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ABSTRACT

Nowadays, determining faults (or critical situations) in non-
stationary environment is a challenging task in complex sys-
tems such as Nuclear center, or multi-collaboration such as
crisis management. A discrete event system or a fuzzy dis-
crete event system approach with a fuzzy role-base may re-
solve the ambiguity in a fault diagnosis problem especially
in the case of multiple faults (or multiple critical situations).
The main advantage of fuzzy finite state automaton is that
their fuzziness allows them to handle imprecise and uncertain
data, which is inherent to real-world phenomena, in the form
of fuzzy states and transitions. Thus, most of approaches pro-
posed for fault diagnosis of discrete event systems requirea
complete and accurate model of the system to be diagnosed.
However, in non-stationary environment it is hard or impos-
sible to obtain the complete model of the system. The focus
of this work is to propose an evolving fuzzy discrete event
system whose an activate degree is associated to each active
state and to develop a fuzzy learning diagnosis for incomplete
model. Our approach use the fuzzy set of output events of the
model as input events of the diagnoser and the output of a
fuzzy system should be defuzzified in an appropriate way to
be usable by the environment.

1. INTRODUCTION

A great number of systems or situations can be naturally viewed
as discrete event systems. A discrete event system is a dy-
namic system whose the behavior is governed by occurrence
of physical events that cause abrupt changes in the state of the
system (Liu & Qiu, 2009a; Cassandras & Lafortune, 1999;
Moamar & Billaudel, 2012; Traore, Moamar, & Billaudel,
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2013). Discrete event system theory, particularly on mod-
eling and diagnosis, has been successful employed in many
areas such as concurrent monitoring and control of complex
system (Cao & Ying, 2005). Usually, a discrete event system
is modeled by Automaton (Dzelme-Berzina, 2009; Mukher-
jee & Ray, 2014) or Petri Net (Patela & Joshi, 2013). Au-
tomaton (or more precisely a finite state automaton) are the
prime example of general computational systems over dis-
crete spaces and have a long history both in theory and ap-
plication (Thomas, 1990; Moghari, Zahedi, & Ameri, 2011).
A finite state automaton is an appropriate tool for modeling
systems and applications which can be realized as finite set of
states and transition between them depending on some input
strings (Doostfatemeh & Kremer, 2004). And, the behavior of
discrete event system modeled by an automaton is described
by the language generated by the automaton.

Discrete event systems are divided into two categories: crisp
discrete event system and fuzzy discrete event system. A
crisp discrete event system is usually described by a deter-
ministic automaton (Luo, Li, Sun, & Liu, 2012) and fuzzy
state is the extension of crisp discrete event system by propos-
ing fuzzy state and every state transition is associated with a
possibility degree, called in the following membership value.
Thus, the membership value can be defined as the possibility
of the transition from current (active) state to next state.The
main advantage of fuzzy finite state automaton is that their
fuzziness allows them to handle imprecise and uncertain data,
which is inherent to real-world phenomena, in the form of
fuzzy states and transitions. In literature, many application of
fuzzy discrete event system had been proposed (Gerasimos,
2009; Luo et al., 2012; Sardouk, Mansouri, Merghem-Boulahia,
& Gaiti, 2013). Thus, one of the interesting characteristics of
fuzzy automaton is the possibility of several transitions from
different current fuzzy states lead to the same next fuzzy state
simultaneously, and also the possibility of several transitions
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from one current fuzzy state lead to the different next fuzzy
states simultaneously and consequently several output label
can be activated at the same time (Doostfatemeh & Kremer,
2005). For this reason, fuzzy discrete event is very adaptedto
resolve the ambiguity in a fault diagnosis problem especially
in the case of multiple faults. In this paper, these output events
constituted of a fuzzy set are applied as input event for our
diagnoser. Most of applications, the output should be crisp.
Therefore, the output of a fuzzy system should be defuzzified
in an appropriate way to be usable by the environment. Thus,
the outputs are assumed to be observable.

The diagnosis of discrete event systems is a research area
that has received a lot of attention in the last years and has
been motivated by the practical need of ensuring the correct
and safe functioning of large complex systems (Cabasino &
Alessandro Giua, 2010) or complex situation (like crisis sit-
uation) (Traore et al., 2013). Hence, the use of finite state
automaton in fault diagnosis tasks has gained particular atten-
tion in the case of discrete event dynamic systems (Gerasimos,
2009). Although, most of approaches proposed in literature
for fault diagnosis of discrete event systems require a com-
plete and accurate model of the system to be diagnosed. How-
ever, the discrete event model may have arisen from abstrac-
tion and simplification of a continuous time system or through
model building from input-output data. As such, it may not
capture the dynamic behavior of the system completely. There-
fore, in this paper, we attempt to develop a diagnosis ap-
proach based on fuzzy automaton for incomplete model in
non-stationary environment. For most of real-world applica-
tions operate in non-stationary environment.

