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ABSTRACT

This paper develops a health monitoring scheme to detect
and trend degradation in dynamic systems that are charac-
terised by multiple parameter time-series data. The presented
scheme provides early detection of degradation and ability to
score its significance in order to inform maintenance planning
and consequently reduce disruption. Non-parametric statis-
tics are proposed to provide this early detection and scoring.
The non-parametric statistics approximate the data distribu-
tion for a sliding time window, with the change in distribution
is indicated using the two-sample Kolmogorov-Smirnov test.
Trending the changes to the signal distribution is shown to
provide diagnostic capabilities, with deviations indicating the
precursors to failure. The paper applies the equipment health
monitoring scheme to address the growing concerns for future
gas turbine fuel metering valve availability. The fuel meter-
ing unit within a gas turbine is a complex electro-mechanical
system, failures of which can be a major source of airline dis-
ruption. The application is performed on data acquired from a
series of industrial tests performed on large civil aero-engine
fuel metering units subjected to varying levels of contami-
nant. The data exhibits characteristics of degradation, which
are identified and trended by the equipment health monitoring
scheme presented in this paper.

1. INTRODUCTION

The assessment and trending of novelty within the measured
parameters of a dynamic system may be used to diagnose and
predict the performance and health of a system, and thus in-
form activities to reduce the impact of decreasing functional
performance. The use of novelty as a measure of health has
advantages in that the exact nature of fault characteristics are
not required in advance, only a measure of departure from
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nominal conditions. To generate actionable information, sig-
nals are typically processed from raw measurements into a
reduced dimension novelty summary value that may be more
easily transferred to where it can be trended and interpreted
by an asset manager. In line with the aspirations of the nov-
elty detection and trending paradigm to determine any depar-
ture from nominal conditions, the novelty assessment scheme
should be sensitive to all changes in the underlying system,
not only deviations in particular characteristics of signals. A
multi-variate equipment health monitoring (EHM) scheme is
developed to address these novelty trending objectives.

Early warning of degradation is provided by a novelty scor-
ing metric, which aims to detect the changes in the system
dynamic response as the results of the degradation and to
trend the degradation significance and severity. The changes
in the dynamic response are visible when analysing the mea-
sured data distributions. For the work presented in this pa-
per, novelty is defined as the change in the measured signal
distribution when compared to a reference distribution, gen-
erated from a previous known condition or from its earlier
behaviour. The principle of our novelty detection scheme is
supported by Andrade et al. (2001) which states: “data de-
rived from measurements taken from an undamaged system
will have a distribution with an associated mean and vari-
ance; if the system is damaged, then, there may be a change to
its mean, variance, or both”. Online indication and trending
of the distribution change, with any order of statistical mo-
ments (Scheffer & Heyns, 2001), (Salgado & Alonso, 2006),
enable the indication of the system health condition.

Because of this, the proposed EHM scheme does not require
an explicit model of normality to be constructed as part of
the design and development process. This is in contrast to
the work published in (Sohn et al., 2001) and other similar
works, (Andrade et al., 2001) (Hall & Mba, 2004), (Kar &
Mohanty, 2006), (Subramaniam et al., 2006) and (Zhan &
Mechefske, 2007). These papers compare the measured dy-
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namic response against the model of normal(s) and/or fault
conditions - therefore, causing a disadvantage because of the
requirement for prior knowledge. Our work also enables the
early detections of the onset of change in dynamic response,
which is also indicative of the degradation.

The novelty scoring is achieved using online non-parametric
statistics that approximates the data distribution for the time
window consisting of the N number of samples at current
time t and compare to the previous N number of samples
separated by an interval of S samples. A non-parametric sta-
tistical approach is proposed so that this scheme will not be
reliant on the prior training of normal and faults conditions.
This is a major criteria for the development of the online and
unsupervised EHM scheme, because, as indicated in (Mod-
enesi & Braga, 2009), novelty detection is concerned with
the identification of unexpected events or regime changes to
the system that is not well understood - “The vagueness of
the description is inherent to the novelty detection problem,
in fact, it is the very centre of the problem: how to detect
data whose only particular characteristic is that it has not
appeared before?”. Furthermore, when variations occur, the
variations may cause the need to redesign and reconstruct any
system models developed; the development process itself is
time consuming, and may not reflect all normal or fault con-
ditions (Zhan & Mechefske, 2007).

