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ABSTRACT

This paper presents a study on the use of Dynamical Linear
Models for anomaly detection and condition monitoring of a
marine engine system. Various sensors are installed at differ-
ent places within the engine system and records essential pa-
rameters such as power output from the engine, engine speed,
bearing temperatures and various other temperatures, speeds
and pressures for selected engine components. The idea is
to utilize the information in these sensor signals in order to
monitor the condition of the engine. Such a condition moni-
toring system should include means of fault detection, diag-
nosis and prognostics, where robust anomaly detection is a
prerequisite for reliable management of the system. Dynam-
ical Linear Models (DLM) constitute a flexible framework
for modelling of sensor signals, where the sensor signals are
modelled conditional on some latent states, and the model
provides forecasts of the signals that can be compared to new
sensor readings. Statistical sequential model testing will then
be performed on the forecast errors and model breakdown can
be an indication of deviation from normal conditions and pos-
sible impending failures of the engine system. This will then
call for further diagnostics and prognostics tasks to interpret
the nature of the deviations. The Dynamical Linear Model
framework can accommodate a range of candidate models.
However, very complicated models in high dimensions may
be computationally expensive to estimate and apply, so var-
ious pre-processing techniques are investigated in this paper
to improve model performance, including simple regression
models, cluster analysis and principal component transforma-
tion.
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unrestricted use, distribution, and reproduction in any medium, provided the
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1. INTRODUCTION

Shipping accidents can have major consequences in terms
of lives lost, environmental pollution and economic losses,
and the safety and reliability of ships and ship systems is
a main concern within the maritime industries. There exist
international regulations for controlling the risk of maritime
transport. For example, ships operating in international wa-
ters are subject to a number of IMO regulations such as SO-
LAS (Safety of Life At Sea (IMO, 2014b)) and the ISM Code
(International Safety Management Code (IMO, 2014a)), and
there are additional requirements from flag and port states.
Moreover, ships are required to undergo regular surveys and
inspections in a classification regime to ensure that the tech-
nical systems onboard the ships are maintained and operated
in a safe and reliable manner (DNV GL, 2017a, 2017b).

Notwithstanding a strong and continued focus on safety and
reliability of shipping, maritime accidents continue to occur
and recent studies have indicated that the frequency of occur-
rence of major maritime accidents may even have increased
in the last decade (Eleftheria, Papanikolaou, & Voulgarellis,
2016). Even though many of the accidents are ascribed to
human errors (Psarros, 2015), the reliability of the ship and
its various technical subsystems greatly influence the overall
safety and risk of shipping. Hence, it is of paramount impor-
tance for the maritime industries to implement good mainte-
nance strategies and to continuously monitor the condition of
the ship and different ship systems and components.

Ship machinery systems provide safety critical functions to
the ship related to propulsion and manoeuvrability as well as
electrical power production for other ship systems. Thus, any
failure in the ship machinery system may potentially be very
critical to the safety of the ship. Loss of propulsion and ma-
noeuvrability may lead to drift grounding and collision acci-
dents with potential loss of stability and sinking of the vessel

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

as ultimate consequences (Vanem, Rusås, Skjong, & Olufsen,
2007). Loss of electric power production may lead to black-
out and loss of other safety-critical functions from other ship
systems (Mindykowski & Tarasiuk, 2015) and failures in ship
machinery system may cause engine room fires which is one
of the most frequent category of fire incidents for merchant
ships (Vanem & Skjong, 2004). The condition and perfor-
mance of the machinery system is also important for the over-
all fuel efficiency of the vessel and may have a large impact
on the economics and environmental footprint of ship oper-
ations (Vanem, Brandsæter, & Gramstad, 2016). Hence, the
condition of the ship machinery system is critical to the safety
and economics of the vessel and needs to be carefully moni-
tored.

The shipping industry is currently experiencing a shift to-
wards digital solutions for monitoring of equipment and sys-
tems, and more and more sensors are being installed on com-
ponents and systems onboard ships (Niculita, Nwora, & Skaf,
2017; Zymaris, Alnes, Knutsen, & Kakalis, 2016; DNV GL,
2015). These provide real-time information about the perfor-
mance and condition of the monitored systems and may be
utilized for fault detection, diagnosis and prognosis. A criti-
cal first step in such a setup is to automatically detect devia-
tions from normal operational conditions, which may indicate
failure of the system or even an impending failure that has not
yet occured. It is assumed that data-driven, statistical meth-
ods can be exploited in order to detect anomalies in the, often
high-dimensional, sensor data streams as early as possible.

This paper presents an application of one such statistical ap-
proach for anomaly detection, based on Dynamical Linear
Models (DLMs) for describing and predicting the sensor time
series. One of the advantages of DLM compared to several
other methods is that it implicitly takes dynamical behaviour
and dependence in time into account. Multivariate sensor data
for a main generator engine onboard a ship in actual opera-
tions will be used for anomaly detection and condition mon-
itoring. These data contains simultaneous measurements of
23 parameters related to the main generator engine, which is
one out of four main generator engines onboard the ship. It
is noted that these data does not contain any know failures or
faults of the system.

A previous application of DLM for condition monitoring of
ship machinery systems is presented in (Vanem & Storvik,
2016), but then on a smaller, lower-dimensional dataset for
an overall ship system. In this paper, a more comprehen-
sive dataset has been used with more detailed sensor mea-
surements of specific components of a marine engine subsys-
tem. The autoassociative kernel regression method (AAKR)
(Hines & Garvey, 2006; Baraldi, Di Maio, Pappaglione, Zio,
& Seraoui, 2012) has recently been used with a similar aim,
as presented in (Brandsæter, Manno, Vanem, & Glad, 2016).

