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ABSTRACT 

There are many benefits from implementing a prognostics 
and health management (PHM) initiative in an industrial 
facility, such as realizing potentials from reducing unplanned 
downtime and increased asset efficiency.  Many industrial 
companies would like to take advantage of PHM 
technologies and algorithms to meet their business 
objectives, but identifying how to get started can be a 
daunting challenge.  The classical approach is to begin with 
a Reliability Centered Maintenance (RCM) program 
supported by failure modes and effects analysis (FMEA) 
where all possible failure modes, their risks, and mitigating 
actions are evaluated in the context of asset function.  In this 
framework, application of PHM technologies is viewed as a 
maintenance strategy effective at mitigating certain failure 
modes in specific cases that are both feasible and cost-
effective.  However, there are many challenges and 
limitations to traditional RCM where data-driven analytics 
embedded in these work processes can help overcome and/or 
automate.  On the other hand, the use of data-driven 
approaches introduces new challenges surrounding available 
data, data quality, and identifying numerical methods that are 
scalable across large datasets.  In this paper, we present a case 
study applied to historical maintenance data for identifying 
and prioritizing where to start a PHM initiative, and discuss 
the work processes and various challenges encountered when 
embedding data analytics in classical reliability approaches. 

1. INTRODUCTION 

Prognostics and Health Management (PHM) is a family of 
industrial work processes which can be viewed under a larger 
umbrella of Asset Performance Management (APM) work 
processes.  The goals of both PHM and APM initiatives are 
to satisfy the business objectives of an organization, whether 
it be increasing profit through reduced spending or increased 
efficiency, demonstrating safety and compliance, or 
improving quality of services or goods produced.  PHM work 

processes are specifically geared towards using asset 
information and technologies for diagnosis, prognosis, and 
health management of assets (Rajamani & Bird, 2016).  
 
Reliability-centered maintenance (RCM) is a process for 
developing an efficient and effective maintenance plan for an 
asset to ensure that it is able to provide its intended functions 
in their intended operating contexts by systematically 
identifying and mitigating risks (Gulati, 2009) (Moubray, 
1997) (Nowlan & Heap, 1978). An asset strategy is the 
collection of all intentional actions taken to mitigate known 
risks such as preventive maintenance, predictive 
maintenance, inspections, condition monitoring etc..  An 
optimal maintenance strategy is one that minimizes the total 
maintenance expenditure while minimizing risks (Casto, 
2010) (Whitt, 2009). 
 
RCM approaches are accompanied by Failure modes and 
effects analysis (FMEA), which is a standard methodology 
for identifying and assessing risks and actions that could 
eliminate or reduce the likelihood of risks, which is used for 
prioritization towards where to focus on a maintenance 
strategy. A health monitoring process begins with gathering 
information on a product’s failure mechanisms, modes, 
environmental conditions, and performance parameters that 
can be monitored (Kumar, Galar, Parida, Stenström & 
Berges, 2013).  Using this approach, an engineer can identify 
where to implement a PHM work process to monitor the 
health and condition of an asset with respect to the asset’s 
intended function.    
 
Systematic processes for identifying and specifying 
requirements during the design and implementation phase of 
a PHM initiative have been developed (Goebel, Daigle, 
Saxena, Sankararaman, Roychoudhury & Celaya, 2017) 
(Saxena, Celaya, Saha, Saha, & Goebel, 2010). The purpose 
of these processes are to ensure that a PHM initiative will be 
beneficial with respect to the goals of an organization.   Early 
key requirements are to identify stakeholders and needs, 
define the scope, identify how the users will interact with the 
data and information, and to define data inventory.  Once 
these factors have been identified, methods for prioritization 
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have been suggested to identify critical components as 
candidates for PHM strategies (Lee, Wu, Zhao, Ghaffari, 
Liao, & Siegel, 2014) (Lee, Liao, Lapira, Ni, & Li, 2009). 
 
Risk-based processes for determining appropriate usage of 
PHM are important.  Adding continuous real-time monitoring 
to all assets is expensive, data management can be 
overwhelming, and condition monitoring strategies are only 
significantly effective for monitoring failure modes that can 
be detected early enough that action can be taken to 
significantly reduce consequences of failure.  Different 
failure modes have different dynamics, and the time scale and 
failure patterns of a particular failure mode may dictate which 
PHM technology to use and what assets to use it on.  For 
instance, for failure modes where degradation may occur over 
several years on medium or low critical assets, it may be more 
cost-effective to monitor asset health through manually 
collected measurements such as visual inspections or route-
based spot readings collected with portable instruments. It 
has been estimated that in practice, PHM strategies are only 
technically feasible for at most 20% of observed failure 
modes, and in less than half of those cases it may not be 
beneficial from a business perspective (Moubray, 1997).  
 
However, when used appropriately, the benefits of a PHM 
initiative have been proven to be effective.  Monitoring the 
condition of an asset continuously with the goal of early 
failure detection enables the maintenance engineer sufficient 
time to plan and make repairs with minimal disruption to the 
asset, operations, and safety. For example, past studies have 
shown that an appropriately implemented CBM program 
have provided an savings average of 10% (7-15%) over a 
maintenance strategy employing only preventative 
maintenance tasks (Gulati, 2009).   
 