By using an online non-parametric statistics (Subramaniam et
al., 2006), the approximation of the data distribution adapts
over time. The characteristics of the distribution will dif-
fer when the conditions of the system have changed, thus
changes that are resultant of degradations are identified. Nov-
elty, defined by this work, is the identification of the changes
to the distribution, which signifies when a change in the sys-
tem’s conditions have occurred, i.e. the measured dynamic
response that is the outcome of degradations. Authors of
(Marsland, 2003) and (Modenesi & Braga, 2009) also indi-
cated that novel data or outliers have a large effect on the
analysis of the system, which can result in the change to the
measured data distribution.

One mechanism to monitor the distribution change is by trend-
ing the change in the distributions mean, standard deviation
and other statistical moments (e.g. skewness or kurtosis).
These summary statistics are not guaranteed to unambigu-
ously measure all the different changes that may occur in the
data. In addition, as the number of variables in the analyses
increases, the co-relations between parameters should also be
calculated, and thus the number of calculations increases non-
linearly (O(n2)). Modern complex systems have a combina-
tion of multiple sensed parameters that all may contribute to
the efficacy of monitoring (Subramaniam et al., 2006). There-
fore, an alternative generic measure of distribution change is
advantageous and is proposed in this paper.

We apply this scheme to a component previously identified

as a source of high disruption and service cost to aero-engine
manufacturers (Eleffendi et al., 2012). The fuel metering unit
(FMU) within a gas turbine is a complex electro-mechanical
system. Failures to the FMU can be a major source of air-
line disruption. The system operates in a harsh environment
where high temperatures and fuel impurities can lead to sys-
tem degradation and functional failure. Fuel impurities, often
categorised as contaminants, are one of the culprits that cause
system degradation. Contaminants accumulate in fuel sys-
tem filters, nozzles, the walls of control valves and other slid-
ing components. These accumulations resulted in increased
friction, which can, in addition to other failure mechanisms,
result in valve seizure and in-flight shutdown. Early detec-
tion of this degradation can inform maintenance planning and
avoid in-service events, which helps minimise disruptions.

The paper presents the multivariate EHM scheme that per-
forms early diagnosis and trending of the FMU degradation
as a result of friction increase. The EHM scheme uses non-
parametric statistics. The non-parametric status is discussed
in Section 2. Section 3 describes the FMU used to test and
analyse the capabilities of the EHM scheme and Section 4
discusses the results produced. Section 5 concludes the pa-
per.

2. NON-PARAMETRIC STATISTICS FOR NOVELTY DE-
TECTION AND SCORING

The novelty detection scheme proposed is performed by com-
paring the differences between the two distributions: the cur-
rent distribution and the previous distribution measured. If
the system is in nominal conditions and at non-transient op-
erations, the change should be minimal. If the system per-
formance degrades, a change in the distribution between cur-
rent and previous is indicated. Changes in the distribution
are indicated using a multivariate two-sample Kolmogorov-
Smirnov test. The Kolmogorov-Smirnov test signifies the
probability whether the two underlying probability distribu-
tions differs. The test compares two empirical cumulative
distribution functions (ECDFs) and for the work presented
in this paper, the two ECDFs are the current and previous dis-
tributions. This enables trending of any system change.

