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ABSTRACT

This paper applies a novel feature extraction method called
Extended Phase Space Topology (EPST) in order to diagnose
various faults in a gear-train system. The EPST method,
that our research team has been developing, is based on
characterizing the vibration data using the topology of phase
space, computing its density distribution and then expanded
in a series of orthogonal functions. The resulting coefficients
are subsequently used in a machine learning algorithm. For
this study, multiple test gears with different health conditions
(such as a healthy gear and defective gears with root crack
on one tooth, multiple cracks on five teeth and missing tooth)
are studied. The vibration data of a gear-train is measured by
a triaxial accelerometer installed on the test. Results indicate
that EPST is efficient in diagnosing the status of the health
of the gear system and characterizing the dynamic behavior.
Moreover, the EPST procedure does not require a priori
knowledge about the dynamics of the system. EPST needs
no noise reduction, signal prepossessing, feature ranking or
selection, and therefore can easily be applied in a relatively
automated process.

1. INTRODUCTION

Machine condition monitoring techniques have received
much attention in recent years due to their significant ad-
vantages in increasing productivity and lifespan of system
components. Moreover, condition monitoring techniques
decrease maintenance costs, which comprise a major part of
operating costs in any industry. Gears are essential elements
in most rotating machines and play a critical role as transmis-
sion systems. A considerable number of studies have focused
on condition monitoring of gears because of the complex
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nonlinearity of faults in gears which makes abnormality di-
agnostics difficult (Randall, 1982; Chad, 1998; Jardine, Lin,
& Banjevic, 2006; Serridge, 1990). Vibration and acoustic
methods contain valuable information about the condition
of the rotating machines such as gears, and therefore, they
are the most widely used for fault diagnostics of gears
(Bajric, Zuber, & Isic, 2013; Hussain & A.Gabbar, 2011;
W. Q. Wang, Ismail, & Farid Golnaraghi, 2001; Dalpiaz,
Rivola, & Rubini, 2000).

One of the techniques most commonly applied to machine
fault detection problems is the pattern recognition approach.
The pattern recognition approach, which involves classifica-
tion model techniques, uses data collected from dynamical
systems to extract a feature set, known as a condition indi-
cator or condition signature, in order to detect and identify
the system’s current state of health (Bishop, 2006; Vachtse-
vanos, Lewis, Roemer, Hess, & Wu, 2006). The objective of
feature extraction is to characterize the system response in an
unmatched way and to acquire accurate diagnostic informa-
tion about the system. These features should be informative
and non-redundant.

Various feature extraction techniques have studied gear fault
detection and diagnostics (W. J. Wang & McFadden, 1996;
Peng & Chu, 2004; Combet & Gelman, 2007; Hussain &
A.Gabbar, 2011; Yuan, He, & Zi, 2010; Mohammed, Rantat-
alo, Aidanp, & Kumar, 2013; Li, Zhang, & Wu, 2017; Mo-
hammed & Rantatalo, 2016; Hong et al., 2017). These fea-
ture extraction techniques can be categorized into time do-
main, frequency domain, and time-frequency domain tech-
niques. Each of these techniques has its own limitations
and strengths. In frequency domain techniques, analysis of
the sideband frequencies in the frequency spectrum indicate
faults in the gearbox but do not necessarily distinguish gear
faults as they may be located in other components of the
gearbox (Randall, 2011; Peng, Yu, & Luo, 2011). Stud-
ies in (Syta, Jonak, Jedlinski, & Litak, 2012) show that fre-
quency analysis is not effective in differentiating between

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

healthy gears and defective gears with a single crack. On
the other hand, time domain techniques such as Time Syn-
chronous Averaging (TSA) were found to hardly distinguish
between different faults, particularly in the early stage of the
fault or in the case of multiple simultaneous faults in differ-
ent gears (Salem, 2012; Kwuimy, Kankar, Chen, Chaudhry, &
Nataraj, 2015). Furthermore, the TSA technique requires too
much time and is computationally intensive which makes it
inconvenient for online detection (Vachtsevanos et al., 2006).
These limitations motivate the need for a robust and reliable
method for gear fault detection and diagnostics.