2. METHODOLOGY

2.1. Dynamical Linear Models

A thorough introduction to the theory and application of dy-
namical linear models is given in (West & Harrison, 1997),
and only a brief introduction will be given below. Letting Y t

denote the r-dimensional vector of observed signals at time
t, and θt be the corresponding m-dimensional state-vector of
an unobserved, latent process, the DLM model equations are
on the following form:

Y t = F
′

tθt + νt, νt ∼ N(0,Vt)

θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt).
(1)

The first line of eq. (1) are often referred to as the observa-
tion equation and the second line is called the evolution, state
or system equation. Such a model is fully specified by the
quadruple {F t,Gt,V t,W t}, as follows

• F t is an (m × r) matrix, sometimes referred to as the
regression matrix

• Gt is an (m ×m) matrix, sometimes referred to as the
state evolution matrix

• V t is an (r × r) variance matrix for the observational
variances

• W t is an (m×m) variance matrix for the evolution vari-
ances

The error sequences νt and ωt are assumed to be indepen-
dent and mutually independent, and will be further assumed
to be multivariate normally distributed with zero mean. The
model further assumes a conditional independence structure
so that, conditioned on the state-vector θt, the observations
at time t, Yt are independent of the history of observations
Dt−1 = {yt−1,yt−2, . . . ,y1, D0} = {yt−1, Dt−2}. More-
over, given the whole history until time t, all model informa-
tion of the future is contained in θt|Dt. Such a conditional
independence structure is illustrated in figure 1.

Figure 1. The conditional independence structure of the dy-
namical linear models

In order to fully specify such a model, one also needs an ini-
tial prior for the state vector at time t = 0, i.e. assuming a
multivariate normal distribution with a mean vector m0 and
an initial variance matrix C0:

(θ0|D0) ∼ N(m0,C0). (2)
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2.1.1. Model Updating and Forecasting

Having established such a dynamical linear model, one may
obtain, at each time t, posterior distributions for the state vec-
tors and forecast distributions for future observations within a
Bayesian setting, i.e. by applying Bayes’ theorem, as follows.

a) Posterior at time t− 1:
For some mean vectormt−1 and variance matrix Ct−1,

(θt−1|Dt−1) ∼ N (mt−1,Ct−1) . (3)

b) Prior at time t:

(θt|Dt−1) ∼ N(at,Rt), (4)

where at = Gtmt−1 andRt = GtCt−1G
′

t +W t.
c) One-step ahead forecast for time t:

(Y t|Dt−1) ∼ N(f t,Qt), (5)

where f t = F
′

tat andQt = F
′

tRtF t + V t.
d) Posterior at time t:

(θt|Dt) ∼ N (mt,Ct) (6)

with mt = at + Atet and Ct = Rt − AtQtA
′

t, and
whereAt = RtF tQ

−1
t and et = Y t − f t

The vector et is the one-step ahead forecast errors and the ma-
trix At is a matrix of adaptive coefficients. Looking further
ahead from time t, for k ≥ 0, the k-step ahead forecast distri-
butions for θt+k and Y t+k given current information Dt are
given by, for the state and forecast distributions, respectively:

(θt+k|Dt) ∼ N (at(k),Rt(k)) (7)
(Y t+k|Dt) ∼ N (f t(k),Qt(k)) (8)

with the following moments defined recursively, from starting
values at(0) = mt andRt(0) = Ct:

f t(k) = F
′

tat(k)

where

at(k) = Gt+kat(k − 1)

and

Qt(k) = F
′

tRt(k)F t + V t+k

where

Rt(k) = Gt+kRt(k − 1)G
′

t+k +W t+k.

There are many versions of the dynamical linear model, and
in general the model parameters are allowed to vary in time.
In these investigations, however, a constant DLM is assumed,
i.e. a model where the model parameters are constant in time

{F t,Gt,V t,W t} = {F ,G,V ,W }. Moreover, the param-
eters are estimated from a training data set and consequently
assumed as known.

2.1.2. Model Intervention

The updating and forecast distributions outlined above as-
sumes that the model does not receive any external infor-
mation, i.e. that the information available at each time t is
simply Dt = {Y t, Dt−1}. However, the modelling frame-
work allows for intervention and incorporation of external
information at any time t. This information could be based
on other external observations, control of some of the pa-
rameters, knowledge about missing data or observations that
should be ignored or could be a subjective intervention based
on expert judgement. Such interventions can be included in
the model at any time, and letting It denote the intervention
at time t, it can be represented by an update of the available
information prior to observing Y t, i.e. Dt−1 → {It, Dt−1}.
For more details on how to include such effects in the models,
reference is made to (West & Harrison, 1997).

2.1.3. Model Monitoring

One important feature of any statistical model used for con-
dition monitoring is the ability to monitor the model and to
detect, as early as possible, any departure from the model.
With a DLM this can be done by Bayes’ factors, assuming
a null model M0 and an alternative model M1 for the signal
time series. Both models provide a predictive distribution for
Y t conditioned on the available information Dt−1, i.e. for
i = 0, 1

pi(Y t|Dt−1) = p(Y t|Dt−1,Mi). (9)

The Bayes’ factor for M0 versus M1 based on the observed
value of Y t can then be defined as

Ht =
p0(Y t|Dt−1)

p1(Y t|Dt−1)
, (10)

where pi refers to the probability of observing Y t condi-
tioned on the model i, i = 0, 1 according to the predictive
densities at time t; pi(Y t|Dt−1) = p(Y t|Dt−1,Mi). For
k consecutive observations, Y t,Y t−1, . . . ,Y t−k+1, the cu-
mulative Bayes’ factor for M0 versus M1 can be defined as

Ht(k) =

t∏
r=t−k+1

Hr =
p0(Y t,Y t−1, . . . ,Y t−k+1|Dt−k)

p1(Y t,Y t−1, . . . ,Y t−k+1|Dt−k)
.

(11)

These Bayes’ factors measure the predictive performances
of model M0 relative to model M1 and evidence for or
against the null model M0 accumulates multiplicatively as
data are observed and processed; for each t > 1, Ht(k) =
HtHt−1(k − 1). On the log-scale the evidence is additive
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and a value of 0 (1 on the original scale) indicate no pref-
erence for either model but a positive value of the Bayes’
factor indicate evidence in favour of model M0. In practice,
one may monitor the forecast errors rather than the forecasts
themselves. This use of Bayes’ factors is similar to the se-
quential probability ratio test (SPRT) often applied in process
control (Wald, 1945), and which will be applied in the study
presented herein.

2.2. Sequential Testing

The sequential probability ratio test is based on the SPRT in-
dex and is similar to the Bayes’ factor. The index is defined
as the natural logarithm of the likelihood ratio for M1 versus
M0 (the reciprocal of eq. 10). The SPRT is additive and is up-
dated as subsequent observations arrive. To calculated these
indices, there is a need to specify the alternative modelM1, in
order to know the predictive density p1(Y t|Dt−1). However,
by monitoring the forecast errors this is greatly simplified.

