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ABSTRACT 

This paper presents the applications of Bayesian-filters (BF) 
with Markov chain Monte Carlo (MCMC) simulations for 
probabilistic lifing assessment of aircraft fatigue critical 
components.  Uncertainties in damage growth parameters are 
updated with new information obtained through structural 
health monitoring (SHM) systems and the remaining useful 
life (RUL) are predicted. State transition function 
representing virtual damage growth of a component and 
measurement function representing the SHM measurements 
of the component are defined.  State transition function is 
described by a typical Paris equation for fatigue crack 
propagation.  In the equation, the initial crack size and crack 
growth rate are updated by incoming SHM measurements.  
Measurement functions are assumed in this study which 
describe the relationship between the damage features 
derived from SHM signals and the damage sizes.  Damage 
tolerance (DT) and risk-based remaining useful life of fatigue 
critical structural components are determined at various 
reliability levels. The variabilities of RUL are also quantified 
for various magnitudes of random measurement noise and 
various measurement frequencies.  It is found that the 
variability of the RUL is proportional to that of the 
measurement noise. In addition, more frequent measurements 
will result in less variability in RUL. 

1. INTRODUCTION 

Army is pursuing next generation fatigue design and 
maintenance methodologies for rotorcraft fatigue critical 
components.  The goal is to reduce the operating and 
manufacturing cost as well as vehicle weights for 
performance improvement while maintaining high reliability 
during operations.  Currently, fatigue critical components are 

retired at their respective design life (which is also called life 
limited components) based on traditional safe-life approach.  
This approach results in a big waste that many retired 
components still have long and healthy remaining useful life 
after retirement.  However, their respective remaining useful 
life (RUL) and associated reliability are unknown and non-
quantifiable under current design and assessment 
methodologies. If the remaining useful life of those life 
limited components can be accurately and reliably 
determined, then the retirement of those parts could be 
postponed.  As a result, enormous savings can be realized for 
the stake holders.  

Army Research Laboratory is conducting researches to 
develop a probabilistic approach and framework to determine 
the critical information for real time risk assessment and risk 
management regarding aircraft life cycle management of new 
and existing life-limited components.  Using health state 
information from health monitoring systems, combined with 
physics-based damage model, a comprehensive life 
assessment is formulated.  This new approach allows 
regulators to make informed judgments regarding potential 
extending the current design life of critical rotorcraft 
components while operating under safe and reliable 
conditions.  It also provides new tools to design and manage 
fatigue critical components of next generation rotorcraft for 
low cost, light weight and high reliability. 

The assessment requires uncertainty modeling, physics-based 
modeling, health state quantification, and probabilistic 
methodologies development. Uncertain design parameters 
such as material properties, usages, geometries, damage 
propagation, manufacture-related uncertain parameters, etc., 
as well as uncertainties related to health state quantification 
need to be statistically determined. One of the major issues 
for this research is the technical challenge in applying 
probabilistic lifing methods to quantify the health state while 
the component is continuously degraded. In this paper, we 
use the probabilistic lifing approach based on Bayesian filters 
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(BF) and MCMC (Markov chain Monte Carlo simulations) 
for individual component risk tracking. 

BF has become a broad topic involving many scientific areas.  
There exists a number of excellent tutorial papers on 
Bayesian filters and Monte Carlo filters (Arulampalam, 
Maskell, Gordon & Clapp, 2002; Baraldi, Compare, Sauco & 
Zio, 2012; Chen, 2003; Doucet, Godsill & Andrieu, 2000; 
Doucet, de Freitas, Murphy & Russell, 2000; Tanizaki, 
2000).  There are also researches for BF applications on 
fatigue crack/damage growth scenarios (An, Choi & Kim, 
2013; He, Bechhoefer, Demsey & Ma, 2012; Orchard & 
Vachtsevanos, 2009).  BF is a probabilistic approach to 
quantify the uncertain damage state of a component 
recursively over time using incoming measurements and a 
mathematical damage progression model.  In this paper, we 
investigate and demonstrate the applications of Bayesian 
filtering-based lifing approach with Markov chain Monte 
Carlo (MCMC) for uncertainty updating and lifing 
prediction. MCMC methods (Khan, Balch & Dellaert, 2004; 
Renard, Garreta & Lang, 2006) including random walk 
Monte Carlo are a class of algorithms for sampling based on 
construction of Markov chain from the target probability 
distribution for which direct sampling is difficult.  This 
motivates our current research. 

