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ABSTRACT 

This paper presents a new dependency computational 
algorithm for reliability inference with dynamic hybrid 
Bayesian network. It features a component-based algorithm 
and structure to represent complex engineering systems 
characterized by discrete functional states (including 
degraded states), and models of underlying physics of 
failure, with continuous variables. The methodology is 
designed to be flexible and intuitive, and scalable from 
small localized functionality to large complex dynamic 
systems. Markov Chain Monte Carlo (MCMC) inference is 
optimized using pre-computation and dynamic 
programming for real-time monitoring of system health. The 
scope of this research includes new modeling approach, 
computation algorithm, and an example application for on-
line System Health Management. 

1. INTRODUCTION 

With increasing complexity of today’s engineering systems 
that contain various component dependencies and 
degradation behaviors, there has been increasing interest in 
real-time System Health Management (SHM) capability to 
continuously monitor sensors, software, and hardware 
components for detection and diagnostic of safety-critical 
systems. The modeling framework should be flexible to 
accommodate the complexity of component dependencies 
and failure behaviors, such as sequence-dependent failures, 
functional dependencies, etc.  

Bayesian Network (BN) (Pearl, 1986) (Jensen, 2001) and 
their extension for time-series modeling known as Dynamic 
Bayesian Network (DBN) (Friedman, 1998) (Murphy, 
2002) have been shown by recent studies to be capable of 
providing a unified framework for system health diagnosis 
and prognosis (Ferreiro, Arnaiz, Sierra, & Irigoien, 2011) 

(Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2012)  
(Schumann, Rozier, Reinbacher, Mengshoel, Mbaya, & 
Ippolito, 2013). Bayesian Network has many modeling 
features, such as multi-state variables, noisy gates, 
dependent failures, and general posterior analysis (Wilson & 
Huzurbazar, 2007) (Langseth & Portinale, 2007) (Doguc & 
Ramirez-Marquez, 2009). It also allows a compact 
representation of the temporal and functional dependencies 
among system components (Boudali & Dugan, 2006) 
(Weber & Jouffe, 2006).  

The main advantage of using BN in system reliability is its 
simplicity to represent systems and the efficiency for 
obtaining component associations. Another important 
benefit of BNs is that they enable us to integrate information 
from different sources, including experimental data, 
historical data, and prior expert opinion. This feature is 
particularly useful for the reliability assessment of fault 
tolerant systems, where failure data from tests and field 
operations are sparse and obtained from diverse source of 
information. Bayesian networks are particularly well suited 
to modeling systems that we need to monitor, diagnose, and 
make predictions about, all under the presence of 
uncertainty. 

However, one of the barriers to applying BN to real-world 
problems is to be able to adequately handle the “hybrid 
models”, which contain both discrete and continuous 
variables with general static and time-dependent failure 
distributions. Despite the advances in BN researches, the 
previous applications of BNs as mainstream technology for 
SHM problems remain modest. To date, the BN framework 
has only partially addressed these limitations (Lauritzen & 
Jensen, 2001) (Moral, Rumi, & Salmeron, 2001) (Lerner, 
2002) (Shenoy, 2006). The vast majority of BNs used in real 
world applications are either purely discrete or purely 
continuous. 

For hybrid BNs containing mixtures of discrete and 
continuous nodes with non-Gaussian distributions, exact 
inference becomes computationally intractable (Boyen & 
Koller, 1998). The common approach to handling (non-
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Gaussian) continuous nodes is to discretize them using some 
pre-defined range and intervals (Neil, Tailor, Marquez, 
Fenton, & Hear, 2007). This is cumbersome, error prone and 
usually inaccurate. 

Even though a universal framework for hybrid BN is 
currently impracticable, a special case algorithm can be 
effective in SHM where a relatively small subset of possible 
values covers a large proportion of all possible values 
typically encountered. This paper presents a hybrid BN-
based methodology for component degradation model and 
efficient algorithms to apply them in online health 
monitoring of complex systems. 

