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ABSTRACT 2013). Discrete event system theory, particularly on mod-
eling and diagnosis, has been successful employed in many

. . ; . . areas such as concurrent monitoring and control of complex
stationary environment is a challenging task in complex sys . .
. . system (Cao & Ying, 2005). Usually, a discrete event system
tems such as Nuclear center, or multi-collaboration such . .
crisis management. A discrete event system or a fuzzy dis- modeled by Automaton (Dzelme-Berzina, 2009; Mukher-
9 ' . y Y Q%% & Ray, 2014) or Petri Net (Patela & Joshi, 2013). Au-
crete event system approach with a fuzzy role-base may re- ) N
S . . 7 fomaton (or more precisely a finite state automaton) are the
solve the ambiguity in a fault diagnosis problem especially fime example of aeneral computational svstems over dis
in the case of multiple faults (or multiple critical situatis). P P 9 P Y

The main advantage of fuzzy finite state automaton is thaﬂi?:taetizﬁa(?risorir;ds hfg\;/goé l\l/cl):ghgrsitc;r;/ht;c&tih én Atfr:]ZOriryzé(I)nldl)c’:l b-
their fuzziness allows them to handle imprecise and unicerta P ' - vogharl, ' ' '

data, which is inherent to real-world phenomena, in the formA finite state automaton is an appropriate tool for modeling

of fuzzy states and transitions. Thus, most of approaches pr systems and applications which can be realized as finitd set o

posed for fault diagnosis of discrete event systems reuire states and transition between them depending on some input

. strings (Doostfatemeh & Kremer, 2004). And, the behavior of
complete and accurate model of the system to be diagnoseqg. . .
iscrete event system modeled by an automaton is described

However, in non-stationary environment it is hard or impos—b the lanauage generated by the automaton
sible to obtain the complete model of the system. The focus’ guageg y u '
of this work is to propose an evolving fuzzy discrete eventDiscrete event systems are divided into two categoriespcri
system whose an activate degree is associated to each actiliscrete event system and fuzzy discrete event system. A
state and to develop a fuzzy learning diagnosis for incotaple crisp discrete event system is usually described by a deter-
model. Our approach use the fuzzy set of output events of theninistic automaton (Luo, Li, Sun, & Liu, 2012) and fuzzy
model as input events of the diagnoser and the output of atate is the extension of crisp discrete event system byosrop
fuzzy system should be defuzzified in an appropriate way tang fuzzy state and every state transition is associateu avit

Nowadays, determining faults (or critical situations) omn

be usable by the environment. possibility degree, called in the following membershipual
Thus, the membership value can be defined as the possibility
1. INTRODUCTION of the transition from current (active) state to next stdtee

A great number of svstems or situations can be naturall Mbwmain advantage of fuzzy finite state automaton is that their
gre Y . Y fuzziness allows them to handle imprecise and uncertaa) dat

as d!screte event systems. A ousc_rete event system is a d /hich is inherent to real-world phenomena, in the form of

namic s_ystem whose the behavior is governe_d by occurren%ﬁzzy states and transitions. In literature, many appbcedf

of physma] events that cause abrupt changes in the stéte Oftfuzzy discrete event system had been proposed (Gerasimos

system (Liu & Qiu, 2009a; Cassandras & Lafortupe, 1999;2009' Luoetal., 2012; Sardouk, Mansouri, Merghem-Bowaahi ’

Moamar & Billaudel, 2012; Traore, Moamar, & Billaudel, & Gaiti, 2013). Thus, one of the interesting charactersstit

