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ABSTRACT

We present a case study of anomaly detection using com-
mercial vehicle data (from a single vehicle collected over a
six-month interval) and propose a failure-event analysis. Our
analysis allows performance comparison of anomaly detec-
tion models in the absence of sufficient anomalies to compute
the Receiver Operating Characteristic curve.

Several heuristically-guided data-driven models were consid-
ered to capture the relationship among three main engine sig-
nals (oil pressure, temperature, and speed). These models
include regression-based approaches and distance-based ap-
proaches; the former use the residual’s z-score as the detec-
tion metric, while the latter use a Mahalanobis distance or
similar measure as the metric. The selected regression-based
models (Boosted Regression Trees, Feed-Forward Neural Net-
works, and Gridded Regression tables) outperformed the se-
lected distance-based approaches (Gaussian Mixtures and Repli-
cator Neural Networks). Both groups of models were supe-
rior to existing Diagnostic Trouble Codes. The Gridded Re-
gression tables and Boosted Regression Trees exhibited the
best overall metric performance.

We report a surprising behavior of one of the models: locally-
optimal Gaussian Mixture Models often had zero detection
performance, with such models occurring in at least 25% of
the iterations with seven or more Gaussians in the mixture. To
overcome the problem, we propose a regularization method
that employs a heuristic filter for rejecting Gaussian Mixtures
with non-discriminative components.

Howard Bussey et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION AND BACKGROUND

Equipment health and condition monitoring enables mainte-
nance to minimize the effects of equipment degradation or
failure. Building on existing concepts for predictive main-
tenance, Reliability Centered Maintenance (RCM) (Nowlan
& Heap, 1978) provided a formalism for Condition-Based
Maintenance (CBM). Being based upon objective evidence
of equipment degradation or impending failure, CBM has sig-
nificant economic and safety benefits: it reduces incidence of
unscheduled failures and downtime and reduces occurrence
of unnecessary or early scheduled maintenance.

Health or condition monitoring is the process of collecting
asset data, extracts the information and provides it to CBM.
Affordable sensors, data storage, and networking enable com-
prehensive monitoring of all types of assets. In order to make
this data actionable for CBM, models are needed to identify
and characterize anomalies, and then to relate the anomalous
patterns to forward looking failure risk for decision making
purposes (prognostics). The models are typically classified as
expert-system, physics-based, data-driven, and hybrid. This
paper takes the data-driven modeling approach.

Health monitoring is generally an incremental (not all-at-once)
process, as data is typically not available to develop compre-
hensive diagnostic and prognostic algorithms from the out-
set (Sikorska, Hodkiewicz, & Ma, 2011). Most modern ve-
hicles are equipped by the original equipment manufacturer
with built-in sensors on a data bus, and diagnostic systems
that detect major drive train failures. The diagnostic cover-
age on these systems can be limited, and they typically de-
tect problems with limited warning horizon before mainte-
nance action is required. Telematics systems, such as Gen-
eral Motors OnStarTMare increasingly being used to moni-
tor private, commercial, and military vehicles. Data provided
by these systems, over a large fleet of vehicles, can be used
to develop new anomaly detection and failure prediction al-
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Figure 1. Analysis process, showing steps of building the model, detection anomalies, diagnosing faults, and predicting future
failures (prognostics).

gorithms more cost effectively than through traditional en-
gineering testing. On-board computers, coupled to the ve-
hicle data bus, can filter vehicle data and run algorithms lo-
cally, or they can relay data to a back-end system for process-
ing. These systems can also support cost effective addition
of vehicle sensors to augment existing capabilities. In addi-
tion to driver services and logistics support, these systems are
used to collect information to support product improvement,
and have growing levels of Prognostic Health Management
(PHM) capability.

Consolidation of vehicle fleet data in a data warehouse pro-
vides an opportunity to develop CBM knowledge and algo-
rithms incrementally. As failures occur within the fleet, the
vehicle and maintenance data can be correlated, analyzed,
and used to create autonomous health monitoring agents with
embedded anomaly detection, diagnostics, and prognostics.
With larger fleets, more accurate and extensive algorithm sets
can be developed. Our approach is opportunistic, based upon
the failures, and data-driven, exchanging data mining and sta-
tistical machine learning in place of in-depth expert knowl-
edge.

As shown in Figure 1, anomaly detection is the first layer of
information extraction in condition-based maintenance. The
ability to reliably detect system performance changes, in the
context of different operating and environmental conditions,
is the first step towards condition monitoring. The value of
anomaly detection is the ability to trigger useful alerts and
to pave way to more sophisticated PHM. In the context of
truck fleet operations, an anomaly warning can be provided
to maintenance or operational supervisors to prompt them to

review the condition of the truck or the behavior of the driver.

