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ABSTRACT 

More than ever, asset operators and OEMs are investing in 

fleetwide monitoring systems.  With the roll out of these 

monitoring systems, huge amounts of sensory data are 

generated.  In a single Gigawatt power plant, asset 

monitoring systems sort through terabytes of sensory data 

per week.  To contend with the volume and velocity of 

sensory data, analytics and data management techniques are 

employed along the life of sensory data from digitization at 

the asset, to storage in the information technology 

infrastructure.  This paper presents techniques, both 

promising and fielded, for analytics to manage the volume, 

velocity, veracity, variety, and value of fleetwide asset 

monitoring data yielding opportunities for advanced 

visibility of actionable information.   

1. INTRODUCTION 

In industrial asset monitoring applications, scientists, 

engineers, and asset maintainers can collect vast amounts of 

data every second of every day.  Drawing accurate and 

meaningful conclusions from such a large amount of data is 

a growing problem, and the term “Big Data” describes this 

phenomenon.  Big Data brings new challenges to 

prognostics applications in the form of analysis techniques, 

search and retrieval, data integration or fusion, reporting, 

and system maintenance (Johnson & Farrell, 2011).  All 

these challenges must be met to keep pace with the 

experimental growth of asset related data.   

 

Take for example, the Large Hadron Collider at the 

European Organization for Nuclear Research (CERN), 

where for every experiment the control and monitoring 

systems can generate 40 terabytes of data (Bradicich & 

Orci, 2012), (Losito 2011). In Aerospace, for every 30 

minutes a jet engine runs, upwards of 10 terabytes of 

operational data is generated.  In a single journey across the 

Atlantic Ocean, a four-engine jumbo jet can create 640 

terabytes of data.  Multiply the single flight by 25,000 

flights per day, and we yield an enormous amount of data 

(Gantz & Reinsel, 2011).  This is “Big Data”. 

2. HISTORY OF BIG DATA 

The technology research firm International Data 

Corporation (IDC) recently performed a study on digital 

data, including measurement files (think time waveform 

recordings), video (think thermal images), music (think 

ultrasonic), work order reports, and so on.  The study 

estimates that the amount of data available is doubling every 

two years.  In 2011 alone, 1.8 zettabytes (1E21 bytes) of 

data were created (Hadhazy, 2012), Figure 1.  While, our (as 

in the PHM community) asset monitoring systems may not 

produce quite this amount of data, just consider the size of 

the data files we collect from diagnostic visits to our assets.  

Next consider the impact that low cost automatic data 

collection systems and sensors can and are having in our 

ability to continuously monitor and record data from our 

assets.  Even within PHM asset monitoring and prognostics 

functions, the trends are similar: the amount of data 

available for predictive analytics is doubling every two 

years.   

 

 
Figure 1.  Data is collected at a rate that approximately 

parallels Moore’s law. 

 

The fact that the volume of data is doubling every two years 

mimics one of the electronics’ most famous laws:  Moore’s 

law.  In 1965, Gordon Moore stated that the number of 
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transistors on an integrated circuit doubled approximately 

every two years and he expected the trend to continue “for 

at least 10 years”.  Forty-five years later, Moore’s law still 

influences many aspects of Information Technology (IT) 

and electronics.  Consider that in 1995, 20 petabytes of total 

hard drive space was manufactured.  Today, Google 

processes more than 24 petabytes of information every 

single day.  Similarly, the cost of storage space for all this 

data has decreased exponentially from $228/GB in 1998 to 

$0.06/GB in 2010.  (Unfortunately, memory sticks at our 

favorite electronics stores are still a bit more expensive).   

 

Changes, including lower cost of storage and lower cost of 

data recording devices undoubtedly, fuel the Big Data 

phenomenon and raise the question, “How do we (the PHM 

Community) extract meaning from that much information”.  

Another question might be “What is the value of Big Data”. 

One institutive value of more and more data is simply that 

statistical significance increases.  This is certainly the case 

in data-driven prognostics.  Yet, care is required.  Consider 

the gold mine metaphor, where in the mine, only 20 percent 

of the gold is visible.  The remaining 80 percent is in the dirt 

where it cannot be seen.  Mining is required to realize the 

full value of the contents of the mine.  Hence Big Data 

Analytics and data mining are required to achieve new 

insights that have never before been seen. 