The paper is structured as follows.  Section 2 discusses the 
probabilistic lifing methods using Bayesian filters with 
MCMC as the numerical solver. Section 3 discusses and 
demonstrates the procedure of generating random samples 
using MCMC from the unknown posterior joint probability 
distribution.  The random samples generated are inputs to a 
probabilistic damage tolerance analysis framework to 
determine the remaining useful life for a specified reliability.  
Section 4 provides summary of the study. 

2. PROBABILISTIC LIFING METHODS USING BAYESIAN 

FILTERS (BF) AND MARKOV CHAIN MONTE CARLO 

(MCMC) SIMULATIONS 

Bayesian filters are methods to solve Bayesian inference 
numerically where probability distributions are intractable in 
closed form. BF with MCMC approximates the probability 
distributions of unknowns using a large number of samples.  
As the number of samples increases toward infinity, the 
approximated probability distributions will converge to 
actual. Bayesian filtering-based probabilistic lifing 
methodology requires the information of the evolution of 
damage signals and damage extent in time to estimate the 
relationship between features extracted from monitoring 
signals and damage extent for RUL prediction of a degrading 
system. Since it is a process to forecast future risks based on 
current system health states, uncertainty associated with the 
forecasting needs to be quantified and propagated. This 
approach describes the system state in terms of discrete 
probability distribution using a set of simulations 
representing state values (realizations). Each simulation has 

an assigned probability representing its probability of 
occurrence. The general process of BF is based on a state 
transition function f and a measurement function h shown in 
Eqs. 1 and 2. 

                            ),,( 1 jjj afa                              (1) 

and 

                                ),( jjj ahz                                  (2) 

where j is the time step index, aj is the damage state,  is a 
vector of model parameters, zj is a SHM feature extracted 
from health monitoring signals, and j and j are process and 
measurement Gaussian noises with zero-mean respectively. 
The state function f is referred to as a damage model. The 
measurement function h describes the relationship between 
the collected SHM features and damage states.  BF estimates 
and updates unknown parameters as a form of the probability 
density function (PDF) based on the Bayes’ theorem 

                       )Θ(p)Θ|z(p)z|Θ(p                (3) 

where Θ  is a vector of all unknown parameters to be 
updated, z is a vector of observed features, )Θ|z(p is the 

PDF value of z conditional on the givenΘ , p(Θ ) is the prior 
PDF ofΘ .  Eqs. 1 to 3 will be used recursively at each time 
step j to propagate and update various uncertainties by BF. 
The RUL for a specified reliability can be determined by a 
general purpose probabilistic methodology considering all 
uncertainties including those with posterior PDFs. 

In our previous study (Shiao, Chen & Ghoshal, 2016), 
samples are randomly generated by traditional Monte Carlo 
simulations based on prior probability distributions.  
Posterior probability distributions are determined via 
simulations using Eqs. 1 to 3. In this paper, we employ 
Markov chain Monte Carlo (MCMC) methods to generate 
random samples from unknown posterior probability 
distributions.  Markov chain Monte Carlo (MCMC) is a 
family of algorithms used to produce approximate random 
samples from a probability distribution too difficult to sample 
directly.  The MCMC method used in this paper is Metropolis 
algorithm for obtaining a sequence of random samples from 
the posterior joint probability distribution.  This algorithm 
has been widely used in Bayesian applications for its 
simplicity and efficiency.   

The Metropolis algorithm is performed based on the 
following iterative procedure: 

a). At iteration i=0, select a vector X0 (arbitrarily or based on 
prior knowledge) consisting of realizations of random 
variables in the study as the initial sample.   

b). For each following iteration i>0,  
1. Generate a candidate vector X' randomly from the joint 

probability distribution function g(X′|Xi-1) where 
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function g is referred to as the proposal density function 
or jumping distribution.  In the Metropolis algorithm, g 
is symmetric. A usual choice is to let g be a Gaussian 
distribution with mean = Xi-1.  