Due to these benefits, many industrial companies would like 
to take advantage of PHM technologies and algorithms to 
meet their business objectives, but are faced with the 
challenge of how to get started.  Theoretically, 
implementation of RCM to establish optimal maintenance 
strategies, applying PHM technologies, and leveraging asset 
data and information in order to satisfy business objectives 
works perfectly, however, there are many challenges when 
implemented in practice.  Challenges include how to get 
started and prioritize an initiative, and how to measure what 
approaches are effective.  Fortunately, there are many 
opportunities to address many of these challenges through 
embedding data-driven analytics in workflows towards 
identification prioritization.  Automating analytics enhanced 
workflows can use different data sources and provide 
information to the user which may quantify certain 
challenging areas to quantify.  However, when tackling data 
challenges across broad datasets, many new challenges arise 
around data quality problems, noise, and numerical methods 
that are robust enough to automate an analysis across a broad 
dataset. 

 
This paper walks through the steps with a data-driven use 
case towards prioritizing and getting started with a PHM 
initiative through an RCM basis for choosing where to apply 
PHM technology.   We focus on a particular example of 
looking at different age-reliability characteristics to 
determine candidates for condition and health monitoring 
based on identifying observed failures with failure patterns 
physically possible for applying prognostics models.  We 
discuss the steps we took and the challenges we discovered 
in generalizing a classical approach to a large dataset. This 
approach can be used to identify how and where to get started 
in a PHM initiative with respect to business opportunity.  
 
The rest of the article is organized as follows.  Section 2 
summarizes common industrial data sources as well as 
reviews traditional RCM approaches and age-reliability 
analyses and challenges.  Section 3 details the numerical 
approaches proposed for applying an RCM approach to large 
datasets and numerical challenges.  Section 4 presents a case 
study illustrating the methodology.  The paper ends with 
concluding discussions and suggests future research 
directions. 

2. BACKGROUND 

In this section, we review common industrial data sources as 
well as traditional RCM approaches for determining 
maintenance strategies and a review of challenges. 

2.1. Maintenance data sources and data quality 

A major and common source of data generation and storage 
for assets and maintenance activities across industrial 
companies are in the Enterprise Asset Management (EAM) 
or Computerized Maintenance Management Systems 
(CMMS) (Gulati, 2009).  Capabilities of CMMS/EAM 
systems include work task identification, planning, 
scheduling, and reporting.  Databases from CMMS/EAM 
systems include records of maintenance activities and costs 
across asset fleets.  A strength in transactional data from the 
CMMS/EAM is that it contains information about a wide 
range of assets in the organization, as well as maintenance 
logs capture any maintenance event performed.  The 
information in these databases can be mined as a starting 
point for identifying APM and PHM opportunities across an 
entire company or plant’s operation.  However, challenges in 
this approach arise due to the high volume of data and data 
consistency and quality issues. 
 
Data quality challenges are common across nearly all 
companies and especially in situations where data is 
manually entered.  Historical records are important for 
providing valuable insight in past maintenance on existing 
pieces of equipment and provide valuable asset information 
and material for reliability analyses.  While the value 
potential from using transactional data is unbounded, the 
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abundance of missing and inconsistently filled in information 
limits the possible analysis on data sets.  Discussions on 
different data quality challenges are well reviewed in  
(Lukens, Naik, Hu, Doan, & Abado, 2017) (Meeker & Hong, 
2014) (Hodkiewicz, Kelly, Sikorska, & Gouws, 2006) 
(Koronios, Lin, & Gao, 2005) (Lin, Gao, Koronios, & 
Chanana, 2007). 
 
Problems around missing or incomplete failure event 
information, such as the failure mode or the root cause, are 
data quality challenges central to conducting reliability 
analytics (Sikorska, Hammond, & Kelly, 2007). Failure 
mode data analysis relies on consistent failure mode coding 
practices such as those standardized for the oil and gas 
industry by ISO 14224 (ISO 14224, 2004). Failure codes 
entered in CMMS/EAM systems often take the form of 
structured fields for which values may be selected from a 
drop-down menu, but in practice, many of these structured 
fields may be incorrectly filled in or missing.  Even more 
fundamental, the characterization of a failure event itself 
often depends on the perception of a craftsman and may be 
miscoded or missing critical information. 
 
A data quality assessment should precede efforts where data 
is used to evaluate any quantity – whether it be a simple 
metric or a sophisticated model.  In the case of performance 
measures, it is not desirable to use a performance measure 
that is easy to manipulate to make a user ‘feel good’ (Gulati, 
2009) (Kumar et al., 2013) and poor data quality can 
erroneously alter many common metrics to look good. For 
instance, not recording failures properly can improve 
measures of asset reliability.  After determining which data is 
sufficiently-good for analysis and which analyses are 
possible, you can analyze asset performance as far as it will 
allow, and start improving processes for the quality of the rest 
of the data (Naik, 2016) (Naik & Saetia, 2018). Improving 
data quality, once measured, can be done by changing the 
process in which the data is created and/or by improving the 
existing data. Frameworks for assessing and improving data 
quality for asset performance applications such as evaluating 
metrics have been developed extensively (Hodkiewicz & Ho, 
2016) (Koronios et al., 2005) (He, 2016). 