Moussa Traoré et al. This is an open-access article disédbunder the fuzzy automaton is the possibility of several transitiorsri
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from one current fuzzy state lead to the different next fuzzy 2. CRISP DISCRETE EVENT SYSTEM
states smgltaneously and con_sequently several outpat IabA crisp discrete event system is usually described by a-deter
can be activated at the same time (Doostfatemeh & Kremerministic automatois — {X,5. .Y, %, F}, where
2005). For this reason, fuzzy discrete event is very adapted RS
resolve the ambiguity in a fault diagnosis problem esphcial « X is the set of states

in the_case of multiple faults. In this paper, t_hese outpahéy X = {X0, X1, s X1, %},

constituted of a fuzzy set are applied as input event for our i )

diagnoser. Most of applications, the output should be crisp * 2 is set of input symbols,

Therefore, the output of a fuzzy system should be defuzzified Z={ag,a,  *,a8m-1,am},

in an appropriate way to be usable by the environment. Thus. ¢ : X x ¥ — X is the transition function,

the outputs are assumed to be observable. - Y is the set non-empty finite set of output,

The diagnosis of discrete event systems is a research area Y ={yo.y1,-,Yi-1.Vi },
that has received a lot of attention in the last years and has
been motivated by the practical need of ensuring the correct
and safe functioning of large complex systems (Cabasino &* F C X s the (possibly empty) set of accepting or terminal
Alessandro Giua, 2010) or complex situation (like crists si states,

uation) (Tr"’.‘ore et "’?'-' 201.3)' Hence, th? use of _finite Stal§e event sek includes the set of failure events (or critical
automaton in fault diagnosis tasks has gained particutiem-at events)s; (Kwong & Yonge-Mallo, 2011). In addition to

tioninthe case of discrete eventdynamic systems (Gerasimqhe normal situation (modey, there arep critical situation

2009). Although, most of approaches proposed in Iiteratur?orfailure mode),- - - ,Fp that describe the evolution of the
for fault diagnosis of discrete event systems require a COMEondition’s system’. Wé genote the condition set of the situa
plete and accurate model of the system to be diagnosed. Howsn b

ever, the discrete event model may have arisen from abstra
tion and simplification of a continuous time system or thioug
model building from input-output data. As such, it may not X =XNUXg U---UXg,.

capture the dynamic behavior of the system completely. &her

fore, in this paper, we attempt to develop a diagnosis app, (Traore et al., 2013), we proposed the extension of the tra
proach based on fuzzy automaton for incomplete model injtjon functiong represented ag : X x = — X x Y.
non-stationary environm_ent. For most of real-world applic | ot ¢ and@, be the two projection op such asp; gives the
tions operate in non-stationary environment. state reached from a statec X and a given inpugy € = and

The diagnosis approach proposed in our paper is differerf2 defines the output sequence from statnd inputax. The
from the approach proposed in (Kwong & Yonge-Mallo, 2011 gXpression of; and¢ are given by

In our paper, the diagnoser is a finite-state Automaton which _ . _ o _

takes fuzzy output sequence of the system as its input. Here, $1(x,a) = {x; | Fyj such thatx;,yj) € (%, a) } ,

the learning diagnoser is constructed off-line and theriag $2(xi,a) = {yj | 3% such thatx;,yj) € ¢ (%, a) },
sis is performed on-line using input and output data gener. rex x: € X anda, € = andy; € Y. The new definition
ated by system’s model. The on-line diagnosis system allows, 0 is: A ="
to build an evolving fuzzy finite state system by updating the '
set of states and/or the set of input symbols. The new states
and/or transitions detected by the diagnoser is validagethb

expert of the system or situation.

Xo € X is the start state and

§= {N,Fy,---,Fp}, inthis case, the state set partitioned into

o (X, a) = (d1(Xi,a), b2(Xi,a)).

These two projection may be extended to take input sequence,
for example:x;j € ¢1 (X, g; € *) and/or output sequence for
The potential application of learning diagnosis based amju  €xample:oy € $2(xi, 0 € 2*), whereg; = a8, - -- g andoy =

finite state automaton is in solving the ambiguity in a faidtd Yoyi---Yn. Z* is a set of all strings formed by eventsin
agnosis problem especially in the case of multiple faults. ~ exampleay € Z, then,ajaz---a € Z*.