To fully characterize Big Data, consider Figure 2.  The 

challenges of big data are variety, velocity, and volume.  

These three are often referred to as the three “V”’s of big 

data.  Here we consider three additional V’s, veracity, value, 

and visibility.  Volume is the amount of data as measured in 

its computer disk or computer memory size.  Velocity is the 

speed at which data is produced, and moved into the 

computing infrastructure.  Veracity is a measure of accuracy 

or reliability of the data, in other words the validity of data.  

Variety is both the data structure such as binary files and 

database tables, and the sources such as vibration, 

temperature, and maintenance records.  Value is the 

information and business guidance that can be extracted 

from the data.  Last but not least, visibility is the ability to 

access and view data and its value, regardless of the location 

of the data within the computing infrastructure.   

 
Figure 2.  Traditional 3 “V”s of big data (source: IBM) 

3. INDUSTRIAL INSTRUMENTATION, BIG DATA, 

PROGNOSTICS 

The sources of Big Data in the Industrial Asset Monitoring 

arena are many, Figure 3.  The most interesting is data 

derived, using transducers, from the physical world.  In 

other words, this is analog data captured by instruments and 

data acquisition systems from a variety of vendors, in a 

variety of formats.  Thus, the PHM community may call it 

“Big Analog Data” (BAD).  BAD is derived from time 

waveform measurements from vibration, dynamic pressure, 

thermal images, ultrasonic scans, motor current signatures, 

and even radio frequency measurements used in the 

detection of partial discharge or electrical ground faults.  

Engineers, Scientists, and our plant Maintainers publish this 

kind of data (BAD) voluminously, in a variety of forms, and 

many times at high velocities.  Along with management and 

storage of this large amount of data, are the challenges of 

validation or veracity, deriving value from the data, and 

giving visibility of data and derived value to the right people 

at the right time.   

 

 
Figure 3.  Industrial sources of analog data 

 

As scientists and engineers work to address this “BAD” 

challenge, an approach is needed that encompasses sensors 

and actuators, distributed acquisition and analysis nodes 

(DAANs), and Information Technology (IT) infrastructure 

for big data analytics, mining and storage.  Consider a three-

tier solution, Figure 4.  Here, it is possible to distribute the 

work of finding value in big analog data.  Figure 4 depicts a 

three-tier architecture with sensors (and monitored assets) 

on the left.  Measurement hardware or data acquisition 

systems are in the middle.  These devices digitize analog 

sensory data from a single monitored asset and begin 

preliminary analysis.  The right side of Figure 4 depicts the 

IT infrastructure employed to store, manage, and analyze 

sensory data from a fleet of assets.  

 

Two additional terms are introduced here to describe 

veracity and extraction of value:  “In-Motion” and “At-

Rest” analytics.  With In-Motion analytics, data is analyzed 

for value in the form of indicative information, in memory, 

and as close to the source of the data as possible.  With At-

Rest analytics, data is analyzed in its storage place often 
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incorporating similarities and differences with collaborative 

data sources.  Both the DAANs and the IT computers 

perform in-motion analytics, extracting condition indicators. 

The IT infrastructure, as it assembles sensory and other data 

from multiple sources, also performs at-rest analytics 

utilizing data-driven prognostic algorithms to identify 

patterns and fault signatures.   

 

 
Figure 4.  A three-tier solution to the “Big Analog Data” 

challenge. 

 

Let’s look closer at in-motion analytics close to the sensor.  

For example, adding a smart chip such as a Field 

Programmable Gate Array (FPGA) or a processor to an 

analog sensor allows the sensor to reduce the raw analog 

data to condition indicating features of the time waveform.  