2. Calculate the acceptance ratio )X(q/)'X(qα 1ixx  . 

The ratio will be used to decide whether to accept or 
reject the candidate.  qx(X’) is a function proportional to 
the posterior probability density of model parameters . 

3. If 1 , then the candidate is more likely than Xi-1; 
automatically accept the candidate by setting Xi = X'.  

4. If 1α  , accept the candidate with probability α ; if the 
candidate is rejected, set Xi = Xi-1, instead. 

In this paper, we use a Gaussian jump distribution with 
variance matrix '= C2 where C is a constant and  is the 
covariance matrix of the samples.  Studies have shown that 
robustness of the Metropolis algorithm is heavily affected by 
the choice of the constant C.  If C is too large which results 
in a large jump, most candidate vectors will be far away from 
the high density area of the posterior distribution. As a result, 
higher rejection rate will be observed.  If C is small, almost 
all the candidates will be close to the precedent, leading to 
high acceptance rate.  It has been found that either C is too 
large or C is too small, the samples generated with those C 
values will be highly correlated which is an undesirable 
outcome for simulations.  In the paper, C is initially set to be 

D/4.2 where D is the dimension of the matrix.  C is then 
chosen adaptively by keeping the acceptance rate between 
0.23 and 0.44.  The covariance matrix is assumed to consist 
of diagonal terms only at the starting point.  The variance is 
then updated at every 1000 iterations.   

One of the issues related to Metropolis algorithm is the burn-
in period.  Although the Markov chain eventually converges 
to the desired distribution, the initial samples may follow a 
very different distribution, especially if the starting point is in 
a region of low density. As a result, a burn-in period is 
typically necessary, where an initial number of samples are 
thrown away.  In our study, we will investigate the burn-in 
period and auto- and cross- correlation functions of the 
random variables a0 and log(c) by MCMC where a0 is the 
initial crack size and c is the crack growth rate in the state 
transition function. 

In the following section, we will discuss and demonstrate the 
procedure of generating random samples using MCMC from 
the unknown posterior joint probability distribution.  The 
random samples generated are then input to a probabilistic 
damage tolerance analysis framework to determine the 
remaining useful life for a specified reliability.   

3. CASE STUDY 

In order to use Bayesian filter to solve Bayesian inference, a 
state transition function and a measurement function need to 
be defined first. In this study, a simple crack growth model is 
used to define the state transition function as shown in Eq. 4.  

    1111 ,)(   tt
m

ttt aKtKcaa       (4) 

where c is the random crack growth rate and m is a constant. 
a0 is the random crack size at time 0.   is the stress range 
and K is the range of stress intensity factor. The process 
noise v in state transition function in Eq. 1 is not used since it 
can be handled through the uncertainty in model parameters. 

Next, a general process to define a measurement function is 
briefly described below.  Typically one would establish a 
relationship between the inspection feature (usually termed 
â ) and the ‘true’ measured crack length, a . This 
relationship is established using linear regression as follows 
(Department of Defense, 2009; Ihn, Pado, Leonard, Desimio 
& Olson, 2011; Kabban, Greenwell, Desimio & Derriso, 

2015).  Let )a(qx 1  and )â(qy 2  where q1 and q2 

are either linear or nonlinear functions selected such that x 
and y are linearly related.  The relationship between the a  

and â  is then estimated as: 

                            ωx*βαy                            (5) 

where  and  are constants and  is the measurement 
noise.  In our study, without losing generality we let ax   

and ây  for simplicity.  The measurement function in 

Bayesian filter thus becomes 

                          ttt aa   *ˆ                        (6) 

The initial crack size 0a , crack growth rate c in Eq. 4 and 

t  are random variables for the study.  t  are normally 

distributed random variables with 0 mean and standard 
deviation  . The unknown parameters   in Eq. 3 

include the damage state a , model parameters ),( 0 ca  

and measurement noise  .   