In earlier work, we introduced the Phase Space Topology
(PST) method to describe and distinguish the topology of the
phase space trajectory with quantitative measures.(Samadani,
Kwuimy, & Nataraj, 2015, 2013). The PST was applied to
a variety of nonlinear systems ranging from a magnetically
actuated pendulum system to a six degree-of-freedom non-
linear oscillator in order to estimate the parameters of each
system and to characterize different conditions of each sys-
tem. As an extension of the previous work, the Extended
Phase Space Topology (EPST) was introduced in (Samadani,
Haj Mohamad, & Nataraj, 2016; Haj Mohamad, Kwuimy, &
Nataraj, 2017) as a machinery diagnostics method. The EPST
is based on the quantitative characterization of the topology
of the density distribution of the vibration signal. The method
was applied to a rotor-bearing system in order to detect and
diagnose various bearing conditions. The results showed that
EPST performed significantly better compared with tradi-
tional statistical feature methods. In general, feature extrac-
tion is an application-dependent process, however, in this pa-
per we are expanding the previous work by generalizing the
applicability of the method by applying it to another dynamic
application. As we will show, the EPST can be implemented
in various dynamical systems with minimal expert knowledge
about the nature of the problem.

The proposed method has been applied to vibration data of
a helicopter gearbox mock-up system (5 m long). For this
study, multiple test gears with different health conditions
(such as healthy gears and defective gears with root crack on
one tooth, multiple cracks on five teeth and missing tooth) are
studied. The vibrational signals were recorded using a triaxial
accelerometer installed on the test gearbox.

The rest of this paper is organized as follows. In Section 2,
the mathematical details of the EPST are introduced. Section
3 represents the experimental setup of the gear-train and mea-
surement of data. Section 4 discusses the analysis process of
the density distribution, and the classification model results.
Finally, Section 5 summarizes and concludes the paper.

2. EXTENDED PHASE SPACE TOPOLOGY METHOD

LetX=(x1, x2, ..., xn) be an independent and identically dis-
tributed sampled data drawn from a distribution with an un-

known density function f . The shape of this function can be
estimated by its kernel density estimator. Kernel density esti-
mators are the most widely used in the class of nonparametric
probability density estimation methods. The kernel estimator
is defined as:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(1)

Theˆsymbol indicates that the density distribution is an es-
timate, and h indicates that its value can depend on h. K(.)
is the kernel function which is typically a symmetric proba-
bility density function with finite variance. A kernel function
of probability mass n−1 is placed at each data point and the
summation of these kernel functions will produce the esti-
mated density distribution. The kernel function satisfies the
following requirements:

∞∫
−∞

K(u)du = 1 (2)

K(−u) = K(u) ∀u (3)

There is a range of kernel functions that can be used, includ-
ing uniform, triangular, biweight, triweight, Epanechnikov,
normal, etc. Due to its conventional and convenient mathe-
matical properties, we use the standard normal density func-
tion in our approach, defined as the following:

K(u) =
1√
2π
e−

1
2u

2

(4)

The performance of the kernel density estimator depends
mainly on the smoothing parameter h. For normal kernel
functions, the optimal choice for the bandwidth based on Sil-
verman’s rule of thumb is as follows:

h =

(
4σ̂5

3n

) 1
5

(5)

where, σ̂ is the standard deviation of the samples and n is
the number of sampled data. Let x be a state of the system
and yd = f̂h(x), its density computed using Kernel density
estimator. yd is then approximated with Legendre orthogonal
polynomials. Legendre polynomials can directly be obtained
from Rodrigues’ formula which is given by

Pm(x) =
1

2mm!

dm

dxm
[
(x2 − 1)m

]
(6)

where, m = 0,1,2,... or can be obtained from the recursive
definition using Bonnet’s recursion formula given by

(m+ 1)Pm+1(x) = (2m+ 1)xPm(x)−mPm−1(x) (7)

where, the first two terms are given by

P0(x) = 1, P1(x) = x (8)
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The coefficients of the Legendre polynomials are obtained by
using the linear least squares method assuming the following
linear regression model.

f(x, β) =

m∑
j=1

βjPj(x) (9)

Letting

Xij =
∂f(xi,β)

∂βj
= Pj(xi) (10)

The estimated coefficients are given by

β̂ = (XTX)−1XT yd (11)

The coefficients, β̂ are the features in our approach that can
be used in classification or regression problems.