Observed anomalies and their links to the associated failure
modes (established by maintainers) form a labeled data set
suitable for supervised machine learning. Automated clas-
sification of observed anomalies enables the second level of
PHM – diagnostics. Using observations of operational fail-
ures for classification training is well suited for environments
where failures can be, or have historically been, tolerated;
this approach is cost effective and requires no additional risk.
In particular, the present case study is concerned with health
monitoring of commercial truck fleets, where failures can be
very costly, but are tolerated as a part of doing business. The
variant of this approach, in which unsupervised anomaly de-
tection identifies candidate events for human expert analysis,
may be suitable for systems such as nuclear reactors where
system failures are unacceptable. In this case, the data-driven
approach would augment the physics- or expert-knowledge-
based systems presently in use. This paper focuses on the de-
velopment of a methodology for anomaly detection in truck
engine behavior using data captured from a commercial fleet
telematics system. To achieve this capability, we use data-
driven models, each with an intrinsic metric. We will de-
scribe five such models, motivate their choices, and compare
their performance in following sections.

Once anomaly detection is in place, additional observed fail-
ures can be used to improve anomaly detection algorithms
and parameters, as well as to develop diagnostics and prog-
nostics. The development of data-driven prognostics is en-
abled (and improved) by more examples of the same failure
mode, which allow for the development of models of the pro-
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gression of failures subject to operational and environmental
context (regression, tracking). Alternatively, correctly classi-
fied anomalies with accurate physics-based (or other expert
knowledge-based) models can be considered without requir-
ing a large number of examples. Data-driven diagnostic de-
velopment is enabled by examples of a variety of distinct fail-
ure modes; from a machine learning viewpoint, diagnostics
can be perceived as a discrete classification problem. Since
the available data have only one failure, we were unable to
address the diagnostic and prognostic areas.

Building a system for anomaly detection includes the follow-
ing three steps: 1) selecting and pre-processing the relevant
signals; 2) selecting, building, and tuning a model equipped
with a metric; and 3) selecting and tuning an inference en-
gine that indicates anomalies, based upon the model metric.
While design, parameterization and parameter tuning of all
three blocks impact the performance of the system, this re-
port focuses on model selection and tuning. In all cases the
models operate on the same three signals: engine oil tem-
perature, engine oil pressure, and engine speed. Moreover,
all systems discussed in this paper employ a simple inference
engine a low-pass filter followed by a comparator. When the
filtered metric exceeds the threshold, the signals are consid-
ered anomalous.
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Figure 2. Example engine speed, oil temperature, and pres-
sure

Chandola, Banerjee, and Kumar (2009) survey anomaly de-
tection techniques, touching on methods used here. Our work
falls under their industrial damage classification, for which
they report on work using parametric and non-parametric sta-
tistical modeling, Neural Networks, spectral, and rule-based
systems. Bishop (2006) describes these machine learning

techniques in further detail, including specifics of training
and testing that are used in our work. Vachtsevanos, Lewis,
Roemer, Hess, and Wu (2006) present a somewhat different
model for data-driven anomaly detection (fault or failure de-
tection in their terminology - see their section 5.2.3). The
literature reporting anomaly detection results using standard
vehicle data over long periods is sparse. Golosinski, Hu, and
Elias (2001) report on 1.2 hours of data from a single vehicle.
Kargupta et al. (2004) report on analysis based upon a vehi-
cle simulator. McArthur, Booth, McDonald, and McFadyen
(2005) report on a processing system using data from a single
engine. Cheifetz, Same, Aknin, and de Verdalle (2011) report
on data from 22 consecutive operating cycles of a commercial
bus. Our experiments are intended to provide further empiri-
cal insight, especially with regard to longer performance pe-
riods and the specifics of model construction.

The study data include a period during which the vehicle was
driven with an active oil leak. We employed an opportunistic
data-driven methodology in our analysis. Because we have
only one labeled failure event in the data, we: (a) create sev-
eral models from the training data; (b) for each model, find
the minimum threshold that results in a zero false-alarm rate
during the normal period; (c) measure detection performance
during the low-oil period using the models and their respec-
tive detection threshold values. For this failure, we have ap-
proximately 144 hours of training data from a two-week in-
terval, failure data representing about 15 hours of operation
during approximately 19 clock hours, and the normal period
of five months (1500 hours) following repair.

2. PROBLEM AND PROCESS

Figure 2 shows a segment of the vehicle data: engine speed
and oil temperature and pressure, recorded over a two-day pe-
riod during which the vehicle was operated with an oil leak.
The data show the vehicle operating with steadily declining
oil pressure starting between 5:30 and 6:00 AM. With this
rich contextual information, one can conclude that the pres-
sure is legitimately anomalous. However, if only the pressure
information is available, the most one can say is that the pres-
sure exhibits a downward trend. For this fault, anomaly detec-
tion based upon only the oil-pressure is insufficient. The man-
ufacture recommends pressures of at least 150 kPa when the
engine is idling, and at least 300 kPa when the engine speed
is greater than 1100 RPM. If anomaly detection used only
the idle condition minimum pressure, the anomaly would be
missed in its entirety. Using the higher limit, the anomaly is
detected only in the last few minutes, and might cause false
alarms if applied when the engine is idling. Some anomaly
detection algorithms use a mode-based approach, where the
operating modes and associated signal limits are defined a pri-
ori and used to identify anomalous operations. Based on the
rules presented above, a mode-based oil pressure anomaly de-
tector would identify anomalies sometime after 9 AM on the
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Figure 3. Anomaly detection approaches in this investigation

second day of second day of operation.