According to the model assumptions, the one-step forecast
errors, et = Y t − f t. should be normally distributed with
zero mean and variance matrix Qt = F

′

tRtF t + V t (see
eqs. 3-6). Accordingly, the standardized one-step forecast er-
rors, ẽt = et/Q

1/2
t , should be uncorrelated and distributed

according to the standard normal distribution. Hence, rather
than specifying an alternative model for Y t, one may spec-
ify an alternative model for the standardized forecast errors.
For a sequence of errors, e1, . . . , en, the SPRT index can be
calculated as

ln = lnLn = ln

n∏
t=1

p1(et|Dt−1)

p0(et|Dt−1)
. (12)

The test builds evidence for or against the null model and as
soon as enough evidence is obtained to make a decision (ac-
cept or reject the alternative model), the SPRT index is reset
to zero. Two threshold values, A and B need to be speci-
fied. If the SPRT index reaches the upper threshold an alarm
is flagged for possible model breakdown. If the lower thresh-
old is reached, the null model is accepted as adequate. In ei-
ther case, the SPRT index is reset to zero and the monitoring
continues until any of the thresholds are reached again. The
limits can be related to the acceptable probabilities of false
alarms (α) and missed alarms (β) as follows

A = ln

(
β

1− α

)
and B = ln

(
1− β
α

)
. (13)

2.2.1. SPRT for Mean Level Change

Under the null model,M0, the standardized forecast errors, ẽt
are uncorrelated standard normally distributed variables and
various alternative models can easily be specified, e.g. as a
change in level (mean), in spread (variance) or in covariance

between the errors. In such situations the predictive densi-
ties for the errors become p0(ẽt|Dt−1,M0) ∼ N(0, I) and
p1(ẽt|Dt−1,M1) ∼ N(µ,Σ) for some values µi and Σij .
Having established one or more alternative models, sequen-
tial probability ratio tests can be performed by monitoring the
desired SPRT indices.

In this study, alternative hypotheses of a mean level change
will be applied and the SPRT index for the standardized fore-
cast error for each sensor signal, i, will be monitored. Two
tests will be performed, i.e. for a positive or negative level
change, ±µi for each of the signals. The alternative levels µi
must be specified and in this study these are assumed to be
the same value for each signal, with µ = ±2. Moreover, un-
der both the null and the alternative hypotheses the errors are
assumed uncorrelated across the signals. Hence, the SPRT
indices for the two tests take the following form (assuming
now unit variance for the standardized forecast errors)

l1,n = µ

n∑
i=1

(
ẽi −

µ

2

)
l2,n = µ

n∑
i=1

(
−ẽi −

µ

2

)
.

(14)

2.3. Model selection

The Akaike Information Criterion (AIC) (Akaike, 1974) is a
measure based on the likelihood that also penalizes excessive
number of parameters. The AIC is on the form of eq. 15,
where L is the likelihood of the model and k is the number of
free parameters in the model. The preferred model according
to this criterion is the one with the lowest AIC score. The AIC
is calculated for all the candidate models for both the training
data and the test data in this study. Alternatively, for the test
data, the Root Mean Square Error (RMSE) is calculated based
on the one-step ahead forecast errors from the models. The
RMSE combines the RMSE for each sensor signal without
any weighting, and is calculated as shown in eq. 16, where T
is the number of time-points in the test data, r is the number of
sensor signals and ŷi,t and yi,t are the predicted and observed
value of sensor signal i at time t, respectively.

AIC = 2k − 2 ln(L) (15)

RMSE =

√∑T
t=1

∑r
i=1 (ŷi,t − yi,t)2

rT
(16)

It should be noted that these metrics are not entirely appro-
priate in this case, since the DLMs have not been fitted to the
same data. Since different pre-processing of the raw data have
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been performed prior to fitting the different models, compar-
ing the models by terms of likelihood-based metrics or RMSE
may not be fair. For example, the RMSE measures the square
distance between the forecasted principal components of the
residuals and not the forecast errors of the actual raw signals.
Notwithstanding, the AIC and the RMSE for each model are
computed, and they give an indication of how the models per-
form relatively to the others. However, model selection is per-
haps best carried out by looking at the performance in terms
of ratio of alarms.

3. SENSOR DATA FROM A MARINE ENGINE SYSTEM

The dataset that is explored in this study contains several sen-
sor signals that can be related to the main bearing condition of
one of four separate diesel engines on a ship. It is noted that
the collected data do not contain any known faults or failures
of the system, and the data are not compared to maintenance
logs of the system. The list of signals are included in table
1, and engine 1 contains 24 sensor signals. By inspecting the
data, it is observed that the signals for MG1TE702 contain
only zero-values, presumably due to malfunctioning sensor
or loss of connectivity and these signals are excluded from
the subsequent analysis.

Table 1. Sensor signals in the dataset

MAIN GENERATOR ENGINE 1

MG019 MGE1 ENGINE SPEED [rpm]
MG1PT201 MGE1 LO PRESS ENGINE INLET [bar]
MG1PT401 MGE1 HT WATER JACKET INLET PRESS [bar]
MG1PT601 MGE1 CHARGE AIR PRESS AT ENGINE INLET [bar]
MG1SE518 MG1 TC A SPEED [rpm]
MG1SE528 MG1 TC B SPEED [rpm]
MG1TE201 MGE1 LO TEMP ENGINE INLET [C]
MG1TE272 MGE1 LO TEMP TC OUTLET A [C]
MG1TE282 MGE1 LO TEMP TC OUTLET B [C]
MG1TE511 MGE1 EXHAUST GAS TEMP TC A INLET [C]
MG1TE517 MGE1 EXHAUST GAS TEMP TC A OUTLET [C]
MG1TE521 MGE1 EXHAUST GAS TEMP TC B INLET [C]
MG1TE527 MGE1 EXHAUST GAS TEMP TC B OUTLET [C]
MG1TE600 MGE1 AIR TEMP TC INLET [C]
MG1TE601 MGE1 CHARGE AIR TEMP AT ENGINE INLET [C]
MG1TE700 MAIN BEARING NO 0 TEMP MGE1 [C]
MG1TE701 MAIN BEARING NO 1 TEMP MGE1 [C]
MG1TE702 MAIN BEARING NO 2 TEMP MGE1 [C]
MG1TE703 MAIN BEARING NO 3 TEMP MGE1 [C]
MG1TE704 MAIN BEARING NO 4 TEMP MGE1 [C]
MG1TE705 MAIN BEARING NO 5 TEMP MGE1 [C]
MG1TE706 MAIN BEARING NO 6 TEMP MGE1 [C]
MG1TE707 MAIN BEARING NO 7 TEMP MGE1 [C]
PM100.07 MG1 POWER [kW]