Using Legendre Polynomials and the computed coefficients,
we can approximate the density as the following.

f = Xβ̂ (12)

In order to measure the quality of the fit, two measures in-
cluding Root Mean Square Error (RMSE) and Pearson’s Cor-
relation Coefficient (PCC) are used which are defined as the
following:

RMSE =

√
1

N
ZZT (13)

where Z = yd − f is the residual and N is the number of
points in the density function.

PCC =
aT b√

(aTa)(bT b)
(14)

where a = yd − E{yd} and b = f − E{f}, E{.} is the
expected value.

3. EXPERIMENTAL SETUP AND DATA COLLECTION

The gear-train experimental set up, which is a mock-up of
a helicopter gear box system, is located at the United Tech-
nologies Research Center (UTRC). The gear-train (shown in
Fig.1) is a large scale machine (5 m long) consisting of a mo-
tor, dynamometer and four gearboxes, where each gearbox
contains four spur gears. The schematic of the gear-train il-
lustrating the four gear boxes and their components is shown
in Fig.2. For this study, multiple test gears with different
health conditions were studied. The study was implemented
by replacing the gear located in gearbox number 3 and shown
in green color in Fig.2 with different test gears while the re-
maining setup components were kept unchanged. The test
gears with 23 teeth that were used in the experiment include
one healthy gear and three defective gears with root crack on
one tooth, multiple cracks on five teeth and missing tooth.
Fig. 3 illustrates the various gear defects: a) shows the sin-
gle root crack of 2 mm b) shows the locations of the five root

Figure 1. Gear-train experimental setup
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Figure 2. Gear-train schematic

cracks on teeth numbers 1,6,10,15, and 19 c) shows the sizes
of the five root cracks ranging from 0.5 mm to 2.5 mm.

The vibrational signals were recorded using a triaxial ac-
celerometer installed on gearbox number 3. The vibrational
data was measured at the sampling frequency of 102,400 Hz.
The rotational speeds of shafts A, C, and B were measured
using two encoders and a tachometer. Two encoders were in-
stalled at shaft “A” and shaft “C” to measure their rotational
speeds with a 360 pulse/rev resolution. The tachometer on
shaft “B” was used to measure the shaft rotational speed at a
rate of 1 pulse/rev. Due to the gear teeth ratio, the test gear
shaft operates at the same speed as shaft “B”. In this study, the
motor was operating at a rotational speed of 900 rpm while
the test gear shaft was running at 94 rpm for the different
gear conditions. The vibrational signals of gearbox number 3
were recorded for 64 seconds for healthy, single crack tooth
and multiple crack teeth conditions, and for 3.2 seconds for
the missing tooth condition. Samples of the measured vibra-
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(a) (b)

(c)

Figure 3. Gear defects: a) crack on one tooth b) crack on 5
teeth c) crack sizes on 5 teeth.

tion for different gear conditions in the three directions are
shown in Fig. 4.

4. ANALYSIS AND FAULT CLASSIFICATION

In order to analyze the vibration data measured by the
accelerometer for various gear conditions, vibration data
was divided into multiple segments of revolutions using the
tachometer signal which provides the shaft phase informa-
tion. The segment xk(i), for i = 1, 2, ..., N is the vibration
data of revolution k of a total number of K revolutions. The
total number of data segments that were obtained is 1,011
segments in x,y and z directions. In each direction, 97 data
segments were obtained for each healthy, single crack defect,
and multiple crack defect conditions while 46 data segments
were obtained for the missing tooth defect condition. The
density distribution of the vibration data is estimated using
kernel density estimation method. Samples of the estimated
density distributions for different gear conditions in x, y and
z directions are shown in Figures 5,6, and 7, respectively.