To start the BF process using MCMC, model parameters 

),( ,0 iii ca  are selected arbitrarily or based on prior 

knowledge for i=0.  The likelihood of measurement 

(observation) kâ  at time k of ith iteration with model 

parameters ),( ,0 iii ca  is shown in Eq. 7.  
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The posterior probability of each realization pair ),( ,0 ii ca at 

time k with a new measurement kâ  is updated recursively in 

time using Eqs. 4 and 7 as shown in Eq. 8. 

t,......,1kwhere

)â|c,a(p))k,c,a(a|â(p

)â|c,a(p

1k:1ii,0ii,0i,kk

k:1ii,0





    8) 

where ]ˆ.......,ˆ,ˆ[ˆ 21:1 kk aaaa  . By successive substitution of 

Eq. (8), the updated joint probability density function of 

)c,a( ii,0 at k=t is shown in Eq. (9). 
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The function qx in Metropolis algorithm is thus approximated 
by 

        
)c,a(p))k,c,a(a|â(p
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       (10) 

Once the joint probability density function of initial crack 
size a0 and crack growth rate c is updated using Eq. (10) with 
BF/MCMC procedure, crack size ta at any time t after the 

last SHM measurement at time t’ can be determined using Eq. 
(4).  Our next step is to determine the reliability of the 
component    as an event where the stress intensity factor Kt 
at time t is greater than the fracture toughness KIc where 

                           tt aK  max                             (11) 

Both KIc and maximum stress max are normally distributed 

random variables with means and standard deviations defined 
in Table 1.   

Table 1. Mean and Standard Deviation of Fracture 
Toughness and Maximum Stress 

tR  is determined by Eq. (12). 

                )KK(POF1R Ictt                         (12) 

POF in Eq. (12) represents the probability of failure (POF) 
where Kt > KIc. The remaining useful life T for a specified 

reliability R after the last SHM measurement at time t’ is 
thus determined by finding the T in Eq. (13) 

             )KK(POF1R IcT't                          (13) 

In the following, case studies will be performed for a 
simulated ground truth crack growth representing a virtual 
component. Various measurement sets representing 
respective SHM measurements of a component were 
simulated using two  (standard deviation of the 

measurement noise) and two tm (measurement intervals) as 
shown in Table 2.   

Table 2. Measurement Interval and Measurement Noise for 
Case Studies  

Also 04.0  and 4.0  in measurement function shown 

in Eq. 6 are assumed throughout the study.  At t’=2500 flight 
cycles, the remaining useful life (RUL) of the virtual 
component for each case is assessed by a probabilistic 
damage tolerance analysis (Chen & Shiao, 2015; Shiao, 
Chen, Wu & Ghoshal, 2016).  The ground truth crack growth 
for the study is generated based on 0a =1.08E-02 and 

c=4.31E-10 with m=3.4 as shown in Figure 1. 

 

Figure 1.  Ground Truth Crack Growth Curve for Case Study 
 
Typical measurement sets simulated by Eq. 6 for four 
selected cases using the given ground truth are shown in 
Figure 2.  Each measurement set randomly generated for a 
given case represents a possible virtual measurements of the 
component for a given   and tm.  In our study, 1000 

virtual measurement sets for each case are randomly 

 Mean Standard Deviation 
KIc 80 12 

max  75 1.5 

Case 1 2 3 4 

Measurement 
Intervals tm  

20 20 10 10 

Measurement  
Noise   

0.0020 0.0010 0.0020 0.0010 
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generated in order to study the effect of   and tm on the 

variability of predicted RUL. 

MCMC-based Bayesian filter is now applied.  The first 
sample set at i = 0 is arbitrarily selected. In our study, a0 and 
c are 1.40E-02 and 7.58E-10 respectively. The samples 
generated by MCMC for the measurement set (Case 1 in 

Figure 2) are shown in Figure 3.  As shown, the burn-in 
period is about 2000 samples.  10000 samples from sample 
5001 to sample 15000 are then used for further reliability 
analysis.  The auto- and cross correlation function of a0 and 
log(c) are plotted in Figure 4.  In the figure, S1 represents a0 
and S2 represents log(c). As noticed in the figure, at lag is 
about 10, auto and cross- correlations are reduced to 0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Typical Measurement Sets for Respective Cases 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Samples of Crack Size a0 and Log of Crack Growth Rate c for Measurement Set of Case 1 in Figure 2
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Figure 4.  Auto- and Cross- Correlation of a0 and log(c)

The posterior histogram for Case 1 with measurement set 
shown in Figure 2 are plotted in Figure 5. As can be seen in 
the figure, a0 and log(c) are highly correlated.  The 
correlation of a0 and log(c) from the analysis is about -0.95 
for all the cases being studied.	 