The sensor signals covers a period of about 10 months start-
ing from December 2014 with a sampling frequency of one
minute. It is observed that many of the signals are highly cor-
related. For example, the various temperature measurements
for the main bearings are all very strongly correlated, see Fig-
ure 2. A couple of interesting features that can be observed
from this plot is a) that all the temperature sensors seems to
fall out at a certain point (all drops to zero) and b) that the
sensor for main bearing No 2 seems to stop working and re-

ports the same value over a period of time. Traceplot of the
engine speed is also shown in the figure.

The time series data are divided into a training dataset (75%)
and a test dataset (25%), containing 249858 and 83286 sam-
ples, respectively. Correlation plots of the data are shown in
Figure 3. These illustrate the the overall correlation struc-
ture remains relatively unchanged across the subsets of data,
perhaps with the exception of one signal that goes from be-
ing weakly negatively correlated in the training data to being
more strongly negatively correlated in the test data.

Density plots of the sensor signals reveal another interesting
feature of the data. There seem to be two dominating modes
of operation, corresponding to ”on” and ”off”. This is most
evident in the density plot of the engine speed and is shown
in Figure 4, where the two peaks of the density is clearly dis-
tinguished. Note that even in ”off” mode, the engine speed
is never exactly zero, apart from a few times when the sensor
signal is presumably lost. These modes are clearly reflected
in most of the other signals as well, and Figure 4 includes the
densities of the various pressure signals and for some of the
temperature measurements. The exception is the air temper-
atures at the inlets that are not very dependent on the oper-
ational mode. The trace plots in Figure 2 demonstrates that
the different levels of the main bearing temperatures coincide
with the main levels of the engine speed.

Separating the data into two subsets depending on whether
the engine speed is above or below 100 rpm, one can easily
see that the characteristics are different for the two subsets
of data for most of the signals. In Figure 5, the densities for
such conditional data are shown for each signals; the black
density curves correspond to operational mode ”on” (i.e. en-
gine speed ≥ 100) and the red density curves correspond to
operational mode ”off”. It is observed that there are distinct
differences between most of the signals in different modes.

3.1. Data Preprocessing

Dynamical Linear Models will be applied to the raw sensor
data, but will also be applied to different versions of pre-
processed data. In particular, two alternative regression mod-
els will be applied in order to try to account for the main
modes of the data. Then, DLM will be applied on these resid-
uals. Moreover, principal component analysis is applied for
dimension reduction.

3.1.1. Regression on Engine Speed

It is observed that the data essentially falls in two groups de-
pending on the value of engine speed, see Figures 2, 4 and 5.
This feature will be difficult for a statistical model to predict,
and can be construed to coincide with decisions made on the
bridge. Rather than trying to model these shifts in the data,
for example by some conditional model or a Markov chain
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Figure 2. Example of traceplots illustrating strong correlation between some of the signals (engine 1); the various temperature
readings for main bearing temperatures (left) and the engine speed (right)

model, the engine speed will be used as covariate in linear re-
gression models for the other sensor signals. Then, dynamical
linear models will be applied to the residuals of this regres-
sion model. Presumably, the residuals will not contain the
same degree of jumpiness and can be better modelled with
a dynamical linear model. Moreover, the strong correlation
between engine speed and the other sensor signals will mean
that all the other signals will also be strongly correlated, and
it is believed that this correlation will be reduced when the
effect of engine speed is removed. The residuals of such a
regression model on the value of engine speed, for each of
the main bearing temperatures, are shown in Figure 6. Com-
pared to the trace plots in Figure 2, it is seen that the resid-
uals vary around the approximate same level for both opera-
tional modes of the engine, and that the correlation between
the signals remains high. However, there are some spikes cor-
responding to the transient conditions between the two main
operating modes. A correlation plot of the residuals is also
shown in Figure 6, and this can be compared to the correla-
tion plots in Figure 3. Note that for engine speed (MG019),
there are no residuals, so the actual values have been used for
this sensor in the correlation plot.

Regression models with different lags of the engine speed
were also tried out, in order to better captures transient be-
haviour, but adding the lags did not improve the model note-
worthy. Another model, with categorical variables corre-
sponding to e.g. engine speed larger or smaller than 100 rpm
was also tried out, but did not change the results notably ei-
ther. Hence, a simple linear regression model with an inter-
cept and the value of engine speed was fitted to all the other

sensor signals, and the further modelling was performed on
the residuals.

3.1.2. Principal Components of Regression Residuals

In order to reduce dimensions one more pre-processing step
will be performed before fitting dynamical linear models.
That is, a principal component analysis is applied to extract
the principal components of the residuals. For the data from
main engine 1, it is found that 99% of the variance in the
residual signals can be explained by the first 9 principal com-
ponents, as shown in Figure 7. The horizontal green line in-
dicates a cumulative proportion of variance of 0.99, which
corresponds to the first 9 principal components (the first 9
PCs explain 99.246 of the total variance). Hence, the first
9 principal components of the residuals will be used to fit a
dynamical linear model for the data. This corresponds to a
significant dimension reduction without significant loss of in-
formation. Trace plots of the transformed data (residuals of
regression model on engine speed) along the first 9 principal
components are shown to the right in Figure 7. It can be seen
that there are still significant spikes in the data, presumably
associated with the transient states between main operational
modes of the engine.

Another effect of the principal component decomposition
is that the principal components will be uncorrelated, and
hence the transformed data will have zero linear correlation.
Even though zero correlation does not necessarily mean that
the signals are independent, one may assume that the un-
correlated, transformed data can be modelled independently
and that the effect of any remaining dependence can be ne-
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Figure 3. Correlation plots for the training data (left) and the test data (right) for main generator engine 1

Figure 4. Density plots for some of the sensor signals for
main generator engine 1; top: engine speed (left) and various
pressures (right), bottom: Exhaust gas temperatures (left) and
main bearing temperatures (right)

glected. Hence, the transformed sensor signals will be mod-
elled independently, with a dynamical linear model for each
transformed signal independently in both the evolution- and
observation-level. This significantly reduces the complexity
of the dynamical linear model.