2.1. Multivariate Two-sample Kolmogorov-Smirnov Test

Since different data sets, or different distribution functions,
have differing cumulative density functions, one can estab-
lish the likelihood that two sets of data are originating from
the same distribution function by measuring the differences
between their ECDFs. The ECDF for the N samples of vari-
able v is defined by Eq. (1), and provides a measure of the
relative number of samples for v, v = {u1, u2, ...., uN}, less
than or equal to x. 1{ui ≤ x} is the indicator of such an
event.
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ECDFv(x) =
1

N

N∑
i=1

1{ui ≤ x} (1)

The two-sample Kolmogorov-Smirnov test compares the two
ECDFs by calculating the statistical distance D between the
two distributions. The statistical distanceD is given by Eq. (2),
where F (x) and R(x) are the samples from the ECDFs of
F (x1) and R(x2) respectively (Andrade et al., 2001).

D = max
−∞<x<∞

|F (x)−R(x)| (2)

The statistical distance D is converted into a similarity prob-
ability using the Kolmogorov-Smirnov p value, defined by
Eqs. (3)–(4) (Greenwell & Finch, 2004) (Kar & Mohanty,
2006). The p value provides the metric for novelty scoring.

p = QKS(z) = 2

∞∑
j=1

(−1)j−1exp(−2j2z2) (3)

z = D

√
N1N2

N1 +N2
(4)

N1 is the number of points in F (x1) and N2 is the number of
points in R(x2). Equation (3) is for when N1 and N2 tends
to infinity (Kar & Mohanty, 2006).

p-value is a monotonic function with limiting values of:

p = QKS(z) =

{
1 if z → 0

0 if z →∞
(5)

If the two distributions are statistically similar (similar ECDFs),
QKS tends towards 1. If the distributions are different, i.e.
varied, QKS will go towards 0. A variation between the two
distributions indicates that a novelty has occurred.

In the work presented in this paper, the F (x1) and R(x2) are
the product of the single variate ECDFv in the multivariate
data, calculated using Eq. (6).

F (x) =

V∏
v=1

ECDF
v
(x) (6)

where V is the number of variables considered.

Novelty is indicated when p < 0.90. p < 0.90 is chosen
because, based on the critical value approximation which in-
dicates:

H =

{
0 if D < Dcritical

1 if otherwise
(7)

H = 0 when the two distributions are the same and H = 1 if
otherwise, Dcritical is equated using Eq. (8) (Kar & Mohanty,
2006).

Dcritical = α

√
N1 +N2

N1N2
(8)

Assuming that the distribution of the D-values produced is
normal and the sizes of F (x1) and R(x2) are N1 and N2 re-
spectively, novelty is indicated when D (Eq. (2)) is above the
2.698σ or the upper quartile of the D distribution. α = 0.57
produces the Dcritical value, for which any values of D be-
yond or equal to Dcritical will produce p < 0.9.

2.2. Offline and Online Novelty Trending

In order to trend degradation, the capability provided by the
previous section must be augmented with the ability to look
at parameter distribution change over time. The distributions
under comparison should therefore be sampled as two win-
dows of data separated by an appropriate time interval. Two
modes of operation are outlined in this paper to provide this
measure of change as a function of time:

1. Offline: This strategy compares the distributions from
the first flight to all other complete flights. In effect, the
first flight is used to build a model of normal, and the of-
fline test observes the divergence of the system over its
lifetime as an analogue to deterioration. Therefore, the
analysis performed compares how the subsequent cycles
differ from the first cycle: N1 = number of samples in
the x-th cycle and N2 = number of samples in the 1-st
cycle. This methodology will only detect deterioration at
a period of complete flights.

2. Online: A sliding window approach is employed to en-
able un-delayed detection and scoring of novelties, there-
fore allowing indication of novelty occurring during a
flight. The sliding window approach is further discussed
in the next section.

2.3. Online Trending the Changes to the Distributions:
The Sliding Window Approach

The online strategy addresses the trending of novelty by accu-
mulating parameter distribution changes occurring in a time
period much less than the typical prognostic horizon of the
system degradation. It has been observed that the frequency
of distribution changes is indicative of the deterioration for
the failure modes explored in this paper. Measures of this
trend are termed ‘health metrics’ and are calculated in two
ways: as an average probability of change and as a count of
changes per cycle.