The diagnosis approach proposed in our paper is different
from the approach proposed in (Kwong & Yonge-Mallo, 2011).
In our paper, the diagnoser is a finite-state Automaton which
takes fuzzy output sequence of the system as its input. Here,
the learning diagnoser is constructed off-line and the diagno-
sis is performed on-line using input and output data gener-
ated by system’s model. The on-line diagnosis system allows
to build an evolving fuzzy finite state system by updating the
set of states and/or the set of input symbols. The new states
and/or transitions detected by the diagnoser is validated by an
expert of the system or situation.

The potential application of learning diagnosis based on fuzzy
finite state automaton is in solving the ambiguity in a fault di-
agnosis problem especially in the case of multiple faults.

This paper is organize as follows. In section 2 , we present
the required background of crisp discrete event system. We
describe the general definition for fuzzy discrete event system
in section 3 . The standard diagnoser is presented in section
4. The algorithm of the learning diagnosis based on evolving
fuzzy finite state automaton is proposed in section 5. Learn-
ing diagnoser application to crisis management is presented
in section 6.

2. CRISP DISCRETE EVENT SYSTEM

A crisp discrete event system is usually described by a deter-
ministic automatonG= {X,Σ,ϕ ,Y,x0,F}, where

• X is the set of states

X = {x0,x1, · · · ,xn−1,xn},

• Σ is set of input symbols,

Σ = {a0,a1, · · · ,am−1,am},

• ϕ : X×Σ→ X is the transition function,

• Y is the set non-empty finite set of output,

Y = {y0,y1, · · · ,yl−1,yl},

• x0 ∈ X is the start state and

• F ⊆X is the (possibly empty) set of accepting or terminal
states,

The event setΣ includes the set of failure events (or critical
events)Σ f (Kwong & Yonge-Mallo, 2011). In addition to
the normal situation (mode)N, there arep critical situation
(or failure mode)F1, · · · ,Fp that describe the evolution of the
condition’s system. We denote the condition set of the situa-
tion by
λ =

{
N,F1, · · · ,Fp

}
, in this case, the state set partitioned into

X = XN∪XF1∪·· ·∪XFp.

In (Traore et al., 2013), we proposed the extension of the tran-
sition functionϕ represented as:ϕ : X×Σ→ X×Y.
Let ϕ1 andϕ2 be the two projection ofϕ such asϕ1 gives the
state reached from a statexi ∈ X and a given inputak ∈ Σ and
ϕ2 defines the output sequence from statexi and inputak. The
expression ofϕ1 andϕ2 are given by

ϕ1(xi ,ak) =
{

x j | ∃ y j such that(x j ,y j) ∈ ϕ(xi ,ak)
}
,

ϕ2(xi ,ak) =
{

y j | ∃ x j such that(x j ,y j) ∈ ϕ(xi ,ak)
}
,

wherexi , x j ∈ X andak ∈ Σ andy j ∈ Y. The new definition
of ϕ is:

ϕ(xi ,ak) = (ϕ1(xi ,ak),ϕ2(xi ,ak)).

These two projection may be extended to take input sequence,
for example:x j ∈ ϕ1 (xi ,σi ∈ Σ∗) and/or output sequence for
example:σy∈ϕ2(xi ,σi ∈Σ∗), whereσi =a1a2 · · ·al andσy=
y0y1 · · ·yn. Σ∗ is a set of all strings formed by events inΣ,
exampleak ∈ Σ, then,a1a2 · · ·ak ∈ Σ∗.

The behavior ofG is described by the language generated by
G denoted asL (G) or simply byL (Liu & Qiu, 2009b).

3. FUZZY DISCRETE EVENT SYSTEM

Fuzzy discrete event systems as a generalization of (crisp)
discrete event systems have been introduced in order that it
is possible to effectively represent uncertainty, imprecision,
and vagueness arising from the dynamic of systems. A fuzzy

2



ANNUAL CONFERENCE OF THEPROGNOSTICS ANDHEALTH MANAGEMENT SOCIETY 2014

discrete event system has been modelled by a fuzzy automa-
ton; its behavior is described in terms of the fuzzy language
generated by the automaton (Cao & Ying, 2006).

A Fuzzy Finite Automaton (FFA) is a 6-tuple

G̃= {X,Σ,δ ,Y, x̃0,F} .

i The fuzzy subsetδ : X× Σ×X → [0 1] is a function,
called the fuzzy transition function. A transition from
statexi (current state) tox j (next state) uponak with the
weightωi j is denoted as:δ (xi ,ak,x j) = ωi j ,

ii x̃0 ∈ X is the set of initial states.