However, it is also possible to add “smart” data recorders to 

the traditional analog sensors installed today.  Both the 

smart sensor and the smart recorder are able to implement a 

decision based data recording technique, Figure 5.  Here, 

analog sensory time waveform data is continuously 

analyzed for changes.  Only when an indication of change 

within the asset is present in the sensory data (or on a time 

basis for periodicity) is the data recorded and forwarded 

upstream in the three-tier architecture.  Further, the sensory 

data might be reduced using in-motion analytics to a set of 

condition indicators or features, leaving the raw time 

waveform stored locally or discarded.  The filtering process 

of looking for changes and reducing data to condition 

indicators plays a big role in managing volume, velocity, 

veracity, and value.   

 

 
Figure 5. Decision based data recording state diagram 

 

Whether, we have the ability to perform analysis in-motion 

at the sensor, at the DAAN or at-rest in the IT Infrastructure, 

we are fortunate to have a number of analytical tools at our 

disposal for finding value in the data.  The scientific fields 

of condition monitoring and prognostics offer a number of 

analytical tools for reducing data to condition indicators and 

for finding trends in the analytical results, Table 1, Figure 6.  

Condition indicating analytics range from vibration level 

measurements, temperature trends, to envelope spectrum for 

roller bearing degradation and so on. With condition 

indicating analytics, we can discover increased impacting in 

roller element bearings, teeth cracking in gearboxes, rotor 

bar degradation in induction motors and generators, and so 

on.  Condition indicators, coupled with trending and 

alarming, give the asset owner / operator a first alert that 

degradation is occurring within the asset.   

 

Table 1.  Condition indicating analytics 

 
 

 

 
Figure 6. Reducing sensory data to condition indicators 

 

Within the PHM community, the use of multiple condition 

indicators in concert, and an extensive history of actual 

condition indicators, data driven prognostics is made 

possible.  Prognostic analytics include clustering, statistical 

pattern recognition, logistic regression, support vector 

machine, neural networks and so on.  These are similar 

mathematics used in big data sciences, a growing profession 

and industry sector.  Together, these two classes of analytics 

(condition indicators and prognostics) provide the 

foundation for finding value in big analog data.  Long term, 

these tools are building the foundation for automating 

diagnostics, and prognostics. With the automation of 

diagnostics and prognostics, business decisions can be 
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enhanced with automatically generated advisories for 

maintenance, operations, and finance.   

 

The condition indicators themselves do not necessarily yield 

a root cause for the degradation, nor does the condition 

indicator tell us when we can expect the asset to fail to 

perform its function.  Prognostic analytics are employed to 

help deduce the why and when of asset degradation and 

failure, Figure 7.   

 

 
Figure 7. Prognostic analytics for finding patterns  

 

Prognostic algorithms allow for the combination and 

collaboration of condition indicators within an asset 

(bearing, gear, shaft, oil particle, temperature, load, speed) 

as well as across similar assets.  This combination of 

condition indicators forms a pattern of healthy asset 

operation, or a specific degradation pattern.  In practice, a 

baseline of healthy condition indicators is obtained during 

commissioning of an asset, or after repair and maintenance 

of an asset.  With an available healthy or normal operation 

pattern, analytical tools including statistical pattern 

recognition can be used to determine electrical, mechanical, 

or structural degradation levels of an asset, Figure 8.   These 

tools compare real-time sensory data in-motion to patterns 

looking for deviations or anomalies.   

 

 
Figure 8.  Asset degradation using statistical pattern analysis 

 

The normal and fault patterns are further extended, by 

further segregating these patterns into operating conditions 

when speeds, loads, and environment are included.  The 

combination of patterns at a plant or enterprise level, is 

made possible when similar assets are viewed together, 

enhancing the pattern formation.  For example, machine 

learning algorithms are able to cluster combinations of 

condition indicators from similar assets, thereby creating 

patterns of normal or fault asset behavior.  Prognostic 

algorithms then use these patterns, or fault signatures, to 

match current asset condition indicators to a specific fault 

signature (with in-motion analytics).   

 

On another note, as condition indicators are narrowed in 

number to the best indicators of specific failure modes, a 

smaller set of sensors and analytics may be used to detect 

and predict specific failure modes.   These reduced sensory 

measurements and analytics can then be performed on 

sensory data in-motion on the (embedded) DAAN, 

comparing a single vector of condition indicators to specific 

fault patterns.   