Figure 3 maps the five models this study explored: three residual-
based models - Gridded Regression table (GR), Boosted Re-
gression Tree (BRT), and Feed-Forward Neural Network (FFNN)
- and two distance-based models - Gaussian Mixture (GMM)
and Replicator Neural Network (RNN). In the residual-based
systems, the models predict the pressure, based upon tem-
perature and engine speed. The metric is the absolute value
of the z-score (the standard score) of the residual, where the
residual mean and variance are determined from the model
and training data. In the distance-based systems, the metric
reflects how different all three signals are from the model.

2.1. Data Source and Preparation

As indicated in Figure 1, signal preprocessing is often neces-
sary before the data is used for building models. The prepro-
cessing here includes filtering out irrelevant data (e.g. during
idling), removal of short-duration transient data, eliminating
non-informative data (e.g., if some data is missing), and ex-
cluding data segments so short they cannot be handled in sub-
sequent processing (e.g., a 20 s drive between two 5 minute
idle periods).

We use data from a commercial truck (including both mainte-
nance data and operational data from the vehicles’ data buses)
as provided to RIT by Vnomics Corp. Examination of the
maintenance data showed that there was one oil leak event;
that single event is used as the fault event for this study. The
vehicle data were obtained from J1587 and J1939 packets
available on the J1708 and CAN buses on heavy-duty trucks.
This data did not include oil level information, even though
that signal is defined in the J1939-71 and J1587 specifica-
tions. The Vnomics’ Vehicle Health Management Software
(Vnomics, 2012) collected the asynchronous on-board sig-
nals and used lossy data compression to save space in the
database. The compression algorithm compares the current
signal value to the last stored data value and stores the cur-
rent signal value if the difference exceeds a fixed threshold.
The thresholds are provided in Table 1.

Table 1. Thresholds used in data compression algorithm.
Signal Threshold

Oil Temperature 0.2 C/K
Engine Speed 10 RPM
Oil Pressure 6.89 kPa

For this investigation, the asynchronous signal values are read
from database and time-synchronized to a 1 s periodic stream
using sample and hold interpolation. In addition to synchro-
nization, some data are removed. For instance, we remove
low-RPM (idle) data so that it isn’t over-emphasized during
training. There are two irrelevant data removal schema, as
show in Table 2. In schema 1, a wide range of physically-
feasible engine oil temperatures are accepted. In schema 2,
the temperature range is narrower to exclude data collected
while the engine is warming up.

Table 2. Data Removal Schema.
Schema Signal Minimum Maximum

(inclusive) (exclusive)
Temperature -20 120

1 RPM 1050 2500
Pressure 50 550
Temperature 90 120

2 RPM 1050 2500
Pressure 50 550

The training interval was selected after inspection of the op-
erational and maintenance to find the first period with no
maintenance events and no obvious data anomalies. For this
vehicle, that was immediately following a stuck at high oil
pressure sensor fault. The selected training period, with ap-
proximately 142 hours of operational data, is the two weeks
following replacement of the sensor. After removing irrele-
vant data, there remain 75 hours of training data. The non-
anomalous period follows the repair of the oil leak. The
anomalous period is a two-day period starting 2/2/2010.1

2.2. Metric Filtering

For all of these models, the metric is filtered with an infi-
nite impulse response low-pass filter with low passband fre-
quency of 0.0017 Hz (1/600 Hz) and reject-band frequency of
0.05 Hz. These values were chosen to provide a filter time-
constant of 5 minutes. This filter is appropriate for detecting
anomalies related to a slow oil leak.

In addition to the low-pass filtering, the metric filtering must
deal with data gaps introduced by the irrelevant data removal
step described in 2.1. In addition, short segments (e.g. 60 s)
are statistically insignificant when a fault event evolves over
a period of an hour or longer; because they cause numerical
instability, we removed them. Finally, the filter used above is
applied on the remaining segments on a segment-by-segment

1To encourage further research in this area, we have made the data available:
http://www.rit.edu/gis/research-centers/csm/EOP Case Study.php. This
has irrelevant data discarded according to schema 1.
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basis. This filter exhibits some ringing, so to prevent high
amplitude ringing, the filter is initialized with 10,000 s of in-
put points equal to the median of the first 50 samples in the
segment.

Because our goal is to study performance of several system
models, the same data preparation and detection processing
steps are used for all of the models.