2.2. Assess risks for maintenance tasks through FMEA 

Failure modes and effects analysis (FMEA) is a standard 
methodology for identifying and assessing risks and actions 
that could mitigate (eliminate or reduce) the likelihood or 
consequence of risks.   An FMEA includes an assessment of 
risks based on a risk’s probability of occurrence and 
consequence, which is used for prioritization towards where 
to focus on a maintenance strategy in order to have the 
biggest impact with respect to the pre-determined business 
goals. 
 

Consequence is less straightforward to estimate than the 
likelihood of risk (probability), and focuses on answering the 
magnitude of how much each failure impacts the operation if 
or when it occurs.  Estimates of consequence may depend on 
asset function, safety and environmental factors, operations, 
as well as economic factors such as cost-effectiveness and 
production losses.  Consequence should be evaluated 
independently from probability.  In an FMEA approach, once 
probability and consequence have been estimated, a risk 
priority number (RPN) can be calculated. The RPN is the 
product of the probability and consequence and is used for 
ordering the priority of risks as candidates for mitigation 
efforts. 
 
The RCM/FMEA approach for designing maintenance 
strategies has several limitations in practice.  It is a daunting 
task to exhaustively assess failure modes for every asset in 
your organization depending on each individual asset’s 
operating context.  Assessing an FMEA across all assets in a 
facility can be impractical when kick-starting an initiative. 
Criticality Analysis provides a risk-based approach to 
prioritizing efforts (Whitt, 2009).   A critical asset is an asset 
that has been evaluated and classified as critical due to its 
potential impact on safety, environment, quality, production, 
and cost (Gulati, 2009) (SMRP, 2017).  The number of assets 
potentially at risk may outweigh the available resources to 
manage them and starting with a criticality assessment helps 
prioritize where to apply the available resources to be cost-
effective and efficient. 
 
There are also challenges in using different sources of 
information for FMEA.  Sources of data can include 
information from the Original Equipment Manufacturer 
(OEM), out-of-the box FMEA or strategy templates, peer 
data from other users of similar equipment, work history from 
the CMMS/EAM, and the knowledge base of the operators 
and maintainers of the assets themselves (Moubray, 1997).  
Manufacturer data is challenged by the fact that few 
manufacturers are involved in the long term usage of the 
equipment that they manufacture and they often do not obtain 
failure data after the warranty period ends (Meeker & Hong, 
2014). 
 
Templates and peer data may contain levels of root cause 
information that is inappropriate for a specific case; there can 
be tremendous variation in usage and operating context 
within an organization for two assets of identical make and 
model which will affect optimal maintenance strategies.   
Operators and maintainers have a deep knowledge of how the 
assets work, what goes wrong, and how the failure matters to 
the organization, however, there may be subjectivity and 
blind spots when used alone. 
 
Historical maintenance records from the CMMS/EAM are an 
excellent source for data, but should only be used as a 
supplemental source.  Challenges include many of the data 
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quality issues discussed above, such as incomplete 
information about a maintenance event.  Additionally, when 
using the free text fields, often it is described what was done 
to fix a failure, not a description of the failure cause or 
damage mechanism.  And lastly, only failure modes that have 
been observed can be identified – only a good source of 
information for failure modes with higher frequency.  And 
lastly, softer to measure consequences to the environment or 
to the reputation of the firm are more difficult to quantify, so 
consequences measured from maintenance logs are restricted 
to economic consequences.   
 
The ideal situation is to use different sources of data that 
provide independent perspectives on the performance of 
particular pieces of equipment. Out-of-the box templates are 
helpful sources of information with respect to providing 
exhaustive lists of possible failure modes and actions, which 
can help supplement the perspective of a domain expert.   
Peer and historical maintenance data may be helpful with 
providing quantitative starting points for observed frequency 
and consequence of historical failure patterns.  Developing 
work processes in which analytics can automate and leverage 
different data sources in a workflow integrated with a human 
user can overcome many limitations associated with 
RCM/FMEA approaches.   

2.3. Evaluate effectiveness and feasibility of strategies 
with respect to business goals 

Once areas of opportunity have been identified, and failure 
modes, risks, and mitigating actions have been identified, the 
remaining step for risk mitigating task identification is to 
evaluate the effectiveness of the possible risk mitigating 
actions.  Effectiveness is the measure of the ability of an 
action to mitigate the risk.  The effectiveness will depend on 
the consequence of each risk, as well as the feasibility of each 
possible task.   
 
The feasibility of a maintenance task is related to the physics 
of an actual damage mechanism. The classic engineering 
model for the progression from when a potential failure 
becomes detectable to when it degrades to a functional failure 
(when an asset is unable to perform to specifications) is 
known as the P-F curve, describing the time elapsed between 
potential failure (P) and functional failure (F) (Gulati, 2009).  
Condition or health monitoring tasks are only feasible when 
it is possible to define a potential failure condition for a 
failure mode, the potential failure conditions can be 
monitored at intervals that are shorter than the P-F interval, 
the P-F interval is long enough to take action, and consistent 
enough in duration to be able to control the monitoring and 
action steps (Moubray, 1997).  For each possible potential 
failure monitoring condition, we should evaluate which tasks 
are the most cost-effective for mitigating an anticipated 
failure mode. 
 