One of the interesting characteristics ofFFA is the possi-
bility of several transitions from different current (or active)
states lead to the same next state simultaneously (seeFigure
1.(a)). Thus, the possibility of several transitions from one
current states lead to the different next states simultaneously
as shown in Figure 1.(b), and consequently several output la-
bel can be activated at the same time (Doostfatemeh & Kre-
mer, 2005). It is possible to have more than one start state
with FFA.

x1

x8

x13

x3

x5
x14

x7

x10

µ t1 (x1) = 0.01

µ t1 (x8) = 0.5

µ t1 (x13) = 0.02

µ t2(x3) = [0.2 0.4 0.05]

µ t3 (x5) = 0.4 µ t4(x14) = 0.6

µ t4 (x7) = 0.25

µ t4(x10) = 0.5

1/0.2

1/0.05

1/0.3

0/0.8

0/0.1

0/0.6

(a) (b)

event

weight

Figure 1. A example ofFFA.

when an inputak occurs at timet, all active state at this time,
are those states to which there is at least one transition on the
input eventak. Then, the fuzzy set of all active state at time
t is called active state set at timet. A active state set denoted
Xact is consisted of state and theirmv′s. The definition ofXact
is given by:

Xact(t) =
{(

x j ,µ t(x j )
)
|∃(xi ∈ Xpred(x j),ak ∈ Σ)∧x j ∈ Xsucc(xi ,ak)

}
,

Xpred(x j ) = Xpred(x j , t) and,

Xpred(x j , t) =
{

xi | ∃ a′k s.t x j ∈ ϕ1(xi ,a
′
k) ∧ x j ∈ Xact(t)

}
,

Xsucc(xi ,ak) =
{

x j | x j ∈ ϕ1(xi ,ak)
}
,

δ (xi ,ak,x j ) = ωi j ,

For example in Figure 1.(a)
ϕ1(x1,1) = ϕ1(x8,1) = ϕ1(x13,1) = x3.

wherexi is the state at timet−1, µ t(x j) is the membership of
statex j at timet, Xpred(x j , t) is all predecessors set of active
statex j andXsucc(x j ,ak) is all successors set of the statex j on
input symbolak. The successorXsucc(x j ,ak) is the set of allx j

which will be reached via transition functionδ (x j ,ak). In the

following, all successors set ofx j is denoted byXsucc(x j ,
all
→

), when the next state depend to the occurrence of different
events.

We use the same notation for the active state, when the upon
entrance is a stringΓ. The active state set of the stringΓ is
given by:

Xact(Γ) = Xact(t0+ |Γ|),

where|Γ| represent the length ofΓ.

Definition 1 A fuzzy set∆X defined on a set X (discrete or
continuous), is a function mapping each element of X to a
unique element of the interval[0 1], ∆X : X→ [0 1]. The mem-
bership value (mv) of the state xi ∈ X at time t is denoted as
µ t(xi).

For example in Figure 1.(a), at time timet1, the active state is
Xact(t1)= {x1, x8, x13} andXsucc(x1,1)= {x3}, Xsucc(x8,1)=
{x3} andXsucc(x13,1) = {x3}, and at time timet2, the active
state isXact(t2) = {x3} andXpred(x3, t2) = {x1, x8, x13}, that
mean the statex3 is forced to take several differentmvat this
time. Hence,x3 is a state with multi-membership, that we
will call in the following multi-membership state.

In Figure 1.(b), eachmvµ t+1(x j) of the statex j at timet +1
is computed by using the functionΨ1, named augmentation
transition function. The functionΨ1 should satisfy the two
following axioms.

1. 0≤Ψ1 (µ t(xi),δ (xi ,ak,x j))≤ 1,

2. Ψ1(0,0) = 0 andΨ1(1,1) = 1.

To computeµ t+1(x j), the functionΨ1 use two parameters:
µ t(xi) at timet and the weightωi j of the transition.

same example ofΨ1 are:

• Arithmetic Mean

−µ t+1(x j) = Ψ1
(
µ t(xi),δ (xi ,ak,x j)

)
,

= Mean(µ t(xi),ωi j ),

=
µ t(xi)+ωi j

2
,

• Geometric Mean

−µ t+1(x j) = Ψ1
(
µ t(xi),δ (xi ,ak,x j)

)
,

= GMean(µ t(xi),ωi j ),

=
√

µ t(xi)×ωi j ,

whereµ t(xi) is themvof the corresponding predecessor ofx j

andδ (xi ,ak,x j) = ωi j .