Figure 5. Density plots for the various signals from main gen-
erator engine 1 in ”on” and ”off” modes, respectively; Black
curves correspond to ”on” and red curves correspond to ”off”,
where the mode is determined by the engine speed.

3.1.3. Regression based on Cluster Analysis

Even though the data seems to correspond to two main oper-
ational modes of the engine, it may be investigated whether
this is reasonable by carrying out a cluster analysis on the
data. A simple cluster analysis using k-means clustering for
different values of k suggests that there might in fact be 3
or 4 clusters in the data, but also indicates that much of the
within-clusters total sum of squares are significantly reduced
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Figure 6. Traceplots of residuals of the main bearing temper-
atures after being regressed on engine speed (left) and corre-
lation plot of the residuals (right)

by k = 2. A plot of the total within-cluster sum of squares as
a function of k in the k-means cluster algorithm is shown in
Figure 8.

Interestingly, for k = 2, not all data points with high engine
speed are assigned to the same cluster, and for k = 3 and
k = 4, there will be 2 and 3, respectively, clusters with very
similar engine speed values, around 500 rpm. Possibly, this
can be due to vector-autocorrelation in the data, i.e. due to in-
ertia in the systems causing a delayed effect of the turning on
or off of the engine on the other sensor signals. In order to ac-
count for this, an extended regression model on the assigned
cluster will be fitted to the data, and anomaly detection will
be performed on the residuals as above. Assuming 4 clusters,
and letting the first cluster correspond to the reference level,
the regression model becomes, for each signal independently,

yi = α+ β1C2,i + β2C3,i + β3C4,i + εi, (17)

where C2,i, C3,i, C4,i are dummy variables taking values 0
or 1, respectively, depending on whether observation i be-
longs to cluster 2, 3, or 4 or not. Observations assigned to
cluster 1 will have all dummy variables equal to 0, which is
the reference level. The correlation plot of the residuals from
this regression model is shown in Figure 9 and trace plots of
the residual engine speed and main bearing temperatures are
shown in Figure 10.

Principal component analysis of the residuals are performed,
and it is found that more than 99 % of the total variance in the
data is explained by the first 11 principal components. Hence,
DLM models will be fitted to the residuals projected onto the
11 first principal components, where these components are
uncorrelated and modelled independently.

4. APPLICATION OF DLM FOR ANOMALY DETECTION
ON A MARINE ENGINE SYSTEM

Various dynamical linear models are fitted to the raw data as
well as the different datasets obtained by different preprocess-
ing of the raw data. The results are outlined below.

4.1. DLM on the Raw Sensor Signals

Different dynamical linear models were applied to the ini-
tial sensor data for main engine 1. However, only the triv-
ial model where the 23 sensor signals are modelled indepen-
dently with a full-dimensional state vector is somewhat suc-
cessful. Other models, where different state vectors selected
based on e.g. the correlation structure in the data, by assum-
ing 7 latent states representing each main bearing or assuming
one latent state failed to succeed due to lack of convergence of
the maximum likelihood optimiser. The number of model pa-
rameters in each of these model alternatives were between 30
and 50, and it is obviously a challenging optimization prob-
lem to find the maximum likelihood estimates of such high-
dimensional likelihoods. The model that was successfully fit-
ted to the data, with full-dimensional state vector, contained
46 parameters associated with the observational and system
variances for each signal.

This model was fitted to the training data and subsequently
applied to the test data. Some examples of the signals to-
gether with the one-step predictions as well as the filtered and
predicted hidden states are shown in Figure 11.

4.2. DLM on Principal Components of Residuals from
Regression on Engine Speed

The principal component decomposition of the residuals from
regression models yields principal components that are un-
correlated, which simplifies the modelling with dynamical
linear models. It means that the regression and state evo-
lution matrices can be modelled as unit diagonals and the
two variance matrices will be diagonal with 9 free parameters
each. The estimated model parameters, as estimated from fit-
ting such a model to the test data, are presented in Table 2,
where σ2

ν,i denotes the ith diagonal element in the estimated
V -matrix and σ2

ω,i are the diagonal elements of theW -matrix.

Having estimated the model on the training data, it may be ap-
plied to the test data in order to derive filtering and smoothing
distributions as well as forecast distributions. The expected
values of the 1-step ahead forecast distributions are shown
in Figure 12 together with the actual signals. It can be seen
that the model performs quite well in predicting the principal
components one step ahead. However, some problems can be
observed for e.g. principal component # 7.

The k-step ahead forecasts for the principal components of
the residuals from the regression model on engine speed are
shown in Figure 13 for k = 100, starting from the last obser-
vation in the test data. Also the last 250 observations of the
test data are included in the plot. The forecasts are shown
as the mean forecast and the 95% confidence interval for 100
future observations. It is observed that the confidence inter-
vals grow wider further into the future, as expected, and that
the confidence intervals seems to correctly capture at least the
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Figure 7. Results of a Principal Component Analysis on the residuals; Variance explained by each principal component and
the cumulative proportion of variance by the first principal components (left). Transformed data along the first 9 principal
components (right).

Table 2. Parameter estimates for the model of the principle components of residuals from a regression model on engine speed

σ2
ν,1 σ2

ν,2 σ2
ν,3 σ2

ν,4 σ2
ν,5 σ2

ν,6 σ2
ν,7 σ2

ν,8 σ2
ν,9

1.62× 10−7 0.00369 0.00823 0.0394 0.00513 0.00778 0.0438 0.00164 0.00189

σ2
ω,1 σ2

ω,2 σ2
ω,3 σ2

ω,4 σ2
ω,5 σ2

ω,6 σ2
ω,7 σ2

ω,8 σ2
ω,9

0.0787 0.0165 0.0136 0.00954 0.00327 0.00132 0.00287 0.00330 0.000415

range of values in the preceding 250 measurements. For prin-
cipal component # 7, which the model had some difficulties
in predicting, it is observed that there are a relatively wider
confidence interval also for the 1-step ahead forecasts.