The focus of this research is to enable probabilistic 
diagnosis and prognosis of system in real-time by 
optimizing Markov Chain Monte Carlo inference with pre-
computation and dynamic programming to reduce the 
computation time and number of inferences required. 
Efficient computation allows on-line system monitoring and 
provides on-demand system health inquiry for operators to 
make maintenance decision and to prioritize which part of 
the system to investigate to avoid an accident. 

2. PROPOSED METHODOLOGY 

2.1. Hybrid Bayesian Network 

For SHM modeling, it is advantageous and intuitive to 
consider a hybrid system, typically with the continuous 
variables being modeled as continuous and the system’s 
functionality probability being discrete. 

 
Figure 1: Overview of different levels in SHM Bayesian 

Network 

The proposed complex system hybrid BN can be separated 
into 5 levels as shown in Figure 1, according to the typical 
characteristics of the nodes. The BN combines high-level 
functionality nodes with low-level physical of failure nodes. 
Here are the descriptions of each level:  

1. System node: this is the highest level of nodes with no 
children. It represents the state of the whole system 
and usually indicates whether or not the system is 
working as intended. 

2. Functionality probability nodes: these nodes are 
designed to be abstract discrete nodes that represent 
various functionalities, which are required for the 
system to operate. 

3. Component status nodes: these are continuous nodes 
representing states of physical components susceptible 
to specific failure mechanisms in the system. These 
values should be measurable directly or indirectly. 

4. Factor nodes: these nodes contribute to the degradation 
of the components. They can be component internal 
factors related to material properties or physical 
characters, or they can be external factors such as 
environmental stress or temperature.  

5. Parameter nodes: these nodes are hyper-parameters 
that describe probability distributions of the factors. 

It is to be noted that each level does not have to be only one 
layer as shown in Figure 1, it can be a combination of 
different layers of nodes that have the same type. 

Reliability concerns arise when some critically important 
materials or devices degrade with time. Let C represent a 
critically important material/device parameter. This 
parameter degrades over the life of the component. The 
value itself can either increase (threshold voltage of a 
semiconductor device, increase in leakage of a capacitor, 
increase in resistance of a conductor) or decrease (decrease 
of pressure in a vessel, decrease of spacing between 
mechanical components, decrease in lubricating properties 
of a fluid). Figure 2 presents the SHM BN at a specific time, 
𝑡. The shaded areas show continuous nodes that are related 
to each component. 

 
Figure 2: SHM Bayesian network at specific time t. 

A Taylor expansion about t=0 produces the Maclaurin 
Series, assuming that C changes monotonically and 
relatively slowly over the lifetime of the material/device: 

 𝐶 𝑡 = 𝐶!!! +
𝜕𝐶
𝜕𝑡 !!!

𝑡 +
1
2
𝜕!𝐶
𝜕𝑡!

!!!
𝑡! +⋯ (1) 
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By assuming that the higher order terms in the expansion 
can be approximated by simply modeling degradation of 
component/device parameter C with a power-law equation: 

 𝐶 = 𝐶! 1 ± 𝐴!𝑡!  (2) 

Where 𝐶! is the value of 𝐶 at 𝑡 = 0, 𝐴! is material/device-
dependent coefficient, and 𝑚 is the power-law exponent. 
Both 𝐴!  and 𝑚  are parameters that can be learned from 
component/device degradation data. Summation (+) is used 
when the parameter 𝐶 increases with time, while subtraction 
(-) is used when the parameter 𝐶 decreases with time. 

𝐴! is generally material/microstructure dependent. It is not 
only a function of material variations, but also a function of 
other factors, such electrical, thermal, mechanical and 
chemical environments to which the device is exposed. 

 𝐴! = 𝐴! 𝐹!,… ,𝐹!  (3) 

Therefore, we have: 

 𝐶 = 𝐶! 1 ± 𝐴! 𝐹!,… ,𝐹! 𝑡!  (4) 

𝑚 and other parameters are considered to be constant for the 
component/device. Considering a Bayesian network at a 
time slice of a given system, 𝑡 is then constant and indicates 
the current life of the component/device.  

For a component/device to fail, the amount of degradation 
must reach a critical value, 𝐶!"#$ . Therefore, the time to 
failure, 𝑇!"#$%&', is then: 

 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶!