2.3. General Modeling Process

For a problem of this type, the inputs consist of n observed
signals S1, S2, . . . , Sn. Data is divided into trainingDtraining,
event Devent, and normal Dnormal sets, such that the sets are
subsets of Rn:

Dtraining, Devent, Dnormal ∈ Rn (1)

and the sets are disjunct

Dtraining ∩Devent = ∅
Dtraining ∩Dnormal = ∅
Dnormal ∩Devent = ∅

(2)

The modeling is the process of identifying parameters of a
model M and detection threshold Θ, given metric m, that
maximizes discriminability between the training and event
data:

max |m(M(Dtraining),M(Devent)) > Θ| (3)

subject to zero false alarms

|m(M(Dtraining),M(Dnormal)) > Θ| = 0 (4)

Overall, our goal is to provide a long and stable detection
horizon for known faults, subject to the requirement that there
are no anomalies detected during the normal interval (false
alarms). As a final note, we prefer low-complexity models
that use zero expert system knowledge and have short training
times.

All five models, described in the next section, were able to de-
tect anomalies on the first day of the low-oil event, which took
place approximately 19 hours before the last mission during
the low oil period. Analyzing these anomalies showed tran-
sient pressure drops when the engine speed briefly increased
to a range between1500 and 2000 RPM. Figure 4a, from the
training interval, shows a small pressure variation, approxi-
mately 50 kPa, with no clear pattern of increasing or decreas-
ing. Figure 4b shows the data from one of the anomalous
intervals. Here the pressure drops approximately 100 kPa as
the engine speed increases from 1500 to 2000 RPM. In both
cases, the pressure is above 400 kPa when the engine speed
is steady around 1500 RPM.
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Figure 4. (a) Signals on the first training day (1/14/2010)
showing the normal behavior where engine speed spikes
make little change in the oil pressure. (b) Anomalous sig-
nals at 14:23 on first day of low oil event (2/2/2010), where
the pressure drops to approximately 325 kPa when the engine
speed increases sharply from 1500 RPM to 2000 RPM - once
just after 14:23, and again just before 14:25.

3. MODELS’ DESCRIPTIONS AND PERFORMANCES

This section describes the five models in turn, with the application-
specific decision processes associated with the models and
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their performance.

3.1. Model 1 – Gridded Regression

The Gridded Regression (GR) model has a look-up table used
to estimate engine oil pressure p as a function of engine speed
ω and engine oil temperature T ; and the residual mean and
variance, used to calculate the z-score metric. Here, the do-
main, the temperature-speed (ω-T ) plane, is subdivided into
rectangular subdomains, or bins, as depicted in Figure 5a.
The temperature and speed ranges are determined a priori,
based on the expected ranges of the signals; consequently,
some of the bins are empty during training. The discrete pres-
sure estimates p̂ over the domain are given by

a)

b)

Figure 5. A sketch of GR model. (a) Discretized (ω-T ) plane.
Data points within (ωi-Tj) bins are highlighted. (b) Mean
pressure of the data.

p̂ = f(ω, T ) = pij (5)

where f is the point sample of a 2-dimensional Gaussian dis-
tribution in terms of ω and T . pij is the mean pressure of the
training data corresponding to (ωi-Tj) subdomain bounded
by ωi −∆ω/2 ≤ ω < ωi + ∆ω/2 and Tj −∆T/2 ≤ T <
Tj + ∆T/2 (see Figure 5b), as in:

pij =
1

Mij

Mij∑
k=1

pijk (6)

Another way to think of this model is a piece-wise constant
(in this case two-dimensional) fit function with error bars. In
the metric evaluation operations, subtracting estimates from
the measurements yields error εp = p − p̂ = p − pij . The
residuals are considered collectively, over all bins. The metric
used for detecting anomalies is the absolute value of the z-

score of the residuals, computed as:

m = |zp| =
∣∣∣∣εp − εpσp

∣∣∣∣ (7)

Figure 6a shows that the Gaussian distribution fits the residual
data, εp ∼ N(0, σ2

p), reasonably well. Figure 6b quantifies
this fit further, showing that 99.8% of the residuals match the
expected range from -25 to +25.
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Figure 6. Distribution of the 75 hours of training data. (a)
Histogram with a fit. (b) Test of normal data.

3.1.1. GR: Parameters and Performance

The oil temperature and RPM ranges were divided into 10
equal intervals, resulting in a 10x10 grid. The model esti-
mate for each bin in the grid is the mean oil pressure for
the data samples in that bin. If the count of data in the bin
was too low, the model estimate for that bin was NaN (not-a-
number) a flag value causing that bin to be effectively ignored
in the rest of the experiment. The residuals were computed
over all of the training data, and the histogram of the resid-
uals in Figure 6 shows the distribution is well-modeled by a
Gaussian distribution. The variance of the residuals is com-
puted and stored with the model, to be used in subsequent
z-score calculations. For each data point in the test and non-
anomalous intervals, the GR model is used to predict the oil
pressure, based upon the RPM and oil temperature. The met-
ric is the absolute value of the z-score of the residual. The
metric is smoothed by the low-pass filter described in Section
2.2. For the non-anomalous interval, the smoothed metric
value is used to determine the detection threshold, guarantee-
ing the no false alarm criterion. That threshold is compared
with the smoothed metric for the test interval, and the results
are shown in Figure 7. The anomalies between 15:00 and
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Figure 7. Performance of GR Model. Detection horizon is
about 2.9 hours.