In this paper, we will discuss one such possible analytic 
workflow which looks at age-related failure patterns in order 
to assess which failure modes are candidates for PHM, and 
which failure modes may need other suitable strategies to 
mitigate. 

2.4. Shape assessment of failure patterns 

Nowlan and Heap (1978) in their revolutionary 1978 paper 
“Reliability Centered Maintenance” first described an 
approach for conducting a shape assessment of age-
characteristics of failure patterns in order to determine what 
types of maintenance strategies would be most appropriate to 
mitigate different observed dynamic failure patterns. Age-
reliability characteristics of an item, component, or asset 
population under study are defined as the relationship 
between the operating age and the probability of failure. This 
approach was applied to failure data for different airplane 
components, and based on lifetime data analysis and 
estimation of the survival curve, which is the probability of 
survival of a component beyond a specific age (Lawless, 
2011).   
 
The measure central to characterizing the age-reliability 
relationship is the hazard rate (or conditional probability of 
failure).  The hazard rate is the instantaneous probability that 
an item will fail in the interval (𝑡, 𝑡 + 𝑑𝑡) given that it has 
survived up to time 𝑡 (Lawless, 2011) (Wang, 2005) (Nowlan 
& Heap, 1978).  The shape of the hazard function describes 
the age-related failure patterns, including the famous 
“bathtub curve” in reliability analysis (Figure 1). 
 

 
Figure 1. Cartoon depiction of the famous “Bathtub curve”, 

a model of a hazard function over the survival time of a 
population. 

 
The bathtub curve is a possible model of a hazard function 
over time for a population of items, and has three distinct 
regions.  The first region is “infant mortality” when there is a 
relatively high probability of failure after replacement or 
overhaul that decreases over time.  The middle region is a 
“random failure” region of constant and relatively constant 
but low probability of failure.  The last region is the “wear 
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out region”, when the probability of failure begins to increase 
rapidly with increasing age.   
  
Various failure modes across varying applications are linked 
with different age patterns.   For an asset population, grouped 
by similar assets in similar asset populations, the calculated 
hazard functions show the overall age-based failure patterns 
for that population.  Nowlan and Heap (1978) observed six 
different possible shapes describing the hazard function, 
corresponding to different combinations of the three different 
regions.  In Figure 2, the six observed hazard function shapes 
are reproduced along with the frequency of observance across 
different populations in the Nowlan and Heap (1978) study. 
The plots are interpreted by the shape of the hazard function 
(vertical axis) over lifetime (horizontal axis).  For example, 
populations that fall into shape A exhibit a classic bathtub 
curve failure pattern.   

 
Figure 2. Reproduced results from Nowlan and Heap 
(1978).  In their study, across populations of airplane 

components, they observed the non-parametric hazard rate 
took one of 6 shapes, and that only about 11% of 
components exhibited “wear out” failure patterns. 

 
The intention for evaluating the hazard function curves across 
equipment populations is to get a view of age-failure patterns 
to be used to assess the appropriate maintenance strategy in 
terms of failure mode dynamics.  In particular, assets that 
demonstrate failure modes with wear-out patterns are 
candidates for strategies with potential performance 
improvements by imposing age-limits for component 
replacements or for monitoring for degradation (Nowlan & 
Heap, 1978). In Figure 2, this corresponds to populations that 
exhibit shapes A, B, or C, which can be seen by the increase 
in the hazard function as age increases. Wear out patterns are 
commonly observed under conditions of wear, fatigue, 
corrosion, oxidation, and evaporation (Moubray, 1997).    
 
The most cited finding from Nowlan and Heap’s (1978) study 
is that asset populations with a wear-out age-related failure 
pattern were observed significantly less than asset 
populations without a wear-out component (11% opposed to 
89% of the populations in their study).  The significance of 
this finding was that only a fraction of asset populations were 
candidates for performance improvements through some 

form of maintenance task relying on degradation, such as an 
effective condition and health monitoring initiative.  
 
Most of the observed failure patterns were due to non-age-
related failures, which could be caused by variable stress or 
complexity in equipment (Moubray, 1997).  The greater the 
complexity in equipment, as technology and electronics grow 
more sophisticated, the more possible number and varieties 
of ways that a failure could occur.  For these types of 
observed patterns, it is still necessary to understand the 
underlying failure patterns in order to devise an effective 
strategy to mitigate failures.  Some possible strategies could 
be redesign (such as install a screen to prevent jamming or 
clogging by foreign objects) or evaluating maintenance or 
operating processes (such as an operator who aggressively 
uses an asset, or ineffective maintenance practices). 