Themvof each active state is used as the level of activation of
each active state and the active state can be multi-membership
state. However, in this paper, we need a single value for each
active state. For this reason, the functionΨ2 is introduced
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to compute the singlemvcorresponding to the state that was
forced to take severalmv by these predecessors. The single
membeship valueµ t+1(x j) of each multi-membership state
given by:

−µ t+1(x j) =
m

Ψ2
i=1

[Ψ1(µ t(xi),ωi j )],

wherem is the number of simultaneous transitions from states
xi to statex j prior to timet +1.

The functionΨ2 should satisfy the minimum requirements
following axioms:

1. 0≤
m

Ψ2
i=1

[Ψ1(µ t(xi),ωi j )]≤ 1,

2. Ψ(φ) = 0,

3.
m

Ψ2
i=1

[Ψ1(µ t(xi),ωi j )] = ν, if ∀(Ψ1(µ t(xi),ωi j ) = ν),

same example ofΨ2 are:

• Maximum multi-membership resolution

− µ t+1(x j) = Max
i=1 to m

[
Ψ1(µ t(xi),ωi j )

]
,

• Arithmetic mean multi-membership resolution

− µ t+1(x j) =

[
m

∑
i=1

Ψ1(µ t(xi),ωi j )

]

m
,

4. CASE STUDY

Consider theFFA in Figure 4 with several transition overlaps
and several output labels. It is specified as:

G̃= (X,Σ,δ ,Y, x̃0,F),

The dashed line in Figure 4, between states 12 and 13 repre-
sents a failure event or critical event. The occurrence of event
′′ f ′′ bring the system in failure (or critical) mode correspond-
ing to statex13.

For instance, during the crisis management, the procedures
designed by one or more organizations for the crisis situations
can be applied, or partially applied or no applicable (no suit-
able) for the current situation. This latter case can be modeled
by the statex13 in Figure 4 and for the reconfiguration, the
model of crisis must be evolving and accepting missing in-
formation, whose the advantage to develop an evolving fuzzy
finite state automaton for crisis management.

In this example

X = {x0,x1, · · · ,x13} , the set of states,

Σ = {a,b,c,d,e} , set of input symbols,

Y = {θ ,α,β ,γ,µ ,ρ ,κ ,ξ ,η} , set of output,

x̃0 =
{

x0,µ t0(x0)
}
, fuzzy subset initial state,

∆X = {0.04,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1},

λ (xi) =

{
F1, if i=13 ,

N, otherwise

we suppose,µ t0(x0) = 1 at the beginning and̃x0 = {(x0,1)}
and all the othermvare computed by using the functionΨ2

and/orΨ1.

Assuming that̃G starts operating at timet0 and the next three
input are”a, e, d” respectively (one at a time), active states
and theirmv′sat each time step are as follows.

x0/θ

x1/α

x2/β

x3/γ

x4/µ

x5/ρ

x6/µ

x7/µ

x8/κ

x9/µ

x10/ξ

x11/η

x13/ξ

x12/η

a/0.1

b/0.7

a/0.5

a/0.09

c/0.06

c/0.1

e/0.3

e/0.5

a/0.02

d/0.6

c/0.8

d/0.2

e/0.7

e/0.4

d/0.04

g/0.8

b/0.2
a/0.2

e/0.9

f/0.4

b/0.3

b/0.3

µ t0(x0) = 1

Figure 2. Fuzzy discrete event system model.

• at time t0
Xact(t0) = {(x0,µ t0(x0)} with µ t0(x0) = 1,






Xsucc(x0,ak) =

{
{x1,x2} if ak = a,

{x3} if ak = c,

Xsucc(x0,
all
→) = {x1,x2,x3} .

Xsucc(x j ,
all
→) is the set of all (possible) successors of state

x j ,

• at time t1, input is ”a”
Xact(t1) = {(x1,µ t1(x1)),(x2,µ t1(x2))} ,

and

Xpred(x1, t1) =
Xpred(x2, t1) =

}
{x0}
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and|Xpred(x1, t1)| is the number of predecessors of state
x1, and

|Xpred(x1, t1)|= |Xpred(x2, t1)|= 1,

and when
|Xpred(x j , t)| ≤ 1,

the statex j have a singlemvandΨ1 is used to compute
µ t(x j) for the statex j , othewise the functionΨ2 is used.