The construction of the health metrics involves first applying
the multivariate Kolmogorov-Smirnov test to two consecu-
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N no. of samples 

a-1 
time 

S newest 
samples 

S oldest 
samples 

a-2 a 

Figure 1. Sliding window. The p values are calculated at a by
comparing the distributions of N samples at a − 1 and at a
when the oldest S samples values are replaced with S newest
values.

tive sliding windows of data containing N number of sam-
ples. The two sliding windows, separated by S number of
samples, are used to construct individual multivariate ECDFs
(Eq. (6)). The change in distribution is then constructed. The
first p probability is calculated when the first and second dis-
tributions are obtained, with N + S number of samples, and
are subsequently calculated at every interval a when S new
samples are obtained. This is as illustrated in Fig. 1.

Figure 2 illustrates the concept on synthetic data. The four
distributions in the figure are each generated from a win-
dow of N = 1000 samples selected at different times from
Gaussian distributed data with time-increasing mean offset,
(Fig. 2a). Formation of an ECDF from the data and calcu-
lating the maximum distance D (Eq. (2)) allows changes in
distributions to be indicated by the p probability calculated
using Eq. (3). A comparison between Set 0 and 1, shows a
high similarity (p = 0.98), becoming progressively lower as
the distance between distributions increases. The lowest p
value (approximately 0) occurs when a significant change in
the distribution is indicated between Set 2 and 3. Indicating
and trending the changes in distribution are useful to identify
the deteriorating conditions of the system.

Equations (3)–(4) show the relationship between the D value
and its associated p probability of distribution change. The
p value decreases exponentially with the increase in the D-
value, therefore only when a significant change in the distri-
bution is detected will there be a decrease in the probability of
similar distributions. The confidence of novelty is the compli-
ment of the probability given by the p value (i.e. 1−p). When
the system is at nominal conditions and at non-transient oper-
ations, the change in distribution should be minimal, with the
probability of change given by Eq. (3), p ≥ 0.90.

The p value, therefore, can be used to visualise the measure
of health for the system at any given time. The trend in p
may be observed by calculating the running average of the p
values at every a during the period of interest (for example a
flight), Eq. (9).
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(a) The Gaussian PDF of the generated data.
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(b) The respective ECDFs and the associated p values when a set
is compared against another set.

Figure 2. Kolmogorov-Smirnov p values (Eq. (3)) indicating
the change in the distributions.

prAve(a) =

a∑
i=1

p(i)

a
(9)

When no novelty is occurring in the system, prAve ≈ 1. The
value of prAve decreases with the increase in the rate of nov-
elty detection. Trending the change to the prAve value shows
the severity of the system degradation.

2.4. Nominal and Non-Transient Operations

The nominal and non-transient phase of operations are only
investigated at presence. This is to enable the proof of con-
cept of the novelty scoring ability for the proposed method.
Furthermore, current aircrafts use an Aircraft Condition Mon-
itoring System (ACMS) to acquire the data for the EHM, and
the acquisition of the data is perform at the three defined

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

0 0.5 1 1.5 2 2.5 3
x 10

4

−50

0

50

T
M

 C
ur

re
nt

 (
m

A
)

Test 1

0 0.5 1 1.5 2 2.5 3
x 10

4

0

0.2

0.4

0.6

F
M

V
 P

os
iti

on
 (

in
ch

es
)

Time (s)

Figure 3. Test 1 (Baseline): Minimal contaminant detected.
Small changes in the mean of the TMC are indicated for this
test. The mean is indicated by the grey line. The FMV posi-
tion is averaged at 0.3 inches
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Figure 4. Test 2: Contaminant causing stiction. There are
changes to the TMC mean and the FMV positions as the result
of the degradation.

phases: take-off, cruise and landing. The EHM then sum-
maries the health of the engine at these phases separately (Wa-
ters, 2009). Therefore, we envisage the novelty scoring to be
calculated separately at each of these phases. Future work
will include understanding the data distribution trends when
operating at the transient phase, and to derive the novelty
scoring metrics for the nominal and transient operations.