18:00 are correlated with vehicle oil level and pressure vehi-
cle Diagnostic Trouble Codes (DTCs) recorded at 14:15 and
15:38; however, they are not included in the detection horizon
calculation, which is based upon the period between 22:35 on
day 1 and 09:21 on day 2 of these data. This narrower time
range is used because the vehicle operators, aware of the oil
leak, added oil from time to time in this period. However,
the period from 22:35 until 09:21 the next morning, as Fig-
ure 2 shows, represents a single event when the oil pressure
dropped from normal to abnormally low.

Tuning this model requires selection of the number of bins
for temperature and engine speed. The number we used rep-
resents a compromise between too few bins, which would in-
crease the prediction error, and too many bins, which would
result in too few training points per bin. Given the bin count
selection, training is deterministic for a given training data
set.

The selection of 10 bins was based on trial and error in this
study. Optimal or near-optimal bin counts could be selected
through either exhaustive or random exploration of the bin
count space for each independent variable.

3.2. Model 2 – Gaussian Mixtures

Model 2 is an automatically trained GMM comprising a set
of multivariate normal distributions, Nk(µk, Σk), and their
weights πk where

∑
πk = 1. The distributions, Nk, are

trained to maximize the generative likelihood of all points
(Tt, ωt, pt) in the training data. The metric used in this model
is the likeliest Mahalanobis distance (Duda, Hart, & Stork,
2000), which is the Mahalanobis distance to the mean of the
Gaussian Gk that maximizes Pt = prk(Tt, ωt, pt) · πk.

Two variants of the model were considered: one (schema 1)
explored wide temperature range and the other (schema 2)
was restricted in a narrower temperature range.
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Figure 8. Performance of GMM(7)s. Each dot on the figure
represents one trained GMM(7). The models with the bet-
ter likelihood generally have better detection performance,
although the models with the best likelihood have zero de-
tection performance.

3.2.1. GMM: Parameters and Performance

The modeled employed seven fitted Gaussian distribution mix-
ture components. The number of components was determined
heuristically by searching the parameter space between one
and 15 Gaussian components in the GMM: mixtures with less
than seven components exhibited shorter detection horizon,
while mixtures with more components showed no consistent
advantage in detection horizon, and sometimes resulted in a
large proportion of models with zero detection performance.
Candidate GMMs were trained with Matlab R© using the
gmdistribution.fit() method. This uses an expec-
tation maximization algorithm to find locally optimal models
meeting hard-coded convergence criteria.

Initial experiments showed inconsistent performance with
detection horizons ranging from 0 to 2.2 hours (see Figure 8).
The cause for this is explained in section 3.2.2. The results
shown in this section use models trained with the combined
expectation maximization and rejection criterion filter. The
metric performances similar to the one in Figure 7, and are
not repeated for each of the models for brevity.

Changing the irrelevant data removal to schema 2 and re-
running the same experiment resulted in no performance im-
provement, showing that the GMM training and rejection fil-
tering process is robust in that the detection horizon is the
same for two different temperature ranges. While the hori-
zons are the same (see the GMM(7) schema 1 and schema 2
results in the figure), the schema 2 results, based upon data in
a narrower temperature range, show less variation at the onset
of detection (07:40) on the second day.

Training required repeated creation of GMMs from differ-
ent random subsets of the training data, with selection of
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Figure 9. Visualizations of a GMM. (a) with good (1.6 h) prediction horizon; (b) GMM with zero prediction. Most of the
Gaussians (except the grey one) have similar positions and sizes as the ones in (a).

the GMM with the smallest average Mahalanobis distance to
the most likely Gaussian for all the training data. The num-
ber of Gaussians in the GMM was selected by searching for
the smallest number of components where the improvement
of the average Mahalanobis distance stopped to avoid over-
fitting.

3.2.2. Gaussian Mixture Rejection Filtering

We investigated observed inconsistency in performance of
randomly-initialized GMMs in order to understand why some
resulted in zero detection performance. Figure 8 shows the re-
lationship between the model performance and the likelihood,
l, of the training data given the trained model for GMMs with
seven components each. The figure shows that several of
the learned models those with the best training performance
have zero detection. The results for the other GMMs show
a general correlation between training performance (larger
model posterior likelihood, l, or smaller − log(l)) and de-

tection performance. The GMM visualizations in Figure 9 –
one with 1.6 hour detection horizon and one with zero perfor-
mance – show the likely cause of this. (The ellipsoids repre-
sent the envelope enclosing the points within the one standard
deviation probability, that is where |z| ≤ 1.) In the GMM
with good performance, Figure 9a, the component Gaussians
are all fairly compact. The other, Figure 9c, shows that one
of the Gaussians encloses a large volume of the [Tt, ωt, pt]
space. With this model, the metric values are all less than 5.