Themvof x1 andx2 is computed by:
µ t1(x1) = Ψ1(µ t0(x0),δ (x0,a,x1) = Ψ1(1,0.1),
µ t1(x2) = Ψ1(µ t0(x0),δ (x0,a,x2) = Ψ1(1,0.5),

and

Xsucc(x1,
all
→) = {x4,x5,x6,x7} ,

Xsucc(x2,
all
→) = {x6,x7,x8} ,

• at time t2, input is ”e”
Xact(t2) = {(x4,µ t2(x4)),(x7,µ t2(x7)),(x8,µ t2(x8))} ,

and

µ t2(x4) = Ψ1(µ t1(x1),δ (x1,e,x4),
µ t2(x7) = Ψ1(µ t1(x1),δ (x1,e,x7),
µ t2(x8) = Ψ1(µ t1(x2),δ (x2,e,x8),

and

Xsucc(x4,a) = Xsucc(x7,d) = Xsucc(x8,d) = {x10} ,

and

Xpred(x4, t2) = Xpred(x7, t2) = {x1} ,
Xpred(x8, t2) = {x2} ,
|Xpred(x4, t2)|= |Xpred(x7, t2)|= 1 and
|Xpred(x8, t2)|= 1,

• at time t3, input is ”d”
Xact(t3) = {x10,µ t3(x10)} ,

and

Xpred(x10, t3) = {x4,x7,x8} , & |Xpred(x10, t3)| ≥ 1,
hence, the statex10 is forced to take several differentmv,
thenΨ2 is used to computeµ t3(x10).





µ1(t3) = Ψ1(µ t2(x4),δ (x4,d,x10)),

µ2(t3) = Ψ1(µ t2(x7),δ (x7,d,x10)),

µ3(t3) = Ψ1(µ t2(x8),δ (x8,d,x10)),

µ t3(x10) = Ψ2 [µ1(t3),µ2(t3),µ3(t3)] ,

to computeµ t3(x10), we can use Maximum multi-membership
resolution given by relation (3) or Arithmetic mean multi-
membership resolution defined by relation (3).

The fuzzy set of all active output,i.e., output labels together
with theirmv′s, at timet denoted asYact(t), is called the active
output set at timet, given by:

Yact(t) =
{
(yl ,τt (yl )

}
and Yact(Γ) =Yact(t0+ |Γ|),

whereτt (yl ) is the grade membership of the outputyl at time
t. In this paper,yl can be a state with multi-membership. For
example,

• at timet1

Yact(t1) =
{
(α,τt1(α)),(β ,τt1(β ))

}
,

=
{
(α,µ t1(x1)),(β ,µ t1(x2))

}
,

• at time t2, the active statex4 andx7 generate the same
output labelµ , i.e., see Figure 4

Yact(t2) =
{
(µ ,τt2(µ),(κ ,τt2(κ))

}
,

=
{
(µ , [µ t2(x4) µ t2(x7)]),(κ ,µ t2(x8))

}
,

most of applications, the output should be crisp. Therefore,
the output of a fuzzy system should be defuzzified in an ap-
propriate way to be usable by the environment and the outputs
are assumed to be observable.

A diagnoser must be able to detect and isolates faults and
failures (Sampath, Sengupta, Lafortune, Sinnamohideen, &
Teneketzis, 1995). In this paper, the diagnoserDG̃ is a finite-
state Automaton which takes the fuzzy output sequence of
the system,i.e., {(y1,τt1(y1), · · · ,(yk,τtk(yk))} as its input,
and based on this sequence calculates a setzk ∈ 2X−{ /0} to
which xi ∈ X must belong a time that pair(yk,τtk(yk)) was
generated. The diagnoserDG̃ is given by:

DG̃ = (Z,Y,ζ ,λ ,z0,Ω),

with

• Z is the set of standard diagnoser state,

• Y is the set of standard diagnoser input,
we recall, Y is the output of model̃G,

• λ is the set of standard dianoser output,

• ζ : Z×Y×→ Z×λ is the standard diagnoser state tran-
sition function,

• z0 is the start state set of the standard diagnoser,

• Ω ∈ Z is the (non-empty) set of terminal states

Let ζ1 andζ2 be the two projections ofζ of DG̃, with ζ1 and
ζ2 are given by




ζ1(zk,yk+1) = {zk+1 | ∃ λi ∧ (zk+1,λi) ∈ ζ (zk,yk+1)} ,

ζ2(zk,yk+1) = {λi | ∃ zk+1∧ (zk+1,λi) ∈ ζ (zk,yk+1)} ,

ζ (zk,yk+1) = (ζ1(zk,yk+1),ζ2(zk,yk+1)).

with λi = λ (zk+1) andzk ⊆ Z is the state estimate ofDG̃ at
timek.