3. METHODS: DATA-DRIVEN WORKFLOW FOR ASSET 
STRATEGY PRIORITIZATION 

The workflow based on Nowlan and Heap (1978) for asset 
strategy identification and prioritization is shown in Figure 
3.  The input is assumed to already have passed through the 
data quality and a prioritization workflow such as Criticality 
Analysis.  Analytics to treat data quality challenges and 
estimate the hazard functions are integrated in the workflow 
to automate the process across broad datasets and address the 
limitations discussed in Section 2.2.   

 
Figure 3. Flow chart for assessing asset strategies based on 

calculating the hazard function 
 

Running the analysis across general or broad maintenance 
records presents many challenges around processing the data 
and ensuring interpretable results.  The general steps from 
(pre-processed) data from the CMMS/EAM to proposing 
effective strategies based on age-failure patterns are: 
 

1. Identify which historical events are a failure 
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2. Identify meaningful groupings or populations of 
assets (by component, type, manufacturer, model, 
unit type, company, etc.) 

3. For each grouping of assets, estimate the hazard 
function 

4. For each hazard function, characterize the shape 
and drill down to understand and interpret the 
shape at the failure mode level.  Populations with 
wear-out regions identified are candidates for 
performance improvements through PHM. 

5. Evaluate the effectiveness of a proposed task 
 
For each step, we discuss the challenges, numerical 
approaches for calculations and the new challenges that arise. 

3.1. Identify which historical events are a failure 

As mentioned in the data quality background (Section 2.1), 
one key data quality challenge for conducting reliability 
analytics across broad datasets are lack of failure event 
classification, and even more fundamentally, recording 
whether an event was a failure event or not.  Any large-scale 
data mining effort across historical maintenance records for 
reliability analytics is fundamentally challenged by missing 
or inconsistently coded breakdown indicator fields, which 
records whether an asset failed or not. 
 
In addition to addressing the data entry and generation 
process, there are analytics opportunities to tackling this 
problem across historical data that already exists. In many 
cases, the true nature of the failure cause can be inferred from  
unstructured fields such as the free text field or service notes.   
Different approaches for treating this problem, both through 
analytics to clean existing data or processes to improve data 
collection have been discussed and explored (Lukens et al., 
2017) (Hodkiewicz & Ho, 2016).  
 
The approach we take is to use a machine learning classifier 
trained on labeled data.  Major strengths of deploying 
classification algorithms are consistency and scalability.  
Two similar inputs will always have the same classification 
by a computer model, which is not always the case with 
human labeling.  Further, computer models can run very 
quickly over large amounts of records (can label thousands of 
records in minutes).  We use commercial software in the GE 
Digital APM offering, which classifies a repair event as a 
failure or not a failure based on a machine learning algorithm 
trained on a large dataset describing repair events across an 
aggregate of industrial peer companies and reviewed and 
labeled by a team of subject matter experts (GE Digital APM, 
2017). Naïve-Bayes was the algorithm we used for a couple 
of reasons.  A lazy learner was desired because of data-
sensitivity issues when training a classifier on aggregated 
confidential data and applying it elsewhere.  Of the lazy 
learners explored, Naïve-Bayes had the highest accuracy as 

well as the highest reported satisfaction of the results by the 
team of subject matter experts. 
 
New sets of challenges arise when applying classification 
models to broad datasets.  While consistency is a strength, it 
can also be a weakness, as the definition of “functional 
failure” may differ between identical assets in different 
operating contexts.  Additionally, fundamental challenges in 
work history descriptions can lead to problems.  Models are 
only as good as the data they are trained on, and edge cases 
abound in work history descriptions.   For example, the 
information about what was done to repair a failure or what 
was observed (eg: “replace bearing”, “pump is not pumping”) 
may not give the desired level of information, and while a 
human may figure out intelligently with to do with this 
information, a computer algorithm will not.  It has been in our 
experience that computer models adequately get most of the 
labels correct, which significantly reduces the time and effort 
required for a human, and further, that meaningful patterns, 
trends, and insights can be obtained even from the data not 
being 100% labeled and catching every functional failure 
specifically in every operating condition. 

3.2. Identify meaningful sub-groupings or populations of 
assets 

The hazard rate shape assessment is calculated over a 
population of similar assets operating under similar operating 
conditions.  Population mixtures are mutually exclusive 
groupings of units within a population, which could result 
from differences in the manufacturer or the use of the 
product.   Nowlan and Heap (1978) used different aircraft 
components such as a particular make and model of engine 
as different subpopulations.   
 
A new challenge that arises from applying analytics to broad 
datasets is processes and methods for determining optimal 
ways for stratifying a population. We have observed through 
experience both first-hand and with applying different 
statistical methods to CMMS/EAM data that different sites 
and companies tend to be the most meaningful explanatory 
variable for differences between subpopulations.  For this 
reason, we group assets of the same type by site in the case 
study, but remark that there is opportunity for future 
statistical work here towards automating and improving this 
workflow. 