𝐶!

!/!
 (5) 

Since the component parameter and their parents are 
continuous nodes, and the functionality probability nodes 
are discrete, the interface between these different types of 
nodes becomes critical. In general hybrid BNs, when 
continuous nodes have discrete parents, there are simple 
conditional inference techniques such as in conditional 
linear Gaussian (CLG) model. Difficulty arises when 
discrete nodes have continuous parents, which is the case 
for our SHM network. However in this case, even though 
discrete functionality probability nodes have continuous 
component status nodes, they are related by degradation 
thresholds. 

Discrete functionality nodes can contain more than 2 states 
with thresholds between the transitions of one state to the 
other. Let the threshold value between functionality state 𝑖 
and 𝑗 be 𝐶!!,!/!. The most common case would be state 𝑖 
denotes the component function, and state j denotes the 
component does not function. Let 𝑃! be the probability of 
functionality being in state 𝑖. The probability 𝑃! is then the 
probability that the component status 𝐶 is lower than the 
threshold value 𝐶!!,!/!. Figure 3 shows a typical component 

exponential degradation function and the overlap of 
probability distributions of 𝐶 and 𝐶!!,!/!. 

 
Figure 3: Overlap of probability distribution of component 

status and its threshold. 

Let a functionality node has 𝑛 states, the probabilities of 
being in the states are 𝑃!,… ,𝑃!. Assume the state of the 
functionality node changes monotonically according to the 
component degradation status: 

 𝐶!!,!!!/! < 𝐶!!,!/!!!  for 𝑖 = 2,… , 𝑛 − 1 (6) 

Therefore, 

 𝑃! = 𝑝𝑟𝑜𝑏 𝐶!!,!!!/! < 𝐶 < 𝐶!!,!/!!!  (7) 

Analytically, 𝑃!  can be calculated from the following 
convolution equation: 

 

𝑃!

= 𝑝 𝐶!!,!!!/! ∙ 𝑝 𝐶

!!!,!/!!!

!!!,!!!/!

!

!!!,!!!/!

!!!,!/!!!

!!

∙ 𝑝 𝐶!!,!/!!! 𝑑𝐶𝑑𝐶!!,!/!!!𝑑𝐶!!,!!!/! 

(8) 

If there are many component critical parameters contribute 
to this functionality then the state of the functionality node 
conditionally depends on comparison between the status of 
each component and its threshold values. 

2.2. Dynamic Bayesian Network 

Dynamic Bayesian Network (DBN) is a Bayesian network 
that includes a temporal dimension. This new dimension is 
managed by time-indexed random value 𝑡 to indicate time 
stage of the nodes. A set of nodes at certain stage contains 
random variables relative to time slice 𝑡. An arc that links 
two variables belonging to different time slices represents a 
temporal probabilistic dependence between these variables. 
Variables can be modeled to have impact on the future 
distribution of the other variables. These impacts are defined 
as transition probabilities between the stats of variables at 
time step 𝑡 and 𝑡 + ∆𝑡. 

C"

t"

Ccrit"

tth"

C0"
C"

Cth,i/j"



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

4 

A DBN describes the joint distribution of a set of variables 
θ. This is a complex distribution, but may be simplified by 
using the Markov assumption. The Markov assumption 
requires only the present state of the variables θt to estimate 
θt+1, i.e. p(θt+1|θ0,...,θt) = p(θt+1|θt) where p indicates a 
probability density function and bold letters indicate a 
vector quantity. Additionally, the process is assumed to be 
stationary, meaning that p(θt+1|θt) is independent of t. 

For SHM Bayesian network, the main variables that change 
between time slices are component parameters. Components 
degrades over time, therefore, the status of components at a 
certain time slice depend on their status at the previous time 
slice and the factors affecting the degradation processes 
during that transition. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (9) 

Given that 𝐹!! is the average value of factor 𝑖 between time 
slice 𝑡 − ∆𝑡 and 𝑡.  