First, the density distributions in the x direction are analyzed.
By comparing the density distribution of the vibration data
in the x direction for the four gear conditions, one finds that
the healthy condition is easily distinguished from the other
gear conditions. The estimated density for the healthy con-
dition has two different modes, the most frequently occur-
ring states, which appear as two distinct peaks. On the other
hand, the estimated density of the multiple crack and the
missing tooth conditions have a symmetric unimodal distri-

bution. Both density distributions have a single peak around
zero. The missing tooth condition, in contrast to the multi-
ple crack condition, has a smaller standard deviation and a
higher peak amplitude. The estimated density of the single
crack condition has a bimodal distribution with a narrower
distribution range compared to the healthy condition.

Second, analyzing the density distributions in y direction, fig-
ure 6 shows that the density of the multiple crack condition
has a left, or negative, skewed distribution while the density
of the missing tooth condition has a high single peak with a
mean of zero. The density of the single crack condition in
the y direction has a similar distribution to the x direction but
with a higher amplitude.

Finally, densities of the vibration data in the z direction are
shown fig 7. The estimated densities of the healthy and sin-
gle crack condition approximately look the same. The den-
sity distribution of the multiple crack condition seems to have
two modes (bimodal distribution). These observations indi-
cate that the density distribution of the vibration data provides
valuable information for characterizing the dynamic response
of different gear conditions. This observation suggests the
implementation of the density distribution for fault detection
and identification in gears.

The EPST method, which is based on characterizing the
topology of the density distribution of the vibration data, is
applied by mapping the data onto a density space for each
condition and then approximating these densities using Leg-
endre polynomials. Fig 8 illustrates the process of the EPST
method. After the density plots were estimated, the plots
were then approximated using Legendre polynomials of or-
der 30. The order was selected based on the best fit between
the actual and the approximate densities by calculating the
root mean square error (RMSE) and Pearsons Correlation Co-
efficient (PCC). Figure 9 shows the actual estimated density
(black) and its approximation (blue) for the healthy gear con-
ditions in the x direction. The figure also shows the values of
RMSE and PCC with 0.0217 and 1.0 respectively.

The coefficients of Legendre polynomials were used as fea-
tures to represent each gear condition for inputs to an artifi-
cial neural network (ANN). For every gear condition, the first
10 coefficients in each direction were considered as a feature
vector, making 30 features in total. A neural network of 10
hidden neurons was trained using 50% of the data samples
(168 cases) and backpropagation algorithm. Additionally,
15% (52 cases) of the data samples were used for validat-
ing the trained classifier and the remaining 35% (117 cases)
of the data samples were used for testing the classifier.

The effectiveness of the classification model for the training
and testing data is presented by means of confusion matrix
plots. The confusion matrix of the classification model for
training and test data are shown in Fig.10. In the confusion
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Figure 4. Samples of the gear vibration data for each configuration and direction
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Figure 5. Density distribution of vibration in x direction

matrix, the diagonal cells show the number and percentage of
correct classifications by the trained classifier while the off
diagonal cells represent the misclassified predictions.

The training confusion matrix shows virtually perfect results
where all predictions are on the diagonal. In the test con-
fusion matrix, 117 cases with different gear conditions were
used to test the trained classification model. 31 cases were
correctly classified as healthy condition. This corresponds to
26.3% of all 117 cases. Similarly, 38 cases were correctly
classified as single crack defect condition. This corresponds
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Figure 6. Density distribution of vibration in y direction

to 32.2% of all cases. Furthermore, one of the missing tooth
defect cases was incorrectly classified as healthy condition
and this corresponds to 0.8% of all 117 cases under study.
Healthy condition is designated as negative class and defec-
tive condition is designated as positive class. True positive
(TP) is correctly classified for each defective condition, false
positive (FP) is incorrectly classified for each defective con-
dition. It is important to note that misclassification between
defective conditions is also counted. In contrast, true negative
(TN) is correctly classified as healthy condition and false neg-
ative (FN) is incorrectly classified as healthy condition. For
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Figure 7. Density distribution of vibration in z direction

example in the test confusion matrix (figure 10) TN = 31,
TP = 86, FN = 1, and FP = 0.