The GMMs like the one shown in Figure 9c are non-discriminative.
The most likely Mahalanobis distances of any point in the
training, anomaly, or post repair data set, is small enough that
no anomalies are detected according to the problem statement
in section 2.3. Figures 9b and 9d show the likeliest Maha-
lanobis distance of the low-oil interval data,with respect to the
clusters of the two models shown in Figure 9a and Figure 9b,
respectively. In a more detailed examination of the results, we
found that the maximum Mahalanobis distance of any point
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in the training data to the large-ellipsoid component of Fig-
ure 9 (or any of the ones with zero detection performance)
was less than 7. Based on this, the rejection criterion used to
reject GMMs with non-discriminative Gaussian components
is for each Gaussian component in the GMM, compute the
Mahalanobis distance between that Gaussian and each point
in the training data. Reject the GMM if the maximum Maha-
lanobis distance for any component is than a threshold. For
this study, the rejection threshold value was 10. This value
must be selected, based on the performance of the trained
GMMs, by comparison of results of several GMMs with rea-
sonable detection horizons with several GMMs with zero or
near-zero detection horizons.

We applied this criterion to 20 candidate GMMs; 7 (35%)
were rejected. We selected the GMM for modeling from the
remaining GMMs by finding the GMM with the highest like-
lihood of the training data. The GMM with the longest detec-
tion horizon (see Figure 8) 2 hours did not have the highest
likelihood. That model could not be selected according to the
rules presented in the problem statement (section 2.3) because
it used data other than the model and the training data.

We tested the need for this rejection filtering by using the al-
gorithm of (Figueiredo & Jain, 2002) for training GMMs. We
found a clear threshold for the rejection criterion after train-
ing 120 different GMMs. We found that GMMs that were
rejected had zero detection performance. Although this al-
ternate means to train GMMs confirmed the need for rejec-
tion filtering, and has several advantages over the native Mat-
lab method especially finding the optimal number of com-
ponents in the GMM we did not use this algorithm for the
work reported here because the GMMs trained with this algo-
rithm did not perform as well as the ones trained by Matlab’s
gmdistribution.fit() method.

3.3. Model 3 – Feed-Forward Neural Network

Two Artificial Neural Network (ANN) models were explored.
The first one, Feed-Forward Neural Network (FFNN) can be
viewed as a neural network analogue of Gridded Regression.
An FFNN was trained to estimate the engine oil pressure,
given the oil temperature and the engine speed. A new un-
known function fNN is trained to express pressure in terms
of the other two variables and unknown parameters – weights
w

p̂ = fNN (T, ω; w) (8)

The metric used was the same as for the GR model: the abso-
lute value of the z-score of the residuals. The hidden neurons
employ sigmoid activation functions because linear activation
functions reduce the neural network to a simple linear equa-
tion

p̂ = w0 + w1T + w2ω (9)

whose performance was considerably worse than that of the
GR model.

3.3.1. FFNN: Parameters and Performance

At first, a two-layer neural network was employed for mod-
eling the functions2, with twenty neurons in the hidden layer,
given by

p̂(T, ω; w) =

σ

 40∑
j=1

wkjσ (wj1T + wj2ω + wj0) + w0

 ,
(10)

where σ() is the logistic sigmoid and w are the weights. This
standard neural network topology, known as the universal
function approximator, with its expressive power, and its re-
lation to Kolmogorov theorem is discussed in (Duda et al.,
2000, Section 6.2.2). However, in our case, significantly bet-
ter performance was achieved after the two-layer topology
2-20-1, was replaced by a three-layer 2-3-3-1 topology with
the same total number of neurons, which is not surprising be-
cause deeper network have better expressive power. The final
topology was selected comparing various candidate topolo-
gies. The number of layers and neuron counts were randomly
selected within narrow ranges. A simple program trained
FFNNs with the selected topology and evaluated the event
horizon. The best model, with the longest event horizon, was
used. Figure 10 shows the topology of a six-neuron FFNN.
This simple network performed strictly as well, or better than,
FFNNs with larger numbers of neurons or additional neuron
layers. The selected topology was simplest in terms of neu-
ron counts, and is expected to have better generalization than
its more complex counterparts

Figure 10. Topology of FFNN – two hidden layers with three
neurons each.

After training on good data, the network showed a 3 hour
detection horizon with no false alarms.