The diagnoser state transition is given by

5
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




(zk+1,λ (zk+1)) = ζ (zk,yk+1),

λ (zk+1) = ζ2(zk,yk+1),

zk+1 = ζ1(zk,yk+1),

= Xsucc(zk,
all
→)∩ζ1(zk,yk+1),

Figure 5 shows the standard diagnoser for the discrete event
system model of Figure 4, withz0 = {x0}. Each state of the
diagnoserDG̃, shown as a rounded box in Figure 5, is a set of
states of the system. An output symbol and a failure condi-
tion are associated with each diagnoser state. For instance, to
see the importance of having a complete model for the diag-
noser, we suppose at timek the output sequence′′θαµξ η ′′ is
observed, then the state estimate isz10 = {x11,x12} and sys-
tems condition fromz0 is λ (z10) =N. The successors of state
estimatez10 is: Zsucc(z10) = z11 = {x13} or Zsucc(z10) = z0 =
{x0}. If the next output symbolyk+1 is anything other thanξ
or θ , we get

Zsucc(z10) = Xsucc(z1,
all
→)∩ζ1(z1,yk+1) = /0,

that means the observation generated afteryk is inconsistent
with the model dynamic and the diagnoser cannot proceed.
When the output sequence is inconsistent with the model of
the system, then we have to revise the model ofG̃ by adding
new state(s) and/or new transition(s) respectively inX andΣ,
that we believe are missing in the nominal model. This sit-
uation may be interpreted as a normal or abnormal situation,
because we add new states and/or transitions. Detecting and
adding new states and/or transitions inX and/or inΣ of G̃
is called learning diagnoser. A algorithm of a learning diag-
noser is presented in the next section.

5. A ALGORITHM OF A LEARNING DIAGNOSER

A learning diagnoser is a standard diagnosis that tolerant of
missing information,i.e., transitions and states, about the sys-
tem to be diagnosed. The learning diagnoser must be able to
learn the true model of the system̃G, when missing informa-
tion about the system are presented.

Let anewbe a new event detected and not found inΣ of system
G̃, then the new set of input events ofG̃ is given by

Σnew= Σ∪{anew} .

A transitionxd
anew−→ xa is ordered pair of state denoting a tran-

sition from the statexd to the statexa. Let ϕ ′ be the extend
function transition ofϕ of the system̃G such that

ϕnew(xd,ai) =






xa if ai = anew &





Σ← anew,

and

X← xa if xa /∈ X,

ϕ1(xd,ai) otherwise,

Dk

θ/τ t(z0)

x0

λ(z0)

α/τ t(z1)

x1

λ(z1)

β/τ t (z2)

x2

λ(z2)

γ/τ t(z3)

x3

λ(z3)

µ/τ t(z4)

x4,x6,x7

λ(z4)

ρ/τ t(z5)

x5

λ(z5)

µ/τ t(z6)

x6,x7

λ(z6)

κ/τ t(z7)

x8

λ(z7)

µ/τ t(z8)

x9

λ(z8)

ξ/τ t (z9)

x10

λ(z9)

η/τ t(z10)

x11,x12

λ(z10)

yk/τk(zk)

zk

λ(zk)

ξ/τ t (z11)

x13

λ(z11)

Figure 3. Diagnoser of fuzzy discrete event system model
shown in Figure 4,λ (zi)i=0 to 10 = N andλ (z11) = F1.

Let be a dynamic model̃G′ of G̃ defines as

G̃′ = extend(G̃,X′,Π) = (X∪X′,Σ∪Π,Y,ϕnew, x̃0).

And G̃′ is called the extension of̃G by X′ andΠ, with X′ is
the set containing all new states andΠ is the set containing all
new transitions founded. The set transitionΠ is empty, if the
modelG of the system is consistent with the output sequence.

The algorithm presented in Algorithm 1 is the algorithm for
the learning diagnoser and evolving fuzzy state automaton.

6. APPLICATION EXAMPLE

Nowadays, the crisis management is an important challenge
for medical service and research, to develop new technical of
decision support system to guide the decision makers. The
crisis management is a special type of collaboration, there-
fore several aspects must be considered. The more important
aspect in a crisis management is the coordination (and com-
munication) between different actors and groups involved in
the crisis management. Hence, the capacity to take fast and
efficient decisions is a very important challenge for a better
exit of crisis. Because the context and characteristics of crisis
such as extent of actors and roles, the management becomes
more difficult in order to take decisions, but also to exchange
information or to coordinate different groups involved. The
difficult to take a decision can be also due to random factors,
such as stress, emotional impact, road conditions, weather
conditions, etc. During the crisis management, it is hard to

6
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initialization;
while input is ak and active state time t−1 is xi do

read symbol ak;
x j = ϕ1(xi ,ak);
y j = yk+1 = ϕ2(xi ,ak);
Xsucc(xi ,ak) = {∀ xs∈ X | xs∈ ϕ1(xi ,ak)} ;
if xi is the start state and time is t0 then

Xpred(x j , t) = /0;
else

Xpred(x j , t) =
{
∀ xi ∈ X | x j ∈ ϕ1(xi ,ak)