  

As the normal operational pattern “drifts” towards a specific 

fault signature pattern, the rate of “drift” combined with 

human expert knowledge to form a basis for automatic 

advisory generation and prediction of the point in time when 

the asset fails to perform its function.  This is particularly 

true at the information technology (IT) level, when future 

operating conditions are known based on planned equipment 

operations.  Knowledge of a future operating condition 

allows focus on data-driven patterns from historical and 

specific expected operating conditions.  Trends derived 

from historical specific operating conditions, improve 

confidence in the expected performance and health of 

specific equipment in planned operating conditions.  At the 

plant or even enterprise level, the fusion of operational and 

equipment data builds a foundation for and confidence in 

the data-driven predictions.   

 

To summarize, there are many physical phenomenon to 

measure within a fleet of assets.  This creates the big data 

problem of the analog kind.  By using in-motion and at-rest 

analytics, the six V’s of big analog data are addressed.  

Analytics that calculate condition indicators, derive patterns 

of condition indicators, and compare real-time condition 

indicators to normal and faulty patterns are core to 

addressing the challenge of big analog data.  This challenge 

of big analog data is deriving value and visibility while 

managing volume, velocity, veracity, and variety.   

4. INFORMATION TECHNOLOGIES 

In addition to sensory data, condition indicators, and asset 

operational patterns, we (the PHM community) often add 

other data which may be unstructured in nature.  Work order 

reports, typed textual descriptions, and diagnostic technical 
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exams add to our big analog data, extending our view of the 

health of assets.  To support big analog data storage and 

analytics as well as varied documentation, consideration and 

collaboration with our colleagues in Information 

Technology (IT) is a must.   

 

Part of our challenge with big analog data and the varied 

documentation formats, is the data does not fit easily into 

standard relational databases.  As a comparison, neither 

does the vast information available on the world-wide web.  

Out of Google’s work to “index” the web, came an 

underlying file system, Apache Hadoop, which supports 

unstructured data or data that is stored in files rather than a 

relational database, Figure 9.  These files can include binary 

and ASCII formats of condition indicators and time 

waveforms.  Our unstructured data files also include asset 

technical exam documentation. There are many common 

formats used for big analog data including UFF58, 

Comtrade, and .mat.  In the case study presented later, the 

file structure named Technical Data Management Streaming 

(TDMS) is used for storing time waveforms and condition 

indicators.  The Apache Hadoop File System (HDFS) helps 

to manage these non relational database items.  The HDFS 

is a massively scalable storage and batch data processing 

system. It provides an integrated storage and processing 

fabric that scales horizontally with commodity hardware and 

provides fault tolerance through software. Hadoop also 

includes concepts for distributing analytics to the data, to 

avoid bandwidth issues of moving the at-rest data (Bisciglia, 

2009). 

 

 
Figure 9.  High level overview of Hadoop file system within 

IT architecture (source: Cloudera) 

 

Several information technologies suppliers take the concept 

further by industrializing HDFS and improving the 

programming tools used to mine and analyze the data in a 

combination of Hadoop and relational stores.  International 

Business Machines (IBM) for example, not only hardens the 

IT infrastructure with their “PureFlex” enterprise computing 

systems, IBM also adds InfoSphere Streams for in-motion 

analytics and InfoSphere BigInsights for at-rest analytics, 

Figure 10.  These architectures and analytic tools promise 

an ability to quickly garner value of our variety, velocity 

and volume of Big Analog Data and unstructured 

documentation (Franklin, 2012).  

 

The convergence of pervasive sensory data sources, new 

information technologies, growing information stores and a 

reduction in the overall cost and time needed for analysis 

has helped big data and specifically our industrial big analog 

data cross the chasm from innovation to early adoption. Big 

data is still an early-stage technology, but expect that over 

the next 18 months it will break double digits on project 

adoption basis. (Rogers, 2011).  