For each measurement set, the probability of failure of 
remaining useful life T is determined using the samples 
generated from MCMC.  The failure occurs when the fracture 
toughness is greater than the stress intensity factor.  The 
probability of failure (POF) for Case 1 with the measurement 
set shown in Figure 2 is plotted in Figure 6.  In the figure, the 

RUL with 0.999 and 0.99 reliability are shown to be 760 and 
1010 respectively.   

The same procedure for each case is repeated 1000 times.  
The mean of the RUL at 0.999 and 0.99 reliability levels for 
all 4 cases are shown in Table 2. The table indicates that 
better RUL prediction can be obtained for the case with 
smaller measurement noise and more frequent SHM 
measurements.  Coefficient of variation (CV) of RUL are 
shown in Figure 7.  The figure shows that the coefficient of 
variation of RUL is linearly proportional to the standard 
deviation (STDV) of the measurement noise.

 

Figure 5. 2D Histogram of Samples Generated by Metropolis Algorithm
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Figure 6.  The Probability of Failure of Remaining Useful 
Life for Measurement Set in Figure 2 Case 1 

 
Table 3. Mean of Remaining Useful Life at 0.999 and 0.99 

Reliability 

Case 1 2 3 4 *GT 

Measurement 
Intervals tm  

20 20 10 10  

Measurement  

Noise   

0.002 0.001 0.002 0.001  

R =0.999  992 1028 1047 1044 1040 

R =0.99  1260 1312 1335 1331 1340 

*Ground Truth 

Figure 7. CV (Coefficient of Variation) of RUL vs STDV of 
Measurement Noise 

4. SUMMARY 

Bayesian-filters (BF) and Markov chain Monte Carlo 
(MCMC) based probabilistic lifing method was explored for 
its robustness in probabilistic life prediction. Uncertainties in 
damage growth parameters are updated and reduced with new 
information obtained through structural health monitoring 
(SHM) systems.  State transition function is described by a 
typical Paris equation for fatigue crack propagation for 
demonstration purpose.  In the equation, the initial crack size 
and the crack growth rate are random parameters to be 
updated.  Measurement functions are assumed in this study 
which describe the relationship between the features derived 
from SHM signals and the damage sizes.  Damage tolerance 
and risk-based remaining useful life (RUL) of fatigue critical 
structural components are determined at various reliability 
levels. In our study, burn-in period from MCMC procedure 
was around 2000 samples.  10,000 samples after the burn-in 
period was selected for updating and prediction. The 
variabilities of predicted RUL are also studied for various 
magnitudes of measurement noise and measurement 
frequencies.  It is found the variability of the predicted RUL 
is proportional to the variability of the measurement noise. 
The results with more frequent measurement are closer to the 
ground truth.   

NOMENCLATURE 

a0: crack size at time 0 
c: crack growth rate in Paris equation 
C: constant is for jump distribution in Metropolis 

algorithm 
BF:  Bayesian Filter 

CDF:  cumulative distribution function 

CV:  coefficient of variation 

DT:  damage tolerance 

m:  Paris Law constant 

MCS:  Monte Carlo simulation 

MCMC:  Markov chain Monte Carlo 

p:  probability 

PDF:  probability density function 

POF:  probability of failure 

R : a specified reliability  
Rt: reliability at time t 
RUL: remaining useful life 
SHM: structural health monitoring 
STDV: standard deviation 
S1: initial crack size a0 
S2: crack growth rate c 
t’: time of last SHM measurement 
T: remaining useful life 
z: SHM measurements 

 :  standard deviation of measurement noise   

tm: SHM measurement interval 
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K : the range of stress intensity factor 

â : damage feature extracted from SHM signals 
 constant in measurement function 
: constant in measurement function 
α : acceptance ratio in Metropolis algorithm 

θ : model parameters 

Θ : uncertain parameters 
ν : process noise 
 : measurement noise 
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