Figure 4 shows a two-time-slice representation of a dynamic 
SHM Bayesian network. ∆𝑡 should be set according to the 
system under interest and how often the parameters can be 
observed, such as frequency of sensor signals. 

 
Figure 4: Two-time-slice representation of a dynamic SHM 

Bayesian network 

At any point in time during system operation, any value of 
variables in the system can be derived by probabilistic 
inference to compare with its expected value to see if the 
probability is still in the acceptable range and the system as 
a whole is working as intended. With continuous 
monitoring, the trajectory of the degradation processes can 
be estimated form our knowledge of the health of the 
system. We can then use this information to estimate 
remaining useful life (RUL) of components and plan 
maintenance accordingly.  

2.3. Inference 

Bayesian network is a complete model for the variables and 
their relationships. Therefore, it can be used to answer 

probabilistic queries about them. The main application is to 
use BN to realize updated knowledge of the states of a 
subset of variables, when the other variables (the evidence 
variables) are observed.  

Bayes’ rule with continuous variables: 

 𝑝 𝜃|𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃
𝑑𝜃  𝑝(𝐷|𝜃)𝑝 𝜃

 (10) 

Let 𝜃  be a parameter value and 𝐷  is data value of the 
evidence, 𝑝 𝜃|𝐷  is then the posterior probability of getting 
parameter value 𝜃 when data value 𝐷 is presented. 

In real world SHM applications, there are various types of 
parameter distributions, which make it difficult to calculate 
full marginal distributions analytically. Therefore, sampling 
techniques can be used to approximate the distributions 
instead. Expected values of a distribution can be estimated 
as follow: 

 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑁

𝑝 𝜃(!)|𝐷
!

!!!

 (11) 

Where 𝜃(!),… , 𝜃(!) are the sample values of parameter 𝜃. 

There are many ways to sample these values, the key idea is 
to let 𝜃 values be points in state space and find a way to 
walk around so that the likelihood of visiting any point 𝜃 is 
proportional to 𝑝 𝜃 . Therefore, the sampler will spend 
more time sampling from the distribution where the 
probability is high, and spending less time sampling from 
where the probability is low. This can be achieved by using 
Markov chain Monte Carlo (MCMC) algorithm (Cousins, 
Chena, & Frisse, 1993) (Dagum & Horvitz, 1993).  

MCMC algorithms produce random walks over a 
probability distribution. By taking a sufficient number of 
steps in this random walk, the MCMC simulation algorithm 
visits various regions of the parameter space in proportion to 
their posterior probabilities. We can, for inferential 
purposes, summarize the iterates obtained in these random 
walks much as we would summarize an independent sample 
from the posterior distribution.  

The procedure for updating the belief about the system state 
as new information becomes available is called Bayesian 
recursive filtering. 

 𝑝 𝜃!|𝐷!:! =
𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!
𝑑𝜃  𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!

 (12) 

Under certain assumptions, such as when the system is 
linear Gaussian, the belief state will be of a known 
parametric form and computationally efficient solutions to 
the filtering problem (e.g. Kalman filter, extended Kalman 
filter, unscented Kalman filter) are available. Outside such 
assumptions, a computationally feasible method for 
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inference in the DBN is particle filtering, a form of 
sequential Monte Carlo based on Bayesian recursive 
filtering. Common particle filtering methods are based on 
sequential importance sampling (SIS) (Chen, 2003). 

3. COMPUTATIONAL ALGORITHM 

In highly complex systems, MCMC algorithm requires large 
amount of computational time for inference in hybrid DBN. 
The computation time grows exponentially with each 
additional layer of network and becomes infeasible with 
large number nodes. The computation time makes it 
impossible for on-line health monitoring of complex 
systems. To solve this problem, special case algorithm for 
SHM is introduced to reduce the number of computations 
and the amount of time required for each computation. 

One of the main characteristics of SHM in contrast of other 
applications is that during a normal operation, the 
environmental factors that affect component degradation 
process are expected to be roughly the same and predictable. 
Therefore, instead of performing Bayesian updating at a 
specific time interval, it only needs to be done when a factor 
value changes outside of expected range. 