4.3. DLM on Principal Components of Residuals from
Regression on Cluster Membership

Residuals from another regression model on cluster member-
ship were also used for anomaly detection with DLMs. In
this case, the 11 first principal component explain more than
99% of the variation in the data, so DLMs on these variables
have been fitted. Again, the principal components are un-
correlated, so a simple, independent DLM is fitted to these
signals, where both the regression and the state evolution ma-
trices will be 11-dimensional unit diagonal matrices. The
variance matrices V and W will be diagonal matrices with
elements estimated from the test data, as presented in Table
3. Again, σ2

ν,i denotes the ith diagonal element in the es-
timated V -matrix and σ2

ω,i are the diagonal elements of the
W -matrix.

The 1-step ahead point forecasts for the 11 first principal
components of the residuals after regression on cluster mem-
bership are shown in Figure 14 together with the actual prin-
cipal component measurements. The k-step ahead forecasts
for k = 250 future measurements after the end of the test
data are shown in Figure 15. It is observed that the 95 % con-
fidence bands seems reasonable and seems to capture at least
most of the variability in the preceding 250 measurements.
However, for principal components # 9 and 11 the variabil-
ity in the signals is relatively larger compared to the forecast
variance than for the other signals. Figure 14 confirms that
these signals seems to be most challenging for the model.

4.4. Model Monitoring and Predictive Performance

In order to use the models for anomaly detection and condi-
tion monitoring, it is assumed that the model will describe
the signals well in normal operating conditions, and that
model breakdown indicates deviation from normal behaviour
of the system, which may need to be investigated with more
scrutiny. According to the model assumptions, the standard-
ized one-step ahead forecast errors should be uncorrelated

9
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Table 3. Parameter estimates for the model fitted to the principle components of the residuals from a regression model on cluster
membership with 4 clusters

σ2
ν,1 σ2

ν,2 σ2
ν,3 σ2

ν,4 σ2
ν,5 σ2

ν,6 σ2
ν,7 σ2

ν,8 σ2
ν,9 σ2

ν,10 σ2
ν,11

0.0308 0.0533 0.121 0.104 0.00630 0.110 0.0640 0.0416 0.0190 0.00660 0.00889

σ2
ω,1 σ2

ω,2 σ2
ω,3 σ2

ω,4 σ2
ω,5 σ2

ω,6 σ2
ω,7 σ2

ω,8 σ2
ω,9 σ2

ω,10 σ2
ω,11

0.0562 0.0147 0.0134 0.0169 0.0117 0.00360 0.00671 0.00597 0.000657 0.00208 0.000299

Figure 8. Total within-clusters sum of squares as a function
of number of clusters

and standard normally distributed. Hence, one may look at
the one-step ahead forecast errors for the test data and com-
pare to this assumption in order to check if the model per-
form well and to get indications of model breakdown. Tra-
ceplots and densities of the one-step ahead forecast errors for
the model on residuals after regression on engine speed are
shown in Figure 16 (Similar plots for the other models are
not shown, but display similar characteristics).

It is observed that most of the forecast errors are centered
around zero and that the variances are lower than for the stan-
dard normal except for some large spikes. These coincide
with large spikes in the data (principal components of the
residuals from regression models) which again coincides with
the transient states between ”on” and ”off” modes in the raw
data (see discussion of the data above). These jumps in the
data are difficult for the model to predict, but once the jumps
have been made, the models seems to be able to tune in to the
new behaviour quite fast.

In order to use the DLMs for condition monitoring and
anomaly detection, sequential model testing will be applied,
as outlined above. Tests for positive and negative mean
changes of µ = ±2 will be applied, with α = 0.005 and
β = 0.001, and an example of the results of sequential prob-
ability ratio tests (SPRT) with these settings on one of the
models is presented in Figure 17. The tests are performed

Figure 9. Correlation plot of the residuals after applying a lin-
ear regression model on the categorical variables correspond-
ing to cluster assignment with 4 clusters

Figure 10. Traceplots of the residuals after applying a re-
gression model on cluster groups; main bearing temperatures
(left) and engine speed (right)

separately for each signal making it possible to see in which
signal there is a deviation from normal behaviour. However,
for the cases where the signals are principal components, it
is not straightforward to interpret how an alarm in one sig-
nal relates to the physical system, and any alarms need to be
investigated closely.

In the plots of the SPRT indices, alarms are marked in red
for every time the SPRT crosses the upper level, B. It is ob-
served that the SPRT raises quite many alarms on these data
and many red flags are shown in the SPRT-plots. However,
compared to the number of measurements, the alarm rate still
seems reasonable. A close-up of an SPRT-plot is shown in

10
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Figure 11. Predictions and filtering on the test data for the independent model; selected signals for engine 1

Figure 12. Expected 1-step ahead forecasts of the signals
from the Dynamical Linear Model on the principal compo-
nents of the residuals from regression on engine speed

Figure 18. In this example, there are two alarms and it can be
seen how the SPRT builds evidence for or against the null hy-
pothesis (normal state) in approximately four measurements.
The sensitivity of the SPRT can be fine-tuned by tuning the
parameters α, β and µ.

The number of alarms for positive and negative mean changes
are shown in Table 4. For simplicity, the independent model
on the raw data are referred to as Ind Raw, the model on the
residuals from regression on Engine speed is referred to as
Reg ES, the model on the principal components of the same
residuals are referred to as PC Reg ES and the model on
the principal components of the residuals from regression on

Figure 13. Expected 1-step ahead forecasts of the signals
from the Dynamical Linear Model on the principal compo-
nents of the residuals from regression on engine speed

cluster membership are referred to as PC Reg Cluster. The
table reports the total number of alarms on any signal (total
alarms) and also the total number of unique alarms, mean-
ing that only unique time-steps where there is an alarm is
counted. Obviously, on some time-steps there will be simul-
taneous alarms from different signals. The total alarm ratio is
then the ratio of time-steps where there is an alarm.