}
;

end
if (Xsucc(xi ,ak)∩ζ1(zk,yk+1) 6= /0) then

if (|Xpred(x j , t)|= /0) then
Xact = x̃0;
Xsucc(x0,ak) =

{
∀ xs∈ X | xs∈ ϕ1(x j ,ak)

}
;

else if(|Xpred(x j , t)|= 1) then
single mv of all active states;
µ t(x) of each state x∈ Xact is computed by;
µ t(x j) = Ψ1(µ t(x j),δ (xi ,ak,x j)) ;
Xact =

{
(x j ,µ t(x j)

}
;

Xsucc(x j ,ak) =
{
∀ xs∈ X | xs∈ ϕ1(x j ,ak)

}
;

else
active state have been forced to take different
several mv;
m= |Xpred(x j , t)| ;
for i = 1 to mdo

µi = Ψ1(µ t−1(xi),δ (xi ,ak,x j));
end
µ t(x j) = Max(µ1,µ2, · · · ,µm−1,µm);
Xact =

{
(x j ,µ t(x j)

}
;

Xsucc(x j ,ak) =
{
∀ xs∈ X | xs∈ ϕ1(x j ,ak)

}
;

end
Diagnoser method;
go toDk;

else
go to inconsistency;
detection of new transition and/or state;
Xsucc(xi ,ak)∩ζ1(zk,yk+1) = /0;
we suppose for all new transition;
δ (xi ,ak,x j ) = 0;
if (x j ∈ X&ak ∈ Σ) then

new transition between xi(past state) to xj
(active state);

else ifx j ∈ X & ak /∈ Σ then
updateΣ;
Σ← ak ;

else
update X andΣ;
X← x j ;
Σ← ak ;

end
end

end
Algorithm 1: Evolving fuzzy finite state automaton

say exactly an actor’s stress has changed from low to high.
For this reason, it is important to integrate these factors in the
model of crisis management for decision-making. TheFFA
presented above is used to takes into account the stress of the
actors involved in the crisis management.

6.1. Our FFA model of crisis management

In this paper, we propose a model (no generic model) applied
on the teamSAMU1 from Hospital of Troyes in France, dur-
ing TEAN2 exercise.

The team ofSAMU is composed of the following actors:

• Rear Base3 (RB): Operations Coordination,

• Communication Center (CC): collecting information and
sharing withRB,

• First Team: first intervention, sending the first evaluation
(result) about the crisis to theCC,

• Advanced Medical Post (AMP): Intervention and evacu-
ation of victims, sending the complete evaluation to the
CC.

TheFSAof theTEANexercise is shown in Figure 4.

x0/y0

x1/y1 x2/y2

x3/y3

x4/y4

x5/y4

x6/y6

x7/y7

a/0.01

c/0.2

c/0.1

b/0.3

h/0.8

d/0.6 b/0.6

d/0.35 b/0.4

e/0.7

g/0

anew

f/1

Figure 4. A example of modelisation of a scenario of crisis
with finite state automaton and the weight corresponds to the
stress of actors involved.

The discrete event model showed in Figure 4 forTEANex-
ercise, allows one hand to monitor the communication and
coordination between various groups involved in crisis man-
agement, and also to supervise some specific behaviors that
are critical situations. Thus the factor’s stress of the actors
involved is estimated for decision-making.

Consider theFFA in Figure 4 with several transition overlaps
and several output labels. It is specified as:

G̃n = (X,Σ,δ ,Y, x̃0,F),

1SAMU is Service Emergency Medical Assistance.
2TEAN is the name of the exercise.
3Other word, Rear Base is decision makers
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The dashed line in Figure 4, between states 6 and 7 represents
a critical event. The occurrence of event′′ f ′′ bring the system
in or critical mode corresponding to statex7 andωi, j is the
stress of actors involved in crisis management.

In this example

X = {x0,x1, · · · ,x7} , is the set of states, which occur with different,

membership degree (µ t(x0), · · · ,µ t(x7)).

Σ = {a,b,c,d,e, f ,g,h} , set of input symbols,

Y = {y1,y2,y3,y4,y6,y7} , set of output events,

x̃0 =
{
(x0,µ t0(x0) = 0)

}
, starting state,

λ (xi) =

{
F1(abnormal mode), if i=7 ,

N(normal mode), otherwise.

Table 1. List and definition of the states.

States Definition
x0 No crisis
x1 Onset Crisis
x2 Information received at the communication center (CC)
x3 Information arrived at the police center
x4 Information received at the Emergency department
x5 Information arrived at the Advanced Medical Post (AMP)
x6 Information received at the accident area
x7 The model is unpredictable for this crisis situation

Table 2. List and definition of outputs.