3.3. Numerical estimation of the hazard rate 

In lifetime data analysis, the survival curve or the reliability 
function is the probability of survival beyond a specific age 
(Lawless, 2011).  If we assume that 𝑇 is the random variable 
describing time to failure, the probability of survival past 
time 𝑇 is given by the survival function 
 

𝑆(𝑡) = Pr{	𝑇 > 𝑡} . (1) 
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The survivor function can be estimated parametrically or 
non-parametrically.  Non-parametric estimates look at the 
proportion survived over a period of time running over the 
observed lifetime data.  When right-censored data is included 
in the lifetime dataset (equipment that did not fail over the 
observation time window), the Kaplan-Meier estimate can be 
used to adjust the non-parametric survival function.   
 
Parametric models, such as models using the Weibull 
distribution, are also commonly used to estimate the survivor 
function.  In a probability distribution framework, the 
probability density function (pdf) 𝑓(𝑡)  models the 
distribution times of time to failure and the cumulative 
distribution function (CDF) 𝐹(𝑡)  gives the probability of 
failure at a certain time.  The survival function is denoted as 
the complement of the CDF (𝑆(𝑡) = 1 − 𝐹(𝑡)).  
 
The measure used for age-reliability is the conditional 
probability that a component, having survived up to a given 
time, will fail at the time.  This is known as the conditional 
probability of failure, or the hazard rate.  The hazard function 
is given by 
 

ℎ(𝑡) = 	 lim
9:→<

Pr{𝑡 ≤ 𝑇 < 𝑡 + 𝑑𝑡|𝑇 > 𝑡}
𝑑𝑡 	 . (2) 

 
 
In probability distribution terms (such as in a Weibull 
analysis), this limits to 
 

ℎ(𝑡) = 	
𝑓(𝑡)
𝑆(𝑡) = 	

𝐹A(𝑡)
1 − 𝐹(𝑡) .

(3) 

 
The strengths of using a parametric approach are that it is 
straightforward to implement and often the fitted parameters 
have meaningful physical interpretation.  The parametric 
models can also be used for other analyses such as to estimate 
the number of expected component failures over a period of 
time for planning purposes.  Limitations of the parametric 
approach include factors around the data, data fitting and the 
model itself.   It assumes that the data can be described by a 
parametric model and that the fit itself is reasonable, which 
is not always the case.  A further limitation to estimating the 
hazard function in the parametric approach is that the shape 
of the hazard function is restricted only to pre-determined 
shapes by the distribution used.   
 
One of the major challenges in numerically conducting a 
Weibull analysis from historically observed failure data is 
understanding and cleaning the data up so that a reasonable 
fit to a Weibull distribution can be made.  The Weibull 
distribution model is a failure-mode specific model, and 
when mixed failure modes are observed across an asset 
population, the only way to fit the time to failure data is to 
have the different similar damage mechanisms or failure 

mode for each observed failure event well characterized.  If 
the analysis is conducted on a small data set describing well-
known asset failures, this can be effective, however, this 
method does not scale up well for large datasets spanning 
many populations of assets across many sites and possibly 
across several different industrial companies and verticals.  
Once a Weibull is fit from each failure mode, the hazard 
function can be estimated.  In a Weibull analysis, the 3 
possible regimes (infant mortality, random, and wear out) are 
the only possible shapes the hazard function can take.   
 
The non-parametric approach to hazard rate estimation has 
added flexibility, is model-free, and data-driven.  As a result, 
more complex shapes can emerge describing a hazard 
function profile than may be possible to model using a 
probability distribution and can describe failure dynamics 
across multiple failure modes.  However, limitations of the 
non-parametric approach include difficulty in using the fits 
for predictive purposes and for simulation, and numerical 
challenges in estimating the hazard function.  The non-
parametric survival curve (such as generated by Kaplan-
Meier estimates) may be jagged or noisy, and numerical 
estimation of the derivative of noisy data is even noisier, 
while the hazard rate is assumed to be a smooth function 
(Wang, 2005). 
 
The numerical challenge of smoothing non-parametric 
hazard estimates was tackled by the biostatistics community 
in the 1990’s.  Different possible approaches for smoothing 
the hazard rate function for continuously observed data, such 
as using a convolution type estimator with different 
smoothing methods such as a kernel method, a ratio type, and 
spline estimators were developed, as well as methods and 
considerations such as selection of kernel, choice of 
bandwidth, and left and right boundary effects (Wang, 2005) 
(Muller, 1994). There are different software packages 
available, both commercial and open source for estimating 
smoothed hazard rates using the kernel method such as 
‘survPresmooth’ (López-de-Ullibarri & Jácome Pumar, 
2013) and ‘muhaz’ (Hess & Gentleman, 2010) in R. 

3.4. For each hazard function, characterize the shape 

Characterizing the shape of the estimated smoothed hazard 
function is straightforward through visual inspection.  
Challenges arise when attempting to systematically 
characterize shapes across hundreds of different sub-
populations across broad datasets (hundreds of equipment 
types across many units or sites), and also for then drilling 
down into the data for determining a prioritization strategy.  
To tackle the first problem, the performance measures and 
criticality assessments performed previously should be used 
for prioritization of where to start.  In order to identify 
candidates for a PHM initiative, we can identify which 
populations resulted in age-related failure patterns as 
candidates to first investigate. 
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Once a prioritized set of populations are determined, we can 
start making assessments systematically towards informing 
the maintenance process.  The next step is to drill down into 
the different failure modes to determine which failure modes 
are driving the shapes.  For the age-related failure patterns for 
identifying potential PHM opportunities, it would be to 
assess which failure modes contribute to the observed wear 
out or degradation patterns. 
 
