This formed the first generation of statistically-

derived asset risk management methods. These approaches 

were subsequently improved by adding sensors for risk 

mitigation, as explained by Pecht, (2008). A broad overview 

of contemporary PHM methods is provided by Vachtsevanos, 

Lewis, Roemer, Hess, & Wu, (2006), including many state-

of-the art algorithms for anomaly detection, diagnosis and 

prognosis.  
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In a completely different area, actuarial methods were 

developed over several decades in the 20th century by the 

insurance industry to measure, price and manage financial 

and operational risk inherent in industrial systems. They 

encompass a broad range of techniques, from simple 

spreadsheet-driven approaches to more complex stochastic 

simulations. Typically, they involve the use of discrete 

distributions to model the frequency of claim occurrences 

(frequency distributions) as well as continuous distributions 

of associated costs (severity distributions) to model their 

financial impact. This resulting distribution of expected 

losses (the “loss model”) forms the baseline by which PHM 

systems are designed to reduce financial risk by shifting the 

average of expected losses, and more importantly by sharply 

reducing the “tail risk” which is often the rare but severe risk 

that can impact the profitability of an asset. Klugman, Panjer 

& Wilmott (2008) provide a comprehensive overview of 

methods used in developing actuarial loss models. 

Inspired by both the traditional FMEA-based approaches as 

well as actuarial methods, Vittal, S. and Phillips, R., (2007) 

developed engineering approaches to model and mitigate 

lifecycle costs using actuarially-derived risk calculations, 

rather than relying on engineering-defined specific failure 

modes. The advantage of this “Actuarial Engineering” 

approach was the mitigation of lifecycle risk from unplanned 

events to cheaper, planned events. This approach was 

practical, profitable and elements were adopted in pricing 

long term service agreements and in optimizing M&D 

systems to help manage portfolio risk with a financial target.  

Some limitations in this approach became apparent as energy 

markets saw the rise of a widely distributed and unpredictable 

energy mix (E.g. Renewables – Wind and Solar). In this 

market, power generation asset missions were a function of 

market forces, weather effects, customer preferences and 

“portfolio choices” in addition to traditional maintenance and 

operational risk. The attendant services revenue stream was 

not driven by a combination of traditional planned and 

unplanned maintenance risk only, and the “probability of an 

asset being deemed economical to dispatch” became a critical 

variable. In simple terms, if customers chose not to run their 

assets, there would be an impact to the services revenue 

stream, and global customers are widely different in their 

preferences of choosing an asset mix in each market 

condition.  

From the preceding discussion, the PHM community has 

started to realize that additional approaches to PHM systems 

design were needed to understand market & consumer 

preferences in a statistically rigorous way, using power plant 

operational data as well as “soft” measurements like 

configuration, economic forecasts, preferences, risk tolerance 

etc. For example, Vogt L.J, (2009) provides an overview of 

electricity pricing using traditional engineering principles, 

and Weron, R. (2006) provides an overview of stochastic-

models and data-driven approaches to forecasting electricity 

loads and prices. Most of these measurements come from 

surveys, unstructured text, third party datasets, market 

indicators, etc., and do not fit easily into the tools PHM 

engineers typically use to design systems. The authors of this 

paper have been working on this problem, and believe that 

this is where techniques from consumer and marketing 

research can have an important role to play. 

2.2. Consumer and Marketing Research Analytics 

The field of Digital Marketing is rapidly growing, driven by 

the availability of massive datasets regarding customer 

transaction histories, their social media preferences and 

internet browsing user experiences. This has led to the 

development of many extremely sophisticated statistical 

methods designed to model the activity of existing and future 

customers, and Chaffey, D., and Chadwick, F.E., (2015) 

provide a comprehensive overview of the field. At the heart 

of this is Predictive Customer Lifetime Value, (CLV) which 

is the total amount a customer is expected to pay over the 

course of his relationship with a supplier. In an engineering 

context, this would be the expected revenue generated from 

asset sales, part sales, maintenance services and other value-

added services (software subscriptions, upgrades) that go 

along with the asset.  

To model CLV, a variety of methods are used. One popular 

method is the Pareto/NBD approach, popularized by Fader 

and Hardie (2016), where the probability of a customer 

churning is modeled using a Pareto distribution and the 

expected number of items ordered are modeled using a 

Negative Binomial Distribution (NBD). In order to improve 

the accuracy of CLV calculations, a variety of methods are 

used to “understand” customers from their digital traces. This 

includes segmenting the modeling space and input 

distribution parameter modeling for CLV analysis.  