Output labels Definition
y0 No coming call
y1 Accident is happen
y2 Information arrived to CC
y3 Information arrived to police office
y4 Preparation of the Intervention Team
y5 Preparation of the AMP
y6 New Actors arrived in the accident area
y7 uncontrolled situations (conditions)

Table 3. List and definition of the transitions (events).

events Definition
a A call from (or about) a accident
b Sending Team to the accident site
c Sending information to CC and police office
d Sending information to Emergency
e Sending the first evaluation to CC
h Sending final evaluation to CC
f End of crisis management without success
g End of crisis management with success

In this example, we suppose at the beginningµ t0(x0) = 0 (i.e,
stress level is very low) and all the othermvare computed by
using approaches presented in section 3.

Assuming that̃Gn starts operating at timet0 and the next three

input are ”a” respectively (one at a time), active states and
theirmv′sat each time step are as follows.

• at time t0
Xact(t0) = {(x0,µ t0(x0)}

{
Xsucc(x0,a) = x1,

Xsucc(x0,
all
→) = {x1} .

Xsucc(x j ,
all
→) is the set of all successors of statex j ,

• at time t1, input is ”a”
Xact(t1) = {(x1,µ t1(x1))} ,
Yact(t1) = {(y1,τt1(z1))}, andτt1(z1) = τt1(x1) = µ t1(x1)
at time t1 the weight corresponding to the stress of the
people involved isω0,1 = 0.01 and this weight is esti-
mated by the expert of the crisis management.
Xpred(x1, t1) = x0, and|Xpred(x1, t1)| is the number of pre-
decessors of active statex1. |Xpred(x j , t)| = 1, then, the
active statex1 is not forced to take multi-membership.
Xsucc(x1,c) = {x2,x3} ,

6.2. Diagnoser model ofTEANexercise

The standard diagnoser for the fuzzy discrete event system of
crisis management model illustrated in Figure 4 is shown in
Figure 5, withz0 = {x0}. Each state of the diagnoserDG̃n

,
shown as a rounded box in Figure 5, is a set of states of
the system. An output symbol corresponding to the oper-
ating condition of the system is associated with each diag-
noser state. For example, to see the importance of having
a complete model for the diagnoser, we suppose at timet1
the output sequence′′y0y′′1 (seeFigure 4) is observed, then
the state estimate isz1 = {x1} and the operating condition
from z0 is λ (z1) = N. The successors of state estimatez1 is:
Zsucc(z1) = {z2,z3}= {x2,x3}. If the next output symbolyt+1

is y0, we get

Zsucc(z1) = Xsucc(z1,
all
→)∩ζ1(z1,yt+1) = /0,

that means the observation generated aftery1 is inconsistent
with the model dynamic and the diagnoser cannot proceed.
When the output sequence is inconsistent with the system’s
model, then we have to revise the model ofG̃n by adding in
this application a new transition (anew) from the statex1 to the
statex0(s) (see Figure 4). This situation may be interpreted
as a normal or abnormal situation. Detecting and adding new
states and/or transitions inX and/or inΣ of G̃ is called learn-
ing diagnoser.

7. CONCLUSION

In this paper, we have dealt with the failure diagnosis of fuzzy
finite state automaton for systems operating in non-stationary
environment. We have presented in our paper, the definition
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Dk

yk/τ t
zk

zk

λ(zk)

y0/τ t
z0

New transition (anew)

x0

N

y1/τ t
z1

x1

N

y3/τ t
z3

x3

N

y2/τ t
z2

x2

N

y4/τ t
z4

x4

N

y4/τ t
z5

x5

N

y6/τ t
z6

x6

N

y7/τ t
z7

x7

F1

Figure 5. Diagnoser of fuzzy discrete event system model
shown in Figure 4.

of a crisp discrete event system and fuzzy discrete event sys-
tem. The main advantage of fuzzy finite state automaton, to
handle imprecise and uncertain data is presented. We have
formalized the construction of the learning diagnoser based
on evolving fuzzy finite state automaton that are used to per-
form fuzzy diagnosis. In particular, we have propose a al-
gorithm for learning diagnoser based on evolving fuzzy fi-
nite state automaton that allows to add new transitions and
states. The newly proposed diagnoser approach allows us to
deal with the problem of failure diagnosis for fuzzy discrete
event system, which many better deal with the problem of
fuzziness, impreciseness and uncertainness in the failuredi-
agnosis.

The potential application of learning diagnosis based on fuzzy
finite state automaton is in solving the ambiguity in a fault di-
agnosis problem especially in the case of multiple faults.

Future work will focus on the proposal of fuzzy states of crisis
management by using fuzzy finite automaton that takes into
account of a random vector as such the stress, weather con-
dition and emotional impact of the actors involved in crisis
management.
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