From Table 4 it can be seen that the number of alarms are
larger for the model based on the raw data. Comparing the
two models based on principal components of residuals, the
model on residuals from the regression on cluster member-
ships give more alarms than the one based on the residu-
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Figure 14. Expected 1-step ahead forecasts of the signals
from the Dynamical Linear Model on the principal compo-
nents of the residuals from regression on cluster membership

Table 4. Number of anomalies detected with each modelling
alternative (total number of anomalies for all signals)

Ind Raw PC Reg ES PC Reg Cluster

N 83 286 83 286 83 286
Positive mean change 6307 1852 5344
Negative mean change 5036 1586 5470
Total alarms 11343 3438 10814
Total unique alarms 5885 1431 4554
Total alarm ratio 0.0707 0.0172 0.0547

als from regression on engine speed. The total alarm ratios
vary from 0.07, meaning that an alarm is raised every 14
time step, to 0.017, corresponding to an alarm about every
60th time step. Since there are no known faults in this data,
there should presumably not be any anomalies and most of
the alarms could be interpreted as false alarms. Hence, the
model with the lowest number of alarms could be preferred.
However, the large spikes in the pre-processed data are diffi-
cult to predict for the dynamical linear models, and it is not
unreasonable for them to flag an anomaly each time such a
spike is encountered. Hence, these false alarms are not due
to failure of the DLMs to model the data, but rather the fail-
ure of the pre-processing steps in removing these spikes. One
may also see this as an alarm whenever the engine suddenly
shifts from one steady state to another. More study on how to
account for the transient states in the original data could im-
prove this situation if pre-processed data without these spikes
could be fed into the DLM framework. On the other hand,
for data displaying transient states from one steady state to

Figure 15. Expected k-step ahead forecasts of the signals
from the Dynamical Linear Model on the principal compo-
nents of the residuals from regression on cluster membership

another, it may not be unreasonable with an alarm when en-
tering into the transient states. At any rate, the alarm ratios
for the individual signals vary from 0.0011 to 0.024 (inde-
pendent DLM on raw signals), 0.0026 to 0.0053 (regression
model based on engine speed) and from 0.0032 to 0.028 (re-
gression model on clusters) and this is not unreasonable given
that the allowed probability of false alarms were set to 0.005
for both positive and negative mean level change separately.

4.5. Model Selection

The number of alarms raised over the dataset can be used
as an indication of which model performs best on the sen-
sor data. However, more formal statistical metrics may also
be applied, and the Akaike Information Criterion (AIC) and
the root mean square error (RMSE) have been calculated for
the different models. The AIC is based on the likelihood and
favours the models with largest likelihood, but also includes
a penalty for large number of parameters. The model with
smallest AIC are normally selected. The RMSE is calculated
based on the one-step ahead forecast errors and is calculated
for the test data only. It should be noted that these metrics are
not entirely appropriate in this case, since the DLMs have not
been fitted to the same data. Since different pre-processing of
the raw data have been performed prior to fitting the different
models, comparing the models by terms of likelihood-based
metrics or RMSE may not be fair. For a more fair compari-
son, one could try to use the forecasted principal components
to transform back to the residuals of the regression model and
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Figure 16. One-step forecast errors (left) and density of 1-step forecast errors (right) for DLM fitted to principal components of
residuals from a regression model on engine speed

then compare this with predictions from the regression mod-
els, but this has not been pursued in this study. Notwithstand-
ing, the AIC and the RMSE for each model is reported in
Table 5, and it gives an indication of how the models per-
form. However, model selection is perhaps best carried out
by looking at the performance in terms of ratio of alarms.

Table 5. AIC and RMSE for the different models

Ind Raw PC Reg ES PC Reg Cluster
k 46 18 22
AICtrain 6 215 338 −6 584 128 −5 274 406
AICtest 2 021 041 −2 283 094 −1 501 852
RMSEtest 84.47 0.1578 0.3158

Even though the model selection criteria may not be fully ad-
equate in this setting, it indicates that the dynamical linear
model performs better for anomaly detection on the residu-
als on a sensible regression analysis and that it is worthwhile
to perform some preprocessing of the data. Comparing the
alternatives based on principal components of residuals, the
dynamical linear models on principal components of resid-
uals from a regression model on engine speed seems to be
preferable to the one based on regression on cluster member-
ships. This model has lower RMSE on the test data and also
lower AIC on both the training and the test data. Moreover, it
is a simpler model with fewer parameters. This modelling ap-
proach also resulted in fewer alarms, which essentially means
that there were fewer spikes in the pre-processed data. Hence,

this modelling may be preferable, among the ones investi-
gated in this study.

5. DISCUSSION

The approach presented in this paper utilizes dynamical linear
models for monitoring of multivariate sensor signals. Based
on the forecast distributions of future signals and compar-
ing these with the sensor measurements as they arrive, on-
line model monitoring can be performed by sequential tests.
However, a crucial prerequisite for this approach to work well
is the ability to establish a model that describes the sensor
data well. This study has revealed that this can be challeng-
ing but feasible.

In this study, different DLMs have been tried out on a set of
sensor signals measuring various variables of a marine gen-
erator engine. As it turns out, it is difficult to establish good
models on the raw sensor signals. Two reasons for this is the
sudden shifts in the data between different operational modes
and the somewhat high dimensionality of the data. The sud-
den shifts between main modes of operation is of course dif-
ficult for a statistical model to predict, and full DLMs for
the 23-dimensional dataset would include quite many model
parameters that would be hard to estimate accurately. In
order to come around these problems, some pre-processing
steps were carried out before fitting the DLMs, i.e. regres-
sion models to try to filter out the sudden shifts and principal
component analysis to reduce the dimensionality and also the
cross-correlations in the data. Even though the models on
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Figure 17. Sequential probability ratio tests (SPRT) on the one step ahead forecast errors from DLMs fitted to the principal
components of the residuals from a regression model on engine speed; positive mean level change (left) and negative mean
level change (right)

Figure 18. A close-up of the SPRT plot for a short time-
window

the pre-processed data appear to be performing better than on
the raw data, there are still some problems that needs to be
solved. For example, even though the pre-processing steps
diminish the effect of the different operational modes in the
data, there are still spikes in the residual time series, mostly
coinciding with the transient states between modes. Other
pre-processing techniques may be applied in order to reduce
these further.