Analytics to “understand customers” include, 

a) Methods to model transaction histories (E.g. Association 

Rule Mining, Cohort Analysis)  

b) Methods to segment your customers (Persona Analysis, 

Clustering methods like Normal Mixtures, Hierarchic, 

Latent Class Analysis, Kohenen Maps, Multinomial 

Logit Models, etc.)  

c) Models to understand preferences (Conjoint Analysis, 

A/B testing), and 

d) Models to predict customer attrition (Churn Analysis, 

Markov Processes, Survival Analysis) and their drivers.  

The goal of segmentation analysis is to move beyond mass 

marketing and gain a data-mining based insight into distinct 

peer-groups who operate assets in a similar manner, or who 

purchase services in a similar way. Using lifecycle 

segmentation, one can identify customers likely to stay active 

and those likely to switch. Using persona-based 

segmentation, we can define customer clusters based on what 
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they purchase, or how they operate. A lot of sensor and 

configuration data lends itself to persona-based 

segmentation, usually achieved using clustering algorithms 

that tend to operate on quantitative input parameters. 

However, given the preponderance of qualitative data on 

customer behavior (configuration data, purchase histories), it 

also becomes necessary to use methods based on qualitative 

inputs, and Latent Class Analysis (LCA) has become one of 

the most popular methods for this.   

2.3. Latent Class Analysis 

As described by Magidson, J., and Vermunt, J.K., (2002), 

“…Traditional models used in regression, discriminant and 

log-linear analysis contain parameters that describe only 

relationships between the observed variables. LCA models 

(also known as finite mixture models) differ from these by 

including one or more discrete unobserved variables. In the 

context of marketing research, one will typically interpret the 

categories of these latent variables, the latent classes, as 

clusters or segments”. In simplistic terms, LCA allows one to 

identify clusters when the data is categorical (E.g. 

qualitative), where each level of the unobserved variable is 

called a “latent class”. It is assumed that these “unobserved” 

(hence latent) clusters are responsible for generating the 

observed measurements, and these latent classes can then 

provide insights into customer behavior that would not be 

apparent otherwise.  

 In our paper, we have used the LCA implementation in 

JMP/Pro V14 software. The various steps involved in fitting 

LCA models are,  

1. Assemble the dataset, “N” observations, each having a 

vector of variables X1,n , …, Xk,n.  

2. Convert all the numerical X’s into “categories” using 

either standard univariate binning, or a mixture-based 

binning algorithm.  

3. Run the LCA analysis across a range of clusters. Pick the 

model with optimal number of clusters as the one which 

has the lowest BIC score. In some cases, the software 

may report an AIC score, though that is not typically 

used in industry practice for this type of analysis 

4. Assign cluster ID’s to the N observations 

5. Provide a narrative to the meaning of these clusters, by 

studying them in the context of the inputs variables in 

them (E.g. using share charts). This narrative provides 

the “persona” inherent in the cluster 

6. Uses these clusters as inputs variables for life-regression 

analysis (to model segment based risk), or as a 

segmentation mechanism where actuarial methods, or 

CLV models can be run within each cluster.  

7. We also compare the results from LCA clustering with 

those from traditional survival (E.g. Weibull) analysis 

and highlight advantages of the proposed approach. 

This is explained with the help of the following two case 

studies.  

3. WIND TURBINE BEARING CASE STUDY 

In this case study, the dataset consists of N = 879 unique wind 

turbines where 44 bearing failures have been recorded. To 

protect proprietary information, all variables have been 

anonymized and age has been scaled. This does not impact 

any resulting analysis or conclusion. The turbine age at 

failure has been recorded, along with other variables like the 

bearing type, customer name, wind farm name, the type of 

service relationship (full maintenance, partial, no agreement 

or unknown), and the capacity of the turbine (two levels, 

dependent on upgrades). This is summarized below.  

Table 1: Wind Turbine Input Parameters 

 

Age was a continuous variable, and needed to be binned 

intelligently. A distribution analysis of age, as shown in 

Figure 1 below, indicated that a Three-Mixture Normal 

distribution had the lowest AICc score, when compared to 

13 distribution types, and was selected as the best fit.  

 

 
Figure1: Histogram and the fitted 3-Mixture Normal 

Density Function of Age (X axis, Years) 

Input 

Variable Description

Categorical 

Variable 

Levels

SerialNumber Not used 879

PartType Part that's failing 2

CustID Customer ID 19

ParkID Wind Farm ID 19

Censor Failed or OK 55

Age Age in Years Continuous

ServiceType Service Agreement 4

Capacity Wind Turbine Type 2

AgeBin Binned from Age 3
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The next step was to convert this into three “bins” using a 

Normal Mixtures algorithm, which calculates the probability 

that the given observation will fall into (in this case) one of 

the three underlying normal distributions. This probability-

model based cluster assignment approach is superior to other 

distance-based classifiers (E.g. K-Means, Hierarchic) 

particularly when the clusters overlap and results need to be 

robust. In addition, the previous distribution analysis did 

confirm the existence of three normal mixtures, which adds 

more confidence in the resulting clusters. The assignment of 

age to these clusters is shown in the figure below.  