 

 
Figure 10.  IBM’s platform and vision for big data (source 

IBM DeveloperWorks) 

 

So, if we can combine big analog data, in-motion and at-rest 

analytics of the condition indicating and prognostics kind, 

with expanded information technologies; perhaps it 

becomes possible to create smart monitoring and 

diagnostics, or even cloud based prognostics.  The Center 

for Intelligent Maintenance systems projects a future where 

multiple end users will submit their asset data and condition 

indicators to a cloud resource (IMS, 2012) Here, analytical 

collaboration occurs to build and leverage fault signatures, 

degradation patterns, along with prognostic analytics to 

advise us on the current and future health of our assets, 

Figure 11. 

 

 
Figure 11.  Center for Intelligent Maintenance Systems 

Cloud Prognostics Vision (source: IMS Center) 

 

Given that Moore’s law of big data is a true observation, 

then the doubling of data every two years demands that 

these information technologies will mature and become 

more pervasive.  The field of prognostics will benefit from 
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the collaboration that comes with a wide net of assets, 

sensory data, and condition indicators derived from the 

sensory data.  The combination of prognostics and data 

science technologies with information systems technologies 

is already yielding solutions for the volume, velocity, 

veracity, variety, value, and visibility of the fleetwide 

monitoring big analog data challenge.   

5. CASE STUDY 

In power generation, the above mentioned technologies are 

coming together to solve fleetwide asset monitoring data 

and information challenges.  The Electrical Power Research 

Institute (EPRI) continues to sponsor a fleet wide asset 

monitoring project within a special working group, the 

Fleetwide Monitoring Interest Group (FWMIG) 

(Hollingshaus, 2011).  This program aims to articulate a 

condition based maintenance and prognostics solution for its 

power generation members.  The applications framework 

leverages data available within power generation plants, a 

fault signature database, and traditional monitoring and 

analysis techniques for rotating machinery. 

 

Duke Energy, an EPRI member, is already deploying 

hundreds of new low cost “smart” data acquisition and 

analysis nodes (DAAN) within several power generation 

plants (Cook, 2013).  These DAANs use traditional 

piezoelectric dual mode accelerometers with temperature 

sensing elements to monitor for changes in balance of plant 

equipment that supports turbine generators, Figure 12. 

 

 
Figure 12. Duke Energy architecture for data acquisition and 

analysis nodes. 

 

In the late 1990s, Duke Energy began its fleetwide 

monitoring program using commercial handheld 

instruments for vibration, thermography, ultrasonic, motor 

current, and oil analysis.  Today, Duke Energy machinery 

health subject matter experts spend 80 percent of their time 

with these hand held instruments simply collecting sensory 

data.   

 

Beginning in 2012, Duke Energy began to automate data 

collection with flexible DAANs, thereby reducing the labor 

costs and sparse periodicity associated with manual analog 

data collections.  With the new DAANs in place, these same 

subject matter experts will be able to spend 80 percent of 

their time analyzing sensory data and planning maintenance 

actions.  While the core initial motivation and return on 

investment at Duke Energy is employee utilization, the 

opportunity for prognostics, especially data driven, is 

tremendous as vibration, temperature, and oil analysis 

analog data now stream at regular intervals into the Duke 

Energy IT infrastructure, Figure 13.   

 

 
Figure 13. Big analog data sensory data flow 

 

To accomplish the high level architectures, Duke Energy is 

working with EPRI and condition monitoring vendors to 

develop and implement a big analog data system for 

fleetwide asset monitoring that manages the six “V” 

challenges of big data.  As shown earlier in Figure 5, and in 

Figure 13, the DAAN works to address volume, velocity, 

veracity, variety, and value.  Using an event base local 

recording structure, Figure 5, sensory data is filtered to just 

data that is periodic or has a change.  This filtering helps 

address volume.  Using a store and forward communications 

scheme, data is transferred at the bandwidth allowed on the 

network.  By storing and forwarding, the velocity of data is 

controlled by network administration tools.   The DAAN 

also checks sensor value validity by using range checking 

and open/short cabling issues.  This sensor value check 

helps address veracity.  Lastly, the DAAN labels all data 

with sensory data type, measurement characteristics, and 

equipment hierarchy down to the component where the 

sensor is attached.  The labeling tasks helps address the 

variety of the various analog measurements made by the 

DAAN.   