3.4. Model 4 – Replicator Neural Network

The second ANN model, Replicator Neural Network (RNN),
can be considered as neural network analogue of GMM. An
RNN (Hawkins, He, Williams, & Baxter, 2002) has 3 hidden
layers, with sigmoid activation functions in the first and third
2This article employs the notation where the number of layers of a neural
network is equal to the number of adaptive weights, as in (Bishop, 2006).
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layers. The middle hidden layer has one neuron for each in-
put signal, and the activation function is a differentiable step
function that quantizes the input into one of the steps. The
output of the network is the vector [T̂t, ω̂t, p̂t].

We found that the RNN model did not train well with the
original input data; the average length of the residual vector
was dominated by prediction error of ω. This necessitated
scaling the training, anomaly event, and normal data. For the
metric, Hawkins et al. (2002) suggests using the outlier factor,
which is defined as the mean of the square of the Euclidean-
norm of each residual:

OFt =
1

3
((Tt − T̂t)2 + (ωt − ω̂t)

2 + (pt − p̂t)2) (11)

We also investigated an alternative metric: the Mahalanobis
distance of the residuals from the mean of a single Gaus-
sian modeling the residuals from the training interval. The
outlier factor weights all components of the residual equally,
whereas the Mahalanobis distance metric adapts to the statis-
tics of the residual signals.

3.4.1. RNN: Parameters and Performance

An RNN was trained to replicate T, ω, and p. The signal val-
ues were pre-scaled into the range [0.1 0.9]. Mahalanobis dis-
tance metric resulted in a 1.2 hour detection horizon. Hawkins’
(Hawkins et al., 2002) outlier factor metric resulted in zero
anomaly detection.

Guided by an automated exploration of the parameter space,
we selected a RNN with 10 neurons in the first and last hidden
layers, and 3 neurons in the middle hidden layer, correspond-
ing to our three signals in this study. The activation function
of the middle hidden layer has 32 steps.

Mahalanobis distance metric resulted in a 1.2 hour detection
horizon.

3.5. Model 5 – Boosted Regression Tree

The BRT (Elith, Leathwick, & Hastie, 2008) model estimates
p̂t based upon (ωt, Tt). From the modeling perspective, it
is comparable to the GR model because both use speed and
temperature to predict the pressure, then calculate the abso-
lute value of the z-score given by Eq. (7) as the metric.

3.5.1. BRT: Parameter and Performance

A BRT, with 200 sub-trees, was trained on data with range
filtering according to schema 1. The detection horizon was
2.9 hours, as shown in Figure 11. We trained models with
10, 20, 50, 100, and 200 sub-trees, and found that the perfor-
mance for the 10 sub-tree BRT was much lower (1.2 hours),
while the BRTs we investigated with 20 – 200 sub-trees all
produced detection horizons within 0.1 hours of each other.

In another variation on this experiment, we used data using

schema 2 for the range filter (restricted oil temperature) and
found that performance improved substantially: for the 20,
50, 100 and 200 sub-tree BRTs, the detection horizon was 3.0
hours, and the detection horizon of the 10 sub-tree BRT was
only slightly less - 2.8 hours.

4. RESULTS COMPARISON

Figure 11 and Table 3 summarize the results of this investi-
gation. Figure 11 offers two comparisons based on two de-
tection horizons: one measures the time between the first ob-
served anomaly (the day before the final failure) and the fi-
nal failure, and the other measures the time between the first
detection of anomaly during the final mission and the final
failure.

The performances of the detectors according to the first, accross-
the-mission comparison are nearly indistinguishable, ranging
between 18.8 and 19 hours, which amounts to just over one
percent (1.05%).

The second, within-the-mission comparison, however, sepa-
rates the performances of different detectors. According to
this comparison, the GR and BRT methods produced the best
overall performance. The detection horizon during the last
mission, 2.9 hours, is more than twice as long as the RNN,
and nearly twice as long as the GMMs. The FFNN perfor-
mance, 2.7 hours, was nearly as good. Note that all detectors
considerably outperformed thefa existing DTCs, which ap-
peared only 0.1 hour before the failure.

Table 3 lists detection horizons within the last mission with
the times required to train the associated detectors. There is
little correlation between training time and detection perfor-
mance; the models with the best detection performance take
the longest and shortest times to train. FFNN took by far the
most time to train, but it also resulted in the most compact
model, which is has an efficient execution and is less prone to
overfitting.