 
Figure 2: Box Plot & Contour Plot of Age binned into three 

bins using Normal Mixtures Clustering 

 

The next step was to run the LCA model using PartType, 

CustID, ParkID, ServiceType, Capacity and AgeCluster as 

inputs. Note that “Censor” which had the bearing failure 

indicator was omitted, as we were interested in seeing the 

natural segments that emerged before associating them with 

failure risk. The number of clusters were selected iteratively 

from 2 to 12, and the optimal number of latent classes was 

found to be 5, which had the lowest BIC scores.  

 

Table 2: Performance metrics for the Optimal LCA Model 

with 5 clusters 

 
Table 3 shows the impact that the various inputs had on the 

clustering model. As expected, customer ID’s and wind farm 

ID’s had a significant effect as maintenance practices and 

local weather effects can be significant. It’s worth mentioning 

that these are qualitative variables that would have been 

completely ignored in conventional risk or segmentation 

models that use numerical inputs only.  

 

Table 3: Relative effect of input variables (LCA model) 

 
 

Table 4: Variation in Performance scores of the LCA 

algorithm Vs. Number of clusters 

 
 

A useful output is the share chart below. This, along with 

numerical parameter estimates, helps provide the narrative 

underlying the various segments. For example, Cluster1 is 

mainly dominated by Part Type 2 (94%), Customer ID 13 

(78%), has a variety of parks in it (nothing dominates), and 

mostly has customers with service type 3 (99%), capacity 

type 2 (85%) and units in the low age cluster (99%). Using 

domain and market knowledge, these “shares” can be mapped 

to appropriate customer personas.  

 

 
Figure 3: Cluster Share Chart, showing the relative 

proportion of input variables in each cluster. 

 

Other useful diagnostics include Multidimensional Scaling 

charts as shown in Figure 4. As a simplistic interpretation, a 

well-segmented model should have cluster spread across this 
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space, not bunched up (which indicates similarities). MDS is 

often referred to as the qualitative analog of numerical PCA. 

 

 

Figure 4: Multi-Dimensional Scaling Plot for Clusters from 

the Latent Class Model 

The final stage of the analysis was to see how these clusters 

can explain the observed pattern of bearing failures, and/or 

provide information that can improve failure risk prediction 

for the fleet.  

As a next step, we have used a “Weibull Regression” model 

to estimate the failure probabilities in each cluster. Here the 

parameters of a Weibull (or other life model) are modelled as 

linear combination of the LCA Cluster ID’s (Variable 

LCA_5cluster). i.e. the customer segments are used to 

describe the survival model parameters. The Likelihood 

Ratio based test indicates the Weibull model with LCA 

cluster’s as covariates is statistically significant  

Table 5: Survival-LCA Model Fit Summary 

 

 

Figures 5 and 6 show the survival (Weibull) probability 

plots for cases where both location scale parameters are 

impacted by the LCA clusters, and one where the location 

parameter only can vary by cluster (Weibull shape is held 

constant across clusters) 

 

 

Figure 5: Weibull probability plot with both location and 

scale parameters varying by cluster type 

 

 

Figure 6: Weibull probability plot with only the location 

parameter varying by cluster type 

It is helpful to compare the results of this approach with 

standard reliability analysis used in industry. Figure 7 below 

shows results from a standard Weibull model that does not 

include any LCA-based clusters as covariates.  

 

Figure 7: Standard Weibull Analysis 
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The table below shows the failures predicted by standard 

Weibull analysis, as well as those from the proposed LCA-

Cluster based Weibull model (“LCA-Weibull”).  

Table 6: Comparison of failure predictions  

 

It is interesting that Cluster 1 has a disproportionate share of 

failures followed by Cluster 3 with clusters 4 & 5 having a 

lower failure rate. It would also be helpful to compare the 

environmental, usage variables as well as maintenance 

policies between clusters 1 and 2 which provide the highest 

“contrast” in risk. Finally, we also see a vast improvement in 

failure prediction accuracy across the fleet segments, which 

can help provide actionable insights into failure cause drivers 

as well as personalize maintenance policies for each segment.  

 

4. COAL PLANT OPERATIONAL ANALYSIS CASE STUDY 

This case study focusses on cluster analysis of operational 

data obtained for a year from a fleet of 152 coal-fired power 

generators, across 93 unique power plants, all operating in the 

USA. Data was collected in hourly intervals for a year and 

was available in commercial data feeds and government 

sources. The goal of the study was to see if outlier detection 

and cluster analysis would identify segments in the 

population that would benefit from targeted PHM based 

monitoring. To protect proprietary information, all customer-

identifiable information has been anonymized. 