To describe the performance of the confusion matrices in a
simpler way, evaluating matrices such as overall accuracy, F1
score, sensitivity and precision are calculated from the con-
fusion matrices. Below is a description of the performance
rates used to evaluate the classifier.

Accuracy is the rate of the correct prediction

ACC =
TP + TN

TP + FP + TN + FN
(15)

The best accuracy is 1.0 while the worst is zero. Sensitivity,
which is also known as recall or true positive rate, is

SEN =
TP

TP + FN
(16)

The best sensitivity is 1.0 and the worst is zero. Precision is
the correct positive prediction divided by the total number of
positive predictions:

PREC =
TP

TP + FP
(17)

Finally, F-score is the harmonic mean of sensitivity and pre-
cision:

Fβ =
(1 + β2)(PREC × SEN)

β2(PREC + SEN)
(18)

where, β is a constant that could be 0.5, 1, 2 depending on the
F-score used. In this study, F1 score was used for evaluating
the performance where sensitivity and precision are evenly
weighted.

Table 1 shows the performance of the training and the test
confusion matrices. The results indicate 100% overall accu-
racy, F1 score, sensitivity and precision for the training classi-
fier. Furthermore, the results indicate 99.2% overall accuracy
and 99% F1 score for the test classifier with only one misclas-

Gears with different condi�ons 

Data acquisi�on using 
triaxial accelerometer and tachometer

Density es�ma�ng

Density fi�ng with
Legendre polynomials

Feature extrac�on

Training ANN

Gear diagnos�cs

Figure 8. The process of the EPST

sification. The sensitivity of the classier in predicting healthy,
single crack and multiple crack conditions is 1.0, while it is
0.95 for the missing tooth condition due to one misclassifi-
cation. On the other hand, the precision of the classifier for
all gear defects is 1.0 and 0.97 for healthy condition due to a
misclassified missing tooth condition as a healthy condition.

5. CONCLUSION

In this paper, a mock-up of a helicopter gear box system is
studied in order to detect and identify different gear faults.
Four gear conditions including healthy, single crack, mul-
tiple crack, and missing tooth were investigated under one
operating condition. The EPST method, which is based on
characterizing the topology of the density distribution of the
vibration data, was applied. The density distribution of the
vibration signal was approximated using Legendre polyno-
mials. Then, the coefficients of the orthogonal polynomials
were used as features in an artificial neural network to distin-
guish between the different gear conditions in the study.

Our results show that the density distribution provides rich
information regarding the gear status. Furthermore, the re-
sults showed that the EPST has an outstanding performance
in gear fault detection and identification with minimal knowl-
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Figure 9. Density fitting using Legendre polynomials

Table 1. Performance measures

Training classifier evalua�on  
Condi�on Sensi�vity Precision Overall  
Healthy 1.0 1.0 Accuracy F1 

Single Crack 1.0 1.0 
Mul� Crack 1.0 1.0  

1.0 
 

1.0 Missing Tooth 1.0 1.0 
Test classifier evalua�on  

Condi�on Sensi�vity Precision Overall  
Healthy 1.0 0.97 Accuracy F1  

Single Crack 1.0 1 
Mul� Crack 1.0 1  

0.99 
 

0.99 Missing Tooth 0.95 1 
 

edge about the dynamic response of the system. Finally, the
current study was performed on a single operation condition
(10 hp load and 900 rpm speed motor); thus, future work will
investigate the gear-train under variable operating conditions.
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Figure 10. Training and testing confusion matrices

NOMENCLATURE

f unknown density function
f̂ estimated density function
yd computed estimated density
h bandwidth
K(.) kernel function
n number of data points
u dummy variable
σ̂ estimated standard deviation
Pm the mth Legendre polynomial
β Legendre polynomials coefficients
β̂ estimated Legendre polynomials coefficients
RMSE Root Mean Square Error
Z residual
N number of estimated density points
PCC Pearson’s Correlation Coefficient
a, b residual
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