3. EXPERIMENT: NOVELTY DETECTION OF FUEL ME-
TERING UNIT

The presented equipment health monitoring scheme is used to
detect and trend the degradation of a gas turbine fuel metering
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Figure 5. Test 3: Contaminant resulted in stiction. Changes
to the TMC mean and FMV positions are shown with the in-
crease in the contaminant level.
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Figure 6. Test 4: Contaminant causing stiction.

unit (FMU). The primary function of a FMU is to regulate
fuel flow in response to the Electronic Engine Control (EEC)
demand required to deliver commanded engine thrust. This
is achieved through position control of two-stage servo fuel
metering valve (FMV), which alters the pressure drop across
the valve and flow rate through it.

The functional failures associated with the FMU are the loss
of FMV bandwidth with poor demand tracking, leading to the
inability to control valve position and fuel flow. These, as in-
dicated in Section 1, may be due to debris ingestion resulting
in valve friction/stiction or filter clogging.

Data has been collected from fuel system rig tests, which
were subject to the introduction of fuel contaminant, and run
over up to 8 cycles of cruise, idle and take-off phases. These
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Table 1. Mass (as percentage of maximum test amount) of
contaminant introduced per test cycle.

Cycle # Test 1: Test 2 Test 3 Test 4Baseline
1 13.29 2.85 12.03 0.00
2 18.99 0.95 4.43 4.11
3 22.15 5.06 3.80 2.85
4 20.25 8.54 7.59 7.59
5 24.05 9.49 11.71 4.75
6 36.39 37.34 23.10 19.30
7 35.44 43.04 28.80 34.18
8 69.62 100.00 31.96 98.73

tests exhibited functional failures from loss of metering valve
control at high contaminant levels and serve as a basis for
evaluating the outlined novelty trending schemes.

The EHM scheme presented is used to indicate how the sys-
tem degrades as the result of the contaminant introduction. At
present, the analysis of the scheme is to indicate the degrada-
tion only when the engine is supposedly at the cruise phase.
This is shown in Figs. 3–6 when the FMV position is aver-
aged at 0.3 inches. In all three tests, the mean at cruise of
the TMC reduces as the control system compensates for the
effects of the increase in the contaminant level.

The mass of contaminant introduced in each cycle is listed in
Table 1. It should be noted this is not a measure of degrada-
tion, and only indicates the mass of particles introduced to the
system at each cycle presented as a percentage of maximum
cycle dosage over all tests.

Two signals are initially chosen for use to monitor the degra-
dation level in response to the introduction of the contami-
nant. They are:

1. The torque motor current (TMC), and
2. The fuel metering valve (FMV) position.

The TMC values and the FMV position values are sampled at
40Hz, and are normalised (Eq. (10)) so that their values are
between -1 to +1 prior to the analysis.

xn = (b− a)× xo − xmin

xmax − xmin
+ a (10)

xn is the normalized value and xo is the value to be normal-
ized. a and b are the minimum and maximum value of the
range to be normalized to, which in this case is a = −1 and
b = +1. xmax and xmin are the maximum and minimum
values of the range of xo.

Figure 3 indicates the values of these variables when the ma-
jority of the contaminants introduced are captured by the low
pressure (LP) filter. The LP filter traps the contaminant up-
stream of the metering valve, therefore preventing stiction
and degradation. Physical analysis of this test also indicates
that only a small amount of contaminant is detected in the

FMU as the results of the filtering, too small to cause degra-
dation. Because of this, minimal changes in the system dy-
namic response are shown, despite the contaminant introduc-
tion. This test acts as the baseline test (Test 1: Baseline) to
evaluate the capabilities of the presented EHM scheme.

In tests 2–4 (Fig. 4–6), the system degrades over time and
with the increase in the contaminant level introduced per flight
cycle.