 𝑓! − 𝑓!!! > 𝜖! (13) 

Where 𝜖! depends on the sensitivity of component status 
due to the change in value of that factor. Please note that 
this is possible because component status is a function of 
time. Therefore, the degradation of a component between 
time period ti to tj where the change in factor value is less 
than 𝜖!  will take a normal distribution 𝒩 𝜇! ,𝜎!  for 
Δ𝑡 = 𝑡! − 𝑡!. 

3.1. Pre-computation 

Since the values are predicted to be in certain ranges, it is 
possible to perform pre-computation for all combinations of 
possible values in the ranges before the system is in 
operation. The results are then stored in a database, such 
that they can be pulled quickly to approximate the 
inferences in real-time. More computation should be 
conducted and more results should be added to the database 
as the health of the system is being monitored such that the 
database will cover all the possible computations that may 
be needed in the future. 

With continuous range of parameter values, it is impossible 
to pre-compute every possible outcome. The goal of pre-
computation is to cover enough values of observable 
parameters, so that the values of unobservable parameters 
can be accurately interpolated from the results. 

There are two factors in considering the selection of 
possible values. 

First is the range of observable parameters after a time 
period ∆𝑡. The selections should cover full range of possible 

values. There should be at least one selected value at lower 
bound and one selected value at upper bound. The common 
range is from 5th percentile to 95th percentile, or more 
accurately 0.5th percentile to 99.5th percentile. 

Second is the number of selections within the bound: the 
higher the number of selections, the more accurate results 
from interpolation will be. The density of selections should 
be proportional to the probabilistic density of the observable 
parameters. For example, if there is N number of selections 
per variable, the selections are: 

 𝐶! = 𝐶!!"#!! ,𝐶!!"#!!"! ,𝐶!!"#!!!"! ,… 𝐶!!!"!!!  (14) 

 𝛿 =   
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

 (15) 

Therefore, for a given measurement interval ∆𝑡, we can 
estimate the set of possible values and use those values to 
pre-computed possible outcomes. 

There are two different types of observable parameters. The 
first one is the parameters that change over time. This is 
usually the case for component status parameters. For pre-
computation to be feasible, the changes must be predictable. 
For a component status parameter, the change in value can 
be computed from its degradation equation for a given ∆𝑡. 
Figure 5 shows example expected value, 5th percentile, and 
95th percentile values. 

 
Figure 5: Example component status degradation with 5th 

percentile, and 95th percentile values. 

For this case, the range of possible values grows over time. 
Therefore, the number of selections should increase 
proportionally with the range to keep the interval between 
selected values the same, thus, keep the accuracy of 
interpolation constant. 

The other type of observable parameters is constant 
parameters. These parameters are usually Gaussian 
distributed. For this case, the range always stay constant, 
therefore, the selections remain the same throughout the life 
of the component. 

One advantage of the isolation among component sub-tree is 
that time intervals do not have to be uniform for all 

C"

t"
ti+Δti"

C0"

Expected"value"

5th"Percen7le"

95th"Percen7le"

ti"



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

6 

components. Measurement/inspection intervals can be based 
on the rate of component degradation and possible change to 
component parameters. They can also be dynamically 
changed during the life a component depending on its status.  

For example there can be less frequency of measurements 
during the early life of a component due to less probability 
of failure. Then increase the frequency when the component 
approaches the end of life. 

 ∆𝑡 ∝
1
∆𝐶

 (16) 

The time interval between measurements, ∆𝑡, should then be 
inverse proportional to the amount of change of the 
parameter 𝐶. Therefore, the sampling rate around a certain 
evidence value will be proportional to the probability that 
the evidence value could happen and how much different in 
values to the possible values around it at certain period of 
time.  

If the observed values are always in the predicted range, the 
accuracy of the results depends upon the number of 
selections for pre-computation. The number of selections is 
the number of selections at each time-slice multiplies be the 
number of measurement intervals. The number of pre-
computations is then the number selections for each 
observable times the number of observables parameters.  