Table 3. Performance of algorithms.
Method Details Detection Training

Horizon Time
(hours) (s)

GMM −20 < T < 120 training;
no GMM rejection filtering

0 45

RNN 10+3+10 topology, 8 steps 1.1 670
GMM −20 < T < 120 training;

GMM rejection filtering
1.6 45

GMM 90 < T < 120 training;
GMM rejection filtering

1.6 45

FFNN 3+3 topology 2.7 1780
BRT −20 < T < 120 2.9 40
GR −20 < T < 120 2.9 1

5. DISCUSSION AND CONCLUSIONS

This paper proposes an approach for incremental introduction
of PHM capabilities by development of anomaly detection,
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Figure 11. Anomaly detection performance of all models.
Each graph shows the on/off state of the anomaly detection
using a comparator on the averaged metric. In addition, the
top graph shows the diagnostic trouble codes from the vehi-
cle’s electronic control unit. For GR see section 3.1.1; for
GMM(7)-both schema-see section 3.2.1; for FFNN see sec-
tion 3.3.1; for RNN see section 3.4.1, and for BRT see section
3.5.1.

even in the presence of a single known failure. We evaluated
detectors by disallowing any false alarms during the period
of normal operation and measuring detection horizon. The
conservative requirement of zero-false-alarm tolerance aimed
to compensate for potential overfit problems due to the lack
of test and verification data. Rather than waiting to observe
a statistically significant set of failures, we propose to start
learning from the very first failure instance and carefully con-
sider newly triggered anomalies by verifying the presence of
real (incipient) failures. Any new undetected failures would
also have to be incorporated in the models. All observed fail-
ures and their modes would be documented to allow for fu-
ture classification and diagnostics, and any observed failure
progression, with known failure modes, would be used for
future prognostics development. In the context of this vision
of PHM, we described its first layer – a tentative anomaly de-
tector that consisted of a pre-filtering, data-driven model, a
filter and a threshold comparator. The most space is given to
comparison of five candidate data-driven models.

We found that residual based models (GRs, FFNNs, and BRTs)
outperformed distance based models (GMMs and RNNs) in
this application. The better performance of residual mod-
els is probably due to small engineering knowledge that was

captured in them by expressing engine oil pressure in terms
of engine speed and engine oil temperature. The distance-
based models met the nearly zero expert knowledge goal,
at least with respect to expert engineering knowledge of the
vehicle, but required skills and effort in the machine learn-
ing area to select useful models and metrics. In particular,
such knowledge and effort was necessary to identify and cor-
rect the root cause of the inconsistent GMMs’ performance.
We reported that locally-optimal GMMs often failed to detect
anomalies. To overcome the problem we proposed a heuristic
filter that rejects candidate GMMs with non-discriminative
components and controls the volume of the largest mixture
component.

The old technique of gridded residual, often neglected in fa-
vor of more recent methods, not only achieved the best detec-
tion horizon, but also trained the fastest. BRT shared the first
prize with GR with respect to detection horizon and trained
reasonably fast (still not nearly as fast as GR), but its model
complexity was much higher. FFNN, by contrast, required
by far the most amount of time for training, but achieved a
very good result with a the most compact model, which is
less likely to overfit. All models performed markedly better
than the tradition, vehicle built-in DTCs.

This study employed a very simple anomaly detector – a filter
with a threshold comparator. As more failures are observed,
more sophisticated inference engine should be considered, es-
pecially those that combine multiple learners, such as a model
ensemble, which may have a built-in bias against potentially
overfitted models.

While this work investigated models for anomaly detection,
the results suggest further work to create diagnostic and prog-
nostic algorithms based on these techniques. Implementation
of fleet-wide data collection and analysis would allow a statis-
tically significant set of known failures to be created. This in
turn would allow estimation of a Receiver Operating Charac-
teristic curve and enable known PHM engineering techniques
that are based on such curves to be applied.
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NOMENCLATURE

Symbol Definition
ω Engine speed in radian/s (1 radian/s ≈ 9.55

RPM)
ωi Sequence of engine speeds in ith speed group
∆ω Width of each speed group
T Engine oil temperature in ◦K (◦K ≈ ◦C+273)
Tj Sequence of engine oil temperatures in jth

temperature group
∆T Width of each temperature group
p Engine oil pressure in kilo-Pascals (kPa)
pij Sequence of pressures in bin of (ωi, Tj)
pkij kth value of pij
pij Mean of pressures in bin of (ωi, Tj)
p̂ Estimate of engine oil pressure
Si The ith signal
Dtraining Sequence of observed signals used for training
Devent Sequence of observed signals in known

event(s)
Dnormal Sequence of observed signals during normal

operation
M A model for a set of signals, based on data

from a training interval
m A real-number sequence resulting from evalu-

ating a model over data from a given interval
Θ Anomaly detection threshold
Mij The number of values in pij
ε Residual, or prediction error
z z-score of prediction error ε
σp standard deviation of sequence of prediction

errors
N(µ, σ2) Univariate normal (Gaussian) distribution for

mean µ and variance σ2

N(µ, Σ) Multivariate normal (Gaussian) distribution
for mean and covariance µ, Σ

πk Weight of distribution Nk in Gaussian Mix-
ture Model

P Sequence of maximum weighted probabilities
signals from Gaussian Mixture Model

prk Probability of (T, ω, p) for kth distribution in
Gaussian Mixture Model

l Posterior likelihood of signal for given model
w Weights in Neural Network
σ(x) Logistic sigmoid function of x
OFt Outlier Factor for signal at time t
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