To support the new volume, velocity, and variety of data 

coming from the newly deployed DAANs, Duke Energy has 

formed an IT task force to develop a big analog data 

strategy.  The goal of the task force is to maximize value 

and visibility in particular with respect to equipment 

maintenance, availability and reliability.  The current 

organization of data analytics orchestrated by Duke Energy 

IT, EPRI, and vendors is show in Figure 14.  Value and 

Visibility at Duke Energy are determined at the monitoring 

and diagnostics center in Charlotte, NC.  Here all condition 

indicators and operational process parameters are recorded 

in OSIsoft PI™’s historian for advanced pattern recognition 
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and anomaly detection by Instep Software’s PRiSM™ 

predictive analytics tools.   

 

 
Figure 14. Analytics flow in big analog data applications 

 

While the condition indicators are published to enterprise 

historians, the technical exam data including vibration time 

waveforms, stored in TDMS format, remains at the plant 

server level.  This allows subject matter experts to access 

and analyze the analog sensory data using common graphics 

and analysis techniques associated with the particular 

technology.  For example, vibration time waveforms are 

analyzed with frequency spectra, in the order domain, using 

harmonic, sideband cursors, and waterfall displays.  The 

vibration analytical tools also provide trends and alarms at 

the local plant level for harmonics of rotational speed or 

order analysis, as well as trending of all condition indicators 

calculated at the DAAN or the plant server computer level.   

However, time waveform data is big data, and the volume 

needs management at the plant level.  Once condition 

indicators are extracted and published to the OSIsoft PI™ 

historian, some of the time waveform data can be discarded.  

An aging strategy is implemented that removes all time 

waveform data, after five days with the exception of those 

time waveforms most close to peak power demand times of 

day, 8:00 AM, Noon, and 4:00 PM.  In addition, any time 

waveform that was recorded due to a measurement value 

alarm is preserved.  Subject matter experts can also mark 

specific data files for preservation as the need arises.   

As condition indicators are analyzed in the historian, user 

notes regarding equipment, maintenance records, best 

practices, and recommended actions are also assembled 

from various data sources and locations within the Duke 

Energy information technology infrastructure (Hesler, 

2010).  The challenge lies in assembling, storing, and 

retrieving information both from fleetwide asset monitoring 

and also operating parameters, maintenance activities, and 

equipment component health.  To address the challenge, 

Duke Energy has deployed EPRI’s PlantView® software 

platform for managing power plant assets and developing 

condition status reports on plant equipment, Figure 15.   

 
Figure 15. PlantView® health report matrix, image courtesy 

of Power Vision, Inc. 

 

The PlantView software provides applications for entering 

storing and viewing information about plant operating 

parameters, maintenance activities, and equipment health.  

The status of equipment is kept in an integrated database.  

Visibility is provided thru a series of web services 

applications allowing users to access information from user 

customizable web portals.  Duke Energy now has over 

10,000 internal users benefiting from the PlantView web 

portals.   

At Duke Energy, this is an obvious case where the 

opportunity for prognostics and IT come together to mine 

big analog data for the benefit of asset owners, asset 

operators, and the evolution of prognostics.  Beginning with 

the DAAN, condition indicators extracted from monitored 

equipment, are supplemented with additional condition 

indicators at the plant server computer. This is the same 

computer that manages the DAANs.   Subsequent to 

publishing the condition indicators to the enterprise 

historian, the advanced pattern recognition software begins 

comparison of current condition indicators to baselines for 

the specific operating condition.  A web interface is 

provided for systems users and business owners to see both 

power output from generating units, as well as any 

equipment or process problems that may need addressing.  

The web interface, PlantView, brings the value and 

visibility of operations data to those responsible for making 

business decisions.   

6. CONCLUSION 

Big data, especially of the analog kind, can and does present 

challenges.  Fortunately, information technology is evolving 

as quickly as the volume of data grows.  Both in-motion and 

at-rest analytics are working to make sense of big analog 

data.  The growing deployment of a wide range of sensors 

across a wide net of assets promises to accelerate the 

success and science of prognostic applications for 

monitoring fleets of assets.   
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