 𝑁!"#!!"#$%&'&(") = 𝑁!"#!"#$%&',!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (17) 

Where 𝑁!"#"$%&'(!,!,!  is the number of selections of 
observable parameter 𝑖  at time 𝑡 . 𝑛  is the number of 
observable parameters. 𝑇! is the component life. 

The total computation time then can be estimated. 

 𝑇!"#!!"#$ = 𝑁!"#!!"#$ ∙ 𝑇!"#$!%#!!"#!!"#$ (18) 

For MCMC computation, the average computation time is 
proportional to the number iterations. The higher the 
number of iterations, the higher accuracy of the result will 
be. Therefore, there is a tradeoff between computation time 
and accuracy. For pre-computation, the decision between 
higher number of value selections or higher number of 
iteration per computation must be made. 

3.2. Dynamic Programming 

Dynamic programming is a method for solving complex 
problems by breaking them down into simpler subproblems. 
It is applicable to problems exhibiting the properties of 
overlapping subproblems and optimal substructure. When 
applicable, the method takes far less time than naive 
methods that don't take advantage of the subproblem 
overlap. 

In general, to solve a given problem, we need to solve 
different parts of the problem (subproblems), then combine 
the solutions of the subproblems to reach an overall 
solution. Often when using a more naive method, many of 
the subproblems are generated and solved many times. The 
dynamic programming approach seeks to solve each 
subproblem only once, thus reducing the number of 
computations: once the solution to a given subproblem has 
been computed, it is stored the next time the same solution 
is needed, it is simply looked up. This approach is especially 
useful when the number of repeating subproblems grows 
exponentially as a function of the size of the input. 

Using dynamic programming can reduce the pre-
computation time for Bayesian Network inference 
drastically. Instead of computing full inferences for each set 
of evidence values, dynamic programming algorithm retain 
marginal results that can be reused with similar set of 
evidence values.  

There are three steps for the algorithm. First, use logic-
sampling algorithm and degradation model to generate all 
possible evidence values according to its probability of 
occurring. Not all evidence nodes have to be instantiated for 
each case, only the evidence nodes that are required for 
observing nodes are instantiated. 

Second, check and construct a cache by comparing each 
generated case to those already in the cache. If the case is 
found to be new, this algorithm determines, the joint 
probability of the case’s evidence using the algorithm in the 
third step. 

Third, the marginal posterior-probability distributions over 
the diagnosis nods are determined, then the values of the 
evidence nodes, the joint probability of the evidence set, and 
the marginal posterior-probability distributions for the 
diagnosis node are stored in the cache. 

Figure 6 shows two example cases where dynamic 
programming can reduce the number of computation. The 
first case is when nodes have the same set of parent nodes, 
thus the same sets of possible marginal probability 
distributions for discrete nodes. The second case is when 
continuous parameters have several trajectories that can 
reach the same values after some period of time. 

	
  
Figure 6: Example cases where dynamic programming 

reduces number of computations 

C"

P1"

P3"
P2"

P4" P5"

t"P1"

P3"
P2"

P4" P5"



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

7 

In addition, if more computations are needed during an 
operation in the event where evidence values reaches the 
bound of expected values, dynamic programming provide a 
set of marginal results that can be used for possible faster 
inference of values outside the pre-computed cache. 

Since both deterministic and approximate inference were 
found to be NP-hard (Cooper, 1990) (Dagum & Luby, 
1993), the computation complexity for both discrete 
functionality and continuous component degradation model 
are exponential in the network’s treewidth. Figure 7 shows a 
plot presenting differences between pre-computation time 
with and without dynamic programming. Without storing 
marginal probability distribution results for further 
computations, all approximate inference computations are 
required for pre-computation, thus increases computation 
time exponentially with network’s treewidth. 

 
Figure 7: Inference pre-computation time with and without 

dynamic programming. 

3.3. Efficient Dependency Algorithm 

In the case that components in the system are dependent to 
each other because there have common factors, an efficient 
algorithm is required to maintain the proposed modular 
component model. 