Other extraneous factors that may influence the sensor sig-
nals, and that is perhaps particular to ship systems, are the
loads and responses from the ship environment. It is pos-
sible that the sensor signals from a ship in perfect condi-
tion may look very different in calm conditions compared to
stormy seas. Such operational conditions will then introduce
larger variability in the recorded sensor signals and need to
be captured by the statistical models used for anomaly de-

tection. Clearly, one wants to distinguish between anoma-
lous behaviour of the ship system and anomalous environ-
mental conditions. Possibly, such environmental conditions
could be used as covariates in a regression-type component
of the model. Previously, it has been shown that up to 50%
of the variation in the efficiency of a ship machinery system
can be explained by such covariates, suggesting that such ef-
fects should be taken into account (Vanem et al., 2016). If
such operational conditions are found to be very influential
on the monitoring signals and, consequently, on the sensor
based anomaly detection, methods for conditional or contex-
tual anomaly detection might be required (Song, Wu, Jer-
maine, & Ranka, 2007; Hayes & Capretz, 2015).

It should be possible to construct a hierarchical model where
the condition of the ship or the system being monitored is
directly modelled by some unobserved state. For example,
the hidden layer could be made up of binary or multinary
variables indicating whether the system being monitored is
in a fully functional state, some intermediate degraded state
or a system failure state. Condition monitoring could then be
performed by analysing the predictive, filtered and smoothed
distribution on the system level directly, and alarms could be
raised when the probability of being in a degraded or failed
state is higher than some acceptable value. Possibly, DLM
could be extended to include diagnostics in such a setting.
However, additional information about the actual state of the
system would presumably be needed in order to train such a
model to be able to recognize such underlying states from the
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sensor signals. Further investigation of this kind of usage of
DLM for condition monitoring is left for further research.

5.1. Composite Sequential Probability Ratio Tests

The performance of the model is monitored by way of Bayes’
factors or sequential probability ratio tests. In standard SPRT,
the established model, the null model M0, is compared to a
specific alternative model, M1, in simple statistical tests. In
the study presented herein, two alternative models were used,
with a positive and negative expected forecast error, respec-
tively.

One way to improve such tests is to formulate composite one-
sided SPRTs. Thus, rather than testing a simple null hypoth-
esis µ = 0 against a specific simple alternative hypothesis
µ = m, one can test the simple null hypothesis against the
composite alternative hypothesis µ ≥ m. This will give more
weight to extreme deviations larger than m. A composite
SPRT for the Poisson model was proposed in (Kulldorff et al.,
2011). A similar extension for the normal case could be the
following modification of eq. 14 (for positive mean change;
assuming still unit variance).

ln =

n∑
i=1

[
µ
(
ei −

µ

2

)
I(ei ≤ µ) +

e2i
2
I(ei > µ)

]
. (18)

This index would treat each new observation independently
of the previous ones and the indicator function ensures that
each new term in the sum depends on whether the value of the
new residual is above or below the hypothesized value µ. For
values of the residuals smaller than or equal to the µ-value,
the added term will be identical to the standard simple test,
but for values greater than µ, the modified SPRT index will
pick up a larger contribution proportional to e2i rather than ei.
Hence, this modified test will more quickly pick up alarms for
large deviations from the null hypothesis (large compared to
the alternative hypothesis). Hence, faults are detected more
quickly for large residuals.

The above modification treats each new observation (resid-
ual) independently and is a true sequential test in that regard.
However, if one rather look at the average residual since the
SPRT index was last reset one can formulate a test based on
all observations within the interval of the test. This will then
not be a truly sequential test, since it updates the complete
sum rather than merely adding a term at each step, but it
might be more appropriate. Such a SPRIT index would be
on the following form, where ē refers to the average residual
since the SPRT was last reset to zero, i.e. ē = 1

n

∑n
i=1 ei,

ln =

n∑
i=1

[
µ
(
ei −

µ

2

)]
I(ei ≤ µ) +

n∑
i=1

ē
[
ei −

ē

2

]
I(ei > µ).

(19)

For large values of ei compared to µ, such a modified SPRT

would also increase more quickly towards the threshold for
raising an alarm.

One could also formulate two-sided tests, rather than two
one-sided test (positive and negative mean change), e.g. test-
ing µ = 0 towards µ = |m| or two-sided composite tests
against µ ≥ |m|. However, such tests might not work as well
in a sequential setting, where tests are updated sequentially
as new observations arrive. With a two sided test, one would
not be able to distinguish between successive deviations to
one side (e.g. indicating a drift of the signal) and alternating
deviations on either side. If this is important information, it
might be advisable to rather formulate several tests and per-
form separate tests for positive and negative drifts, respec-
tively. For situations where there are alternating deviations to
either side, additional tests for increase (or decrease) in the
variance of the forecast errors could be formulated. Other
tests could be formulated with e.g. composite H0 against
one- or two-sided H1, one-sided H0 against one-sided H1,
etc. However, it should be kept in mind that multiple testing
will give more frequent false alarms just by chance (multiple
testing problem), and this might have to be compensated for.

6. CONCLUSIONS

This paper applies the framework of dynamical linear models
on a set of sensor signals from a marine generator engine sys-
tem in order to detect anomalies and monitor the condition of
the system. Different pre-processing of the data are applied in
order to lighten the burden of the DLM and make it easier to
fit the models to the signals. These include various regression
models, principal component analysis and clustering tech-
niques. This study demonstrates that this improves the per-
formance of the dynamical linear models, even though there
are still challenges in handling spikes in the pre-processed
data which remains from the transient parts of the original
signals. These spikes can be construed as anomalies resulting
in too many warnings being issued by the anomaly detection
scheme.

It may not be unreasonable for a condition monitoring sys-
tem based on dynamical linear models to flag an alarm when
the signals indicate a sudden departure from one steady state
to another, but it is believed that the frequency of such
false alarms can be significantly reduced if more precise pre-
processing steps are applied. This is an area for further re-
search. Moreover, it is acknowledged that DLM is a frame-
work that will work better for slowly varying systems, and it
may not be ideally suited for processes where there are fre-
quent and abrupt changes in the signal values.

Nevertheless, the framework presented in this paper, based
on some pre-processing steps and utilizing dynamical linear
models and sequential testing, are able to detect sudden jumps
in the data and to issue alarms whenever this is detected, and
thereafter swiftly recover to the new level of the signals to
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continue to model the normal behaviour of the system. This
indicates that a system such as the one presented in this paper
may be useful for anomaly detection.
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Zymaris, A. S., Alnes, Ø. Å., Knutsen, K. E., & Kakalis,
N. M. P. (2016, July). Towards a model-based condi-
tion assessment of complex marine machinery systems
using systems engineering. In Proc. Third European
Conference of the Prognostics and Health Management
Society 2016.

16