For the sliding window approach, three different window sizes
are considered: 60 seconds of data, N = 2400 number of
samples; 120 seconds of data, N = 4800 samples; and 300
seconds with N = 12000 samples. The distribution of the
sensors values are updated and compared when the oldest S
sample values were replaced with the newest S values, at ev-
ery a. Six different sets of N and S are analysed:

1. For 60 and 120 seconds of data (N = 2400 and N =
4800 samples): S = 40 samples (1 second of data).

2. For 60 and 120 seconds of data (N = 2400 and N =
4800 samples): S = 80 samples (2 seconds of data).

3. For 300 seconds of data (N = 12000 samples): S =
200 samples and S = 400 samples (5 seconds and 10
seconds, respectively).

4. RESULTS

4.1. Offline novelty trending

Figure 7 represents theD values produced by the analysis us-
ing the offline strategy comparing each subsequent cycle to
the first cycle. The figure shows, for all tests other than the
baseline (i.e. not Test 1), a large change to the cycles’ dis-
tributions are shown when they are compared to their initial
cycle. The significance in change is indicated by the large
increase in the D value for each cycle, caused by the change
to the FMU system dynamics. The D-values remain approx-
imately the same for Test 1: Baseline.

TheD values are directly used in the offline analysis. The sig-
nificant changes between each cycle result in large D values
being produced by the comparative analysis, these all result
in the the probability of no change tending to a very small
value (p→ 0). Therefore, for the offline cycle-to-cycle mode
of comparison, the novelty detection is made based on the D
values instead of its p−values.

4.2. Online novelty trending

This section evaluates the performance of the two on-line
trending approaches as described in Section 2.3. Tables 2–
4 show the number of changes to the distributions cycle (i.e.
the count of evaluations when p < 0.90). Low detection rates
are shown for Test 1: Baseline, as most of the contaminants
are filtered prior to the metering valve. Frequent changes in
distribution is shown by higher count values when the con-
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Figure 8. The EHM health metric provided by the prAve(a) values with N = 2400 samples (60 seconds of data) and S = 40
samples (1 second of data).

Table 2. Number of occurrences when p < 0.90, when N = 2400 number of samples (60 seconds of data).

Cycle #
N = 2400 samples, S = 40 samples N = 2400 samples, S = 80 samples

Test 1: Test 2 Test 3 Test 4 Test 1: Test 2 Test 3 Test 4Baseline Baseline
1 0 0 0 0 144 168 110 294
2 0 0 0 0 100 177 117 332
3 0 0 0 1 59 190 148 356
4 0 0 0 2 100 216 110 352
5 0 17 59 1 57 223 354 379
6 0 53 70 81 79 314 384 395
7 0 72 68 128 79 352 454 452
8 0 84 N/A 114 81 290 N/A 376

taminants were not filtered from the unit (Tests 2–4).

The two tables show that the optimal N :S ratio for the EHM
scheme is 60:1 (indicated in bold). Any increase to the ratio
will result in a higher number of false detection, i.e. higher

number of false detection for the baseline test (Test 1) when
alternative ratios are used. Results also show that the window
with 60 seconds of samples (N = 2400 samples) and 1 sec-
ond interval (S = 40 samples) is sufficient for detection of
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Table 3. Number of occurrences when p < 0.90, when N = 4800 samples (120 seconds of data).

Cycle #
N = 4800 samples, S = 40 samples N = 4800 samples, S = 80 samples

Test 1: Test 2 Test 3 Test 4 Test 1: Test 2 Test 3 Test 4Baseline Baseline
1 0 0 0 0 20 20 13 57
2 0 0 0 0 19 24 15 73
3 0 0 1 0 8 30 19 72
4 0 0 1 0 9 34 15 87
5 0 0 35 1 3 50 120 84
6 0 0 40 51 10 87 122 128
7 0 2 38 58 8 95 180 122
8 0 6 N/A 55 10 94 N/A 116

Table 4. Number of occurrences when p < 0.90, when N = 12000 samples (300 seconds of data).