 
Figure 8: BN of components with common factor 

Figure 8 shows an example of 2 components system where 
both component shares the same factor (Ft

1,n and Ft
2,1). The 

common approach is to combine the nodes, however, this 
method is not ideal due to the following reasons: 

First, even though the components share the same factor, 
there is very likely a spatial different between the two 
components. By combining the nodes, the possibility of 
decoupling them is eliminated from future analysis. For 
example, two components are directly in contact of each 
other and they are assumed to always have the same 
temperature. There is a chance that in some scenarios, the 
two components are separated due to an external event or 
unexpected degradation, the model should be flexible 
enough to handle this situation. 

Second, combining the nodes makes the model no longer 
modular. Continuous variables inference cannot be done 
within the component sub-system. This leads to huge 
increase in complexity and computation time. 

 
Figure 9: Proposed BN with observable common factor 

Let Dt be a node representing the value observed from a 
detector/sensor used to measure a common factor. If the 
common factor is observable, factor Ft

1,n and Ft
2,1 can be 

directly derived from the measurement value of Dt. 
Therefore, inference calculations for each component stay 
modular. Figure 9 shows the proposed BN when the 
common factor is observable. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (19) 

 𝑝 𝐹!
!,! = 𝑝 𝐹!

!,!|𝐷!  (20) 

If the common factor is unobservable, the inference 
calculation can be done by placing a hidden node Dt as an 
imaginary measurement node between Ft

1,n and Ft
2,1, shown 

in Figure 10.  

 
Figure 10: Proposed BN with unobservable common factor  
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Since we know that Ft
1,n and Ft

2,1 are more likely to have the 
same value, p(Ft

1,n,Ft
2,1)  is expected to have a distribution 

similar to Figure 11. 

 
Figure 11: Probability distribution of the common factor. 

One method to reduce computation complexity and keep the 
inference calculation modular is to incorporate pre-
computation approximation. Pre-computation generates 
possible subsets of values of variables according to their 
probability distribution. For this case: 

 𝑓𝑜𝑟  𝑝 𝑃!!|𝐶!!,𝐶!! ~∀𝑖, 𝑗  𝑝 𝑃!!| 𝐶!! ! , 𝐶!! !  (21) 

Therefore, the combination of 𝐶!! ! , 𝐶!! !  that have 
higher probability are the ones that the values of Ft

1,n and 
Ft

2,1 are similar.  

 𝑝 𝐶!! ! , 𝐶!! !   |𝐹!
!,! ≈ 𝐹!

!,! > 𝑝 𝐶!! ! , 𝐶!! !   |𝐹!
!,! ≉ 𝐹!

!,!  (22) 

Using this method, the most probable explanation (MPE) 
can be derived in real-time from the pre-computation cache. 

In summary, this section presented new comprehensive 
computational algorithms that support the proposed SHM 
model with dependency between components. The 
combination of pre-computation and dynamic programming 
techniques is shown to be a feasible method for real-time 
system-wide inferences in complex hybrid BN. 

4. EXAMPLE APPLICATION 

Consider integrated circuits (ICs) with both electromigration 
(EM) and stress migration (SM) degradations. Let C(1) and 
C(2) be component status degrading under EM and SM 
respectively.  

 𝐶!" = 𝐶!!" 1 − 𝐴!!"   𝐽(!) − 𝐽!"#$
(!)   

!!"
exp

−𝑄!"

𝐾!𝑇
𝑡!!"  (23) 

 𝐶!" = 𝐶!!" 1 − 𝐴!!" 𝐿 !!" exp
−𝑄!"

𝐾!𝑇
𝑡!!"  (24) 

𝐽(!)  is the electron current density. 𝐽!"#$
(!)  is a critical 

(threshold) current density which must be exceeded before 

significant EM is expected. 𝐿 is the tensile stress in the 
metal for a constant strain. 

The BN model of a component affected by EM and SM is 
shown in Figure 12. 

 
Figure 12: BN of a component with EM and SM 

degradations 

Assume 𝐽(!) , L, and 𝑇  are expected to be normally 
distributed between time t-1 to t,  

 𝐽(!) = 𝒩 𝜇!,𝜎! , 𝐿 = 𝜇! ,𝜎! ,𝑇 = 𝒩 𝜇! ,𝜎!  (25) 

In the context of simple health monitoring in this example, 
𝐴!,  𝑄, 𝑟, and 𝑚 are considered to be constant parameters 
representing material/device internal factors. These 
parameters can also be modeled with probabilistic 
distributions. 