The data challenges that arise here circle back to the data 
quality challenges around failure event classification.  We 
take the same approach as for identifying which repair events 
are failures to characterize failure events by their 
maintainable item and failure mechanism.  For each 
characterized population, we identify the dominant damage 
mechanisms and run a Weibull analysis to characterize each 
failure mode.  The outcome is identification of failure modes 
on prioritized asset groupings that are potential candidates for 
maintenance tasks aimed specifically at how their failures 
dynamically have occurred. 

3.5. Evaluate the appropriate maintenance tasks and 
strategies 

Once we have established frequencies of failures and failure 
modes based on their dynamics, the last step is to determine 
which tasks are appropriate for mitigating risks by looking at 
both the feasibility and effectiveness.  Effectiveness arises 
from studying the consequence of different failure modes, 
which is another challenging analytics opportunity and an 
area of future work. 

4. CASE STUDY 

In this case study, we walk through an example of how we 
can investigate and identify areas towards creating an 
effective asset strategy based on age-failure patterns.  This 
top down approach can assist in identifying what assets and 
what failure modes may benefit performance-wise from a 
PHM initiative. To protect proprietary information, all 
variables have been anonymized and age has been scaled.   
 
After a preliminary prioritization assessment based on a 
benchmarking exercise, a particular type of rotating asset in 
a particular industrial application was identified as a 
candidate for prioritization based on high repair cost and 
counts relative to peer values.  The dataset identified for the 
case study consists of N = 180 assets observed over a period 
of 5 units of time (such as a year) at 3 different sites.  There 
were about 4,000 repairs observed total over that period of 
time, but not all of the repairs were failures (the breakdown 
indicator was not used).   
 
The first step was to classify which of the repairs were failure 
events.  We used the classifier in the GE Digital APM 
commercial software package which classifies a repair event 

as a failure or not a failure based on free text data. Classifying 
the repair data resulted in about 650 failure events.  We were 
able to visually inspect the results to evaluate the failure 
classifications and they were satisfactory.  A couple examples 
demonstrating the differentiation of repair events are shown 
below in Table 1: 
 

Table 1. Examples demonstrating failure classification of 
repair events 

Work description Is A Failure? 
Seal is leaking True 
Shaft seized True 
Motor to be decoupled False 
Check trip condition False 

 
It was also identified that for each population grouping, we 
wanted to conduct the analysis for different populations 
based on the different sites.  We assumed that after each 
failure, the repair was good as new.  We converted the 
observed maintenance data, which was in calendar time, to 
lifetime data through calculating the time between events.   
 
 The Kaplan-Meier survival curves between the 3 sites are 
shown in Figure 4: 

 
Figure 4. Survival curves for the case study as calculated by 

Kaplan-Meier estimation. 
 

We calculated the non-parametric smoothed hazard function 
for each asset population which were grouped by site and 
show the curves in Figure 5.  We used the ‘muhaz’ R package 
for the kernel smoothing method, which first estimates the 
cumulative hazard function with the Nelson-Aalan estimator, 
then smoothed using an Epanechinikov kernel.  The hazard 
function is returned as the first order difference of the 
smoothed function.  In the method, to avoid boundary effects 
that occur from bias problems near the left endpoint, we used 
the (default) maximum time for the hazard function estimator 
to when 10 assets remained at risk. From the survival curves 
in Figure 4, we can see how most of the assets at Site 3 failed 
before 3 time units.  
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Figure 5. Non-parametrically estimated smoothed hazard 

functions across population of rotating assets.  The end time 
for the smoothing was determined by the sample size of 

remaining assets at risk.  Since nearly all but 10 failures for 
Site 3 were observed in the first 3 time units, the smoothed 

estimate does not account for the few remaining. 

Applying the shape assessment to the smoothed hazard 
functions, the age-failure patterns for the rotating asset 
populations at Sites 1 and 3 have the characteristic bathtub 
shape, meaning that there are failure mode patterns which 
exhibit wear-out characteristics, and performance could 
potentially be improved through imposing an age-limit or 
through condition or health monitoring strategies.  For Site 2, 
we observe that there is likely a complex failure mode 
structure and unless one of those failure modes dominates, 
imposing an age-limit or applying PHM will do little to 
improve the overall reliability. 
 
The next step is to drill down into the failure mode structures 
and identify strategy opportunities.  Due to data quality 
issues, we mine the failure mode information by identifying 
the maintainable item and failure mechanism in the work 
orders using the classification algorithms from the GE Digital 
APM commercial software package.   
 
Investigation of failures at Site 2 revealed that the dominant 
failure modes were seal leaks (25%), bearing leaks (18%), 
and lube oil leaks (12%).  The percentages were calculated 
by dividing the number of observed failures for a particular 
failure mode by the total number of failures.  Of the 650 
classified failures, 193 were at Site 2.  A parametric Weibull 
analysis showed all of these failure modes as having an infant 
mortality trend ( 𝛽 < 1 ), which is consistent with the 
monotonically decreasing non-parametric hazard rate 
estimate.   
 