The analysis steps are like the ones detailed earlier with a few 

exceptions. The raw inputs feeds are hourly time series, and 

a series of statistically derived features need to be extracted 

to provide one snapshot per observation. A Normal-Mixture 

binning algorithm was used to bin continuous variables. The 

following features were used as inputs to the cluster analysis. 

1. Plant Name (Categorical, 93 levels, not used) 

2. Unit ID (Categorical, 152 levels, not used) 

3. Primary Fuel Code (Categorical, with 4 levels) 

4. Heat Rate, in BTU/kW-Hr. both as continuous 

measurements and binned into two categories 

5. Total CO2 emissions (tons), both as continuous 

measurements and binned into two categories 

6. Total SO2 emissions (lbs.), both as continuous 

measurements and binned into two categories  

7. Total NOx emissions (lbs.), both as continuous 

measurements and binned into two categories 

8. Number of major load swings, both as continuous 

measurements and binned into two categories 

9. Number of minor load swings, both as continuous 

measurements and binned into three categories 

10. Unit age, in years. Continuous and binned into three 

categories 

 

A typical exploratory analysis plot of emissions vs plant age 

and colored by coal type, is shown in Figure 8. It is hard to 

identify any patterns in the data, other than the fact that most 

of the units are over 30 years old and there is a wide 

variability in their heat rate and annual emissions produced.  

 

Figure 8: Exploratory performance and emissions analysis 

 

 

Figure 9: Two-Way Hierarchic Cluster Analysis plot with 

inputs in columns, and power generation units as rows. 

A distance based clustering method (Hierarchic) and a LCA 

were applied to features 3 through 10 from the preceding list. 

Except for coal type, the Hierarchic Clustering method used 

Failed OK Failed Error Failed Error

Cluster 1 25 194 16.2 35% 23.5 6.0%

Cluster 2 0 191 7.1 high 0.0 0.0%

Cluster 3 11 168 13.5 -23% 10.6 3.4%

Cluster 4 3 168 3.0 -1% 3.0 1.3%

Cluster 5 5 114 2.4 52% 4.9 2.2%

Actual Data Standard LCA-WeibullLCA 

Cluster
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the continuous form of the inputs. Results from the hierarchic 

model are shown in Figures 9 and 10 below. The algorithm 

identified 13 clusters in the population. 

 

Figure 10: Performance-Emission segments for coal-fired 

units identified using Hierarchic Clustering 

In the next step, we completed a Latent Class clustering 

analysis on the same dataset, where the continuous variables 

we binned based on optimal normal mixture density 

clustering. The algorithm picked 3 clusters, which is more 

tractable from a marketing segmentation and maintenance 

planning perspective.  Details on the composition of each 

fleet segment is shown in the share chart below.  

Visually, a pattern starts to emerge with a few segments 

tracking high-efficiency (low heat rate), low emissions units 

while we see clusters of units that would benefit from 

targeted upgrades to improve performance and reduce 

emissions. A combination of these two methods can then be 

used to identify segments where PHM requirements and 

deployment strategies can be used, in conjunction with 

FMEA and Actuarial Engineering methodologies.  

 

Figure 11: LCA cluster share chart for coal plant data 

Table 7: Relative effect of input variables on the LCA 

model for coal plant data 

 

 

 

Figure 12: Performance-Emission segments for coal-fired 

units identified using LCA Clustering 

In summary, we would like to propose the inclusion of 

customer analytics techniques as part of the fleet asset 

manager’s toolkit, as it provides better risk and failure 

predictions as seen in the wind turbine case study. In addition, 

methods like LCA include both qualitative and quantitative 

variables to segment the fleet in a practical and actionable 

manner, where targeted PHM systems can be developed in a 

cost-effective way.  
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NOMENCLATURE 

AICc Akaike Information Criteria, Corrected 

BIC Bayes Information Criteria 

CO2 Carbon Dioxide 

kW-Hr Kilo Watt Hour 

CBM Condition Based Maintenance 

CLV Customer Lifetime Value 
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FMEA Failure Modes and Effects Analysis 

FMM Finite Mixture Model 

LCA Latent Class Analysis 

LR Likelihood Ratio 

MCA Multiple Correspondence Analysis 

MDS Multi-Dimensional Scaling 

NOx Nitrous Oxides 

NBD Negative Binomial Distribution 

OEM Original Equipment Manufacturer 

PCA Principal Component Analysis 

PHM Prognostics & Health Management 

RCM Reliability Centered Maintenance 

SO2 Sulphur Dioxide 

WLR Weibull with Life Regression  
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