Cycle #
N = 12000 samples, S = 200 samples N = 12000 samples, S = 400 samples

Test 1:
Baseline Test 2 Test 3 Test 4 Test 1:

Baseline Test 2 Test 3 Test 4

1 25 48 36 82 61 76 58 106
2 15 46 15 92 37 75 39 105
3 15 48 32 89 37 73 60 99
4 11 46 12 81 37 77 33 89
5 11 43 114 99 33 64 128 114
6 16 62 105 92 32 86 124 107
7 7 78 160 123 28 92 155 116
8 10 74 N/A 107 35 98 N/A 111

Figure 7. The D values when comparing a cycle to its first
cycle.

the degradation. This because of the no (zero count) detec-
tions for Test 1: Baseline, as well as the ability to detect the
changes to the TMC and FMV positions for Test 2–4.

The alternative health metric, prAve(a), for each test forN =
2400 samples and S = 40 samples is shown in Fig. 8. For
all non-baseline test (Test 2–4), the values of the prAve(a),
which is an indicative of the health of the system, reduces
overtime. This shows that the health of the system has de-
graded with time with the increase in contaminant per flight
cycle. prAve(a) are constant and are ≈ 1 for Test 1: Base-

line, indicating no system degradation because the LP filter
has trapped the contaminant upstream of the metering valve,
therefore preventing degradation. The decrease in health also
indicates the increase in the novelty detection rate.

4.3. Univariate vs Multivariate

As indicated in Section 1, a gas turbine is complex electro-
mechanical system. Determining the most effective parame-
ter for analysis is not always apparent. If one is to perform
univariate analysis, the incorrect selection of sensing param-
eter will lead to a different outcome. For example, if one
chooses the FMV position to indicate novelty for N = 2400
samples (60 seconds worth of data) and S = 40 samples (1
second worth of data), as shown in Table 5, no trending of
degradation is achievable. Similar observation is shown when
the analysis is performed using the TMC’s distributions for
N = 2400 and S = 40. The short time interval between time
windows is not sufficient to identify the changes in these co-
related variables when they are treated in isolation.

The analysis presented earlier in this paper is for bivariate
analysis (V = 2 in Eq. (6)). Figure 9 and Table 6 show the
results when increasing the number of variables, V , analysed
from the measured rig test data, at the optimal N :S ratio of
60:1 (N = 2400 samples of data and S = 40 samples). The last
recorded prAve values for V = {3, 4, 5}, i.e. the cycle aver-
age p value, decrease with the increase in the level of contam-
inants for all non-baseline tests (Fig. 9). The detection event
count also increases with the increase in contaminants (Ta-
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Table 5. Number of occurrences when p < 0.90, when N = 2400 samples and S = 40 samples.

Cycle #
Variable # 1 TMC Variable # 2 FMV position

Test 1:
Baseline Test 2 Test 3 Test 4 Test 1:

Baseline Test 2 Test 3 Test 4

1 0 0 0 0 33 11 15 8
2 0 0 0 0 23 11 41 7
3 0 0 0 0 18 5 33 15
4 0 0 0 0 23 19 28 26
5 0 0 4 0 14 88 49 21
6 0 0 4 4 22 97 14 153
7 0 2 0 4 7 52 39 14
8 0 0 N/A 4 22 7 N/A 12

Table 6. Number of occurrences when p < 0.90 for the univariate test with N = 2400 samples and S = 40 samples.

Cycle V = 3 (+ MV Downstream Pressure) V = 4 (+ LP Pump Outlet) V = 5 (+ SPR Pressure)
# Test Test Test Test Test Test Test Test Test Test Test Test

1 2 3 4 1 2 3 4 1 2 3 4
1 3 0 0 0 8 3 0 0 6 2 0 0
2 1 1 0 1 0 1 0 0 0 1 0 0
3 0 2 0 0 0 0 0 1 0 0 0 1
4 0 5 0 3 0 4 2 2 0 4 1 1
5 0 73 72 2 1 17 16 0 2 75 25 0
6 0 159 107 118 0 48 19 27 0 119 32 59
7 1 307 99 163 0 120 18 57 1 290 39 118
8 3 366 N/A 158 1 226 N/A 56 2 396 N/A 118