Consider an Al-alloy under high temperature operation, with 
current density J = 2×106 A/cm2 and at a metal temperature 
T = 200 °C. Assume an activation energy of Q = 0.8 eV for 
electromigration and 0.6eV for grain boundary diffusion.  

 

 
Figure 13: Current density and temperature data set 
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The current density exponent of n = 2 and stress migration 
exponent of n=2. Using conservative design approach, 
assume Jcrit = 0. 

The data of current density and temperature, show in Figure 
13, is retrieved once per hour during 60 hours of operation. 
Figure 14 shows an example plot of component degradation 
under electromigration vs. time at different current density 
and temperature, including from the data set. Approximate 
inference of component parameter is available almost 
instantly with pre-computation of Ct at t = 1,…,60, with the 
range of J between 1.8×106 A/cm2 to 2.2×106 A/cm2, and T 
between 90°C to 120°C. 

 
Figure 14: Plot of component parameter CEM vs. time at 

different J and T, including from the data set 

With traditional BN modeling, both failure modes have 
temperature as a common factor. Therefore, the component 
parameters, CEM and CSM, have the same parent node, T. 
In this case, any approximate inference will require full 
marginal distribution of both failure mode variables. The 
amount of time for sampling and computation increases 
exponentially with the number of variables in the inference 
calculation. With the proposed technique, the failure modes 
stay modular and approximate inferences can be achieved at 
much lower cost because of lower number of variables in 
the calculation. For this example, approximate inference 
calculation will only involve parameters of failure mode EM 
and failure mode SM, but not both of them combined. 

This also allows real-time inquiry of the states of 
degradations of all components in the system without 
computing full inference of all nodes every time there is 
new information. In real applications, a sensor on tensile 
stress may collect data every second, while another sensor 
on current density collect data every a tenth of a second. 
The health information of the system can be updated every 
tenth of a second, without having to performing 
approximate inference for EM failure mode as often. 

Consider a more complex example where the system 
consists of 50 electrical components that have 2 failure 
modes. Figure 15 shows a plot of amount of time required 
as a function of number of failure modes that have the same 
dependent factor. Assume it takes 1 second to calculate 
1,000 iteration of an average marginal distribution 
computation and an approximate inference requires 10,000 
iterations to reach reasonably accurate result. Using the 
proposed technique, the computation stays roughly the 
same, while traditional computation time increases 
exponentially with the number of dependent failure modes. 

 
Figure 15: Plot of computation time vs. number of failure 

modes with the same dependent factor 

As mentioned in the previous section, with pre-computation 
method, the accuracy of inference computation depends 
mainly on the number of selections of possible values of the 
variables. Using EM failure mode in the earlier example, 
Figure 16 shows the average percentage of accuracy against 
the number of selections of J and T values. 

 
Figure 16: Plot of percentage of accuracy vs. number of 

selections of J and T values 

The optimal number of selections depends on the accuracy 
required by the particular application and how much pre-
computation time is available. In more complex system, the 
number of selections should also be varied depending on the 
sensitivity of each variable.  
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5. CONCLUSION 

This research presents new modeling approach, 
computational algorithms, and an example application for 
efficient dependency calculation in on-line System Health 
Management. Hybrid dynamic Bayesian network modeling 
were introduced with component-based structure and 
algorithm to represent complex engineering systems in a 
way that it allows accurate representation of underlying 
physics of failure by using empirical degradation model 
with continuous variables. With dynamic hybrid Bayesian 
Network model requiring Markov Chain Monte Carlo for 
probabilistic inference, this paper develops computational 
algorithms that enables monitoring and diagnosing complex 
systems in real-time. The algorithms use the characteristics 
of System Health Management applications to allow 
reduction of number of inference required and reduce the 
calculation time by the means of pre-computation and 
dynamic programming. 
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