We drilled down to individual failure event patterns for 
different individual assets and observed repetitive repair 
events. Figure 6 shows a representative example of the event 
history for one asset.  Observe that the same failure mode 
(seal leak) was observed and recorded repeatedly in a short 
period of time.  What could possibly be happening is that the 
repairs are not effective, so investigation is needed to 

determine why repeat repairs are happening, and address the 
root cause. 
 

 
Figure 6. Failure event occurrences for an asset at Site 2.  
Many repetitive seal repairs over a short period of time, 

implying that possibly value in a strategy to reduce repeat 
failures and improve fix effectiveness. 

 
At Site 1, failures were driven by the dominant failure mode 
of seals leaking (40% of failures).   The next most common 
failure mode were general failures (15% of failures) (General 
failures refers to general failures that are challenging to 
characterize such as “Asset is not working” or commonly 
“Pump is not pumping”).  No other failures modes were 
observed with significant frequency (<10%).  Site 3 failures 
had a similar pattern, except most failures were due to a dirty 
strainer (33%), then seal leaks (11%).  Mechanistically, any 
of these failure modes would be assumed to be due to some 
sort of wear (seal degradation, strainer accumulating gunk, 
wearing out of mechanical parts, etc.).  In order to identify 
which of these failures contributed to the observed wear out 
portion of the bathtub curve observed in the smoothed hazard 
estimators, we performed a Weibull analysis.  The parametric 
estimated hazard functions for the Weibull analysis for Site 1 
are shown in Figure 7. 
 

 
Figure 7. Parametric hazard rates (results of Weibull 

analysis) for dominant failure modes at Site 1. 
 

The Weibull analysis for both Sites 1 and 3 revealed that seal 
leaks and dirty strainers had infant mortality patterns similar 
to Site 2.  Further, the wear out contributions were due to 
general failures.  In this particular analysis, if the seal leaks 
or dirty strainers were associated with wear out, they would 
be candidates for a cost-effectiveness analysis for a PHM 
initiative.  However, at these sites the engineer should 
probably recommend a study of the maintenance 
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effectiveness.  Additionally, the analyst should also start 
investigating and asking questions as to what happened 
behind the general failure events observed in the work history 
data to determine the root cause.  While the need for the 
reliability engineer to ask questions to determine what 
happened is nothing new, a work process utilizing data 
analytics has been proposed which identifies where to ask the 
questions and which questions to ask. 

5. CONCLUSION 

Analytics embedded in work processes have the potential to 
assist in making maintenance strategy decisions which can 
have the largest impact on business goals in an organization.  
However, using data sources common to most industrial 
facilities as inputs to data-driven analytics in a large-scale 
fashion introduces many new challenges.  It is important to 
recognize that data-driven analytics alone are far away from 
replacing human knowledge.  Rather, there is need to develop 
workflows which reduces tedious manual labor to help the 
human execute work processes in a more informed fashion.  
What is ideal for incorporating data and analytics are  “man-
in-the-loop” workflows which supplement the domain 
expert’s experience.  In the context of prioritizing a PHM 
initiative, analytics can be embedded in workflows which 
help in measuring and improving data quality, identifying 
areas of opportunity to focus on, and for identifying 
systematically where opportunities lie for the optimal 
payback on a PHM investment. 
 
It is important to note that none of these proposed 
methodologies address the single hardest limitation which is 
actual successful implementation of the determined optimal 
strategies.  In the FMEA approach, only the challenges 
associated with identifying which risks to mitigate in the most 
effective way were addressed in this study.  Once a 
maintenance strategy is defined, the challenge of actually 
eliminating failure modes remains which is less 
straightforward and the most difficult part of the process.   
However, once a strategy is designed and implemented, there 
is also the possibility and challenge of monitoring for 
dynamic risk to ensure that the strategy is both successfully 
executed and effective.   Risks may change over time, and 
asset strategies may need to be re-assessed.  While the 
analytics-driven workflows proposed here probably will not 
help the operator and maintainer optimally maintain the 
assets themselves, there is opportunity to modify the 
proposed methods and workflows to monitor and measure the 
effectiveness of a strategy.  In this fashion, alerts can warn 
the reliability engineer which assets to continuously check up 
with respect to strategy implementation. 
 
The population-level methods in this study calculating the 
hazard rate and Weibull analysis are mathematically the same 
to methods in the PHM literature referred to as “type I 
prognostics”.  The term “type I prognostics” has been coined 

to describe traditional reliability analysis in a prognostics 
perspective (Coble & Hines, 2011) (Coble & Hines, 2009). 
Reliability analytics models characterize the expected 
lifetime of an average system operating under average 
operating conditions.  From a prognostics perspective, 
shortcomings of this approach are that actual remaining 
useful life (RUL) estimates are not accurate for an individual 
asset due to lack of information specific to an individual 
asset’s operating environment.  However, in our specific use-
case, we wish to characterize failure patterns for a group of 
assets to understand their general behavior as a first step to 
identifying priority groupings, and to make general assertions 
about to approach developing a strategy.   
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