1 2 3 4 5 6 7 8
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Test 1: Baseline V = 3
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Test 1: Baseline V = 4
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Test 3: V = 4
Test 4: V = 4
Test 1: Baseline V = 5
Test 2: V = 5
Test 3: V = 5
Test 4: V = 5

Figure 9. The last prAve(a) calculated at the end of each cycle
for the multivariate analysis related to Table 6.

ble 6). Additional variables included are, for V = 3, the
normalised metering valve (MV) downstream pressure sensor
values, and, for V = 4, the fourth variable is the normalised
low pressure (LP) supply pressure data. The third analysis is
performed with V = 5, which adds the servo-pressure.

An analysis of the sensitivity to degradation from these re-
sults can be made with respect to the physical interpretation
of Figure 9. The average p value for tests where V = 3 or
V = 5 are consistently lower (a change, thus degradation,

more likely) than for the test with 4 variables. From this,
we conclude that adding the LP supply pressure parameter
(in V = 4) makes the change to multi-variate distributions
less significant, not adding to the ability to determine degra-
dation. The LP pump, thought to be robust to containment
itself, is upstream from the valves which are impacted by the
containment and therefore is not affected by system degrada-
tion. On the other-hand, servo-pressure is controlled by an
additional valve to the FMV and therefore introduces sensi-
tivity to another element of the system. The downstream flow
pressure (added in V = 5) is dependent on the supply pres-
sure (affected by a spill valve) and the valve position, again
this valve introduces another candidate source of degradation
from the spill valve. It is plausible that these observations
could be used to aid fault isolation in future work.

These results corroborate the hypothesis that a combination
of multiple sensing parameters is powerful for novelty detec-
tion analysis and health scoring of a system, as more dynam-
ics are captured as part of the analysis. The non-parametric
two-sample Komolgorov-Smirnoff test provides the mecha-
nism to perform multivariate analysis with minimal pre- or
post-processing of the provided data (aside from the normal-
isation of the data so that their values are between -1 to 1).

5. CONCLUSION

This paper presents the results of a multivariate equipment
health monitoring (EHM) scheme that utilises non-parametric
statistics. The scheme was developed to provide early detec-
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tion of the gas turbine fuel metering valve faults, and to en-
able the scoring of the significance of the degradation. Degra-
dation assessment can inform maintenance planning and con-
sequently reduce disruption.

The scoring is achieved using non-parametric statistics that
approximates the data distribution for the time window con-
sisting of the current and the previous samples. The data dis-
tribution estimate adapts over time, and a generic measure of
difference, a multivariate two-sample Kolmogorov-Smirnov
test, is shown to provide diagnosis capabilities. The equip-
ment health monitoring scheme is able to trend the degrada-
tion of the fuel metering valves, degradation resulted from
the varying levels of contaminant introduced to the engine.
Results indicate that the level and rate of detection increases
with the increase in the contaminant level, which resulted in
the degradations.

As indicated in Section 2.4, the analysis is restricted to cruise
phase or at the non-transient phase of flight operations. This
is to enable us to present the proof-of-concept capabilities of
the novelty scoring metric using the non-parametric multi-
variate two-sample Komolgorov-Smirnoff test. Future work
will include, but not limited to, the analysis of the capabilities
of the algorithm to cope with transient phases. We envisioned
that a different scoring metric is required to indicate for nov-
elty when the system is in the transient phase of operations.

Two methods for novelty trending are presented in this pa-
per: online sliding window approach and the offline cycle-
by-cycle approach (Section 2.2). Schemes to fuse the outputs
of these approaches together, along with schemes to trend the
outputs over time, may provide advantages in detecting dif-
ferent failure modes and will be investigated.

As presented, the use of multivariate two-sample Kolmogorov-
Smirnov test for the EHM scheme simplifies and enhances
novelty detection, eliminating the need to choose variables or
summary statistics for health analysis prior to system deploy-
ment.
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