This paper is organize as follows. In section 2 , we present he behavior of5 is described by the language generated by
the required background of crisp discrete event system. W& denoted asZ’(G) or simply by.# (Liu & Qiu, 2009b).
describe the general definition for fuzzy discrete evertesys

in section 3 . The standard diagnoser is presented in sectioB- FUZZY DISCRETE EVENT SYSTEM

?‘ Thef_a!gonthm of the learning d'agn03'§ based on evolving: ;5 giscrete event systems as a generalization of (crisp)
fuzzy finite state automaton is proposed in section 5. Leangjiscrete event systems have been introduced in order that it
ing diagnoser application to crisis management is predentes ocsible to effectively represent uncertainty, impsesi,

in section 6. and vagueness arising from the dynamic of systems. A fuzzy
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discr_ete event. sy_stem ha_s begn modelled by a fuzzy automgbliowing, all successors set of is denoted bxb(succ(Xj,a—”>
ton; its behavior is described in terms of the fuzzy languagg, when the next state depend to the occurrence of different

generated by the automaton (Cao & Ying, 2006). events.

A Fuzzy Finite AutomatonRFA) is a 6-tuple We use the same notation for the active state, when the upon
. o entrance is a strin§. The active state set of the strifgis
G=1{X,%,5,Y,%,F}. iven by

i The fuzzy subset : X x = x X — [0 1] is a function, Xact(T") = Xact(to+[T)),

called the fuzzy transition function. A transition from where|l'| represent the length 6F.
statex; (current state) to; (next state) upoay with the

weightaj is denoted asd(x;, a, Xj) = wj, Definition 1 A fuzzy sef\x defined on a set X (discrete or
i Xp € Xis the set of initial states. continuous), is a function mapping each element of X to a
unique element of the intervil 1], Ax : X — [0 1]. The mem-

One of the interesting characteristics BFA is the possi- ) . .
g P bership value (mv) of the statex X at time t is denoted as

bility of several transitions from different current (ortze) A
states lead to the same next state simultaneossiHgure (i),

1.(a)). Thus, the possibility of several transitions fromeo o ) ) ) )
current states lead to the different next states simuliasigo FOr €xample in Figure 1.(a), at time tirhe the active state is
as shown in Figure 1.(b), and consequently several output la%ect(t1) = {X1, Xg, X13} andXsucdx1,1) = {X3}, Xsucd*s, 1) =
bel can be activated at the same time (Doostfatemeh & KrelXs} @ndXsuedx13,1) = {xa}, and at time time, the active

mer, 2005). It is possible to have more than one start state!ate iXaai(t2) = {X3} andXpred(X3,t2) = {1, Xs, X13}, that
with FFA. mean the states is forced to take several differemtv at this
time. Hencexs is a state with multi-membership, that we

14 (x14) = 0.6 will call in the following multi-membership state.

' (x;) = 0.01 H'3(xs) = 0.4

In Figure 1.(b), eacmv ut*1(x;) of the statex; at timet + 1
H4(x7) = 025 is computed by using the functidd;, named augmentation
transition function. The functiol’; should satisfy the two
following axioms.

1. 0<Wi(p'(x),0(x,ak,Xj)) <1,
2. LlJl(O, O) =0 anlel(l, 1) =1

U (x0) = 0.5

(b)
H2(xs) = [02 0.4 005 To computep'*1(x;), the function®; use two parameters:
ut(x) at timet and the weighty; of the transition.

Figure 1. A example of FA.

same example d¥; are:
when an inpuby occurs at time, all active state at this time,

are those states to which there is at least one transitioneont ° Arithmetic Mean

input eventax. Then, the fuzzy set of all active state at time ) = Wy (ut(x). 8(x: _

t is called active state set at tieA active state set denoted B (X)) 1 (Il ()fl)v (Xhakaxj)) 5
Xact IS consisted of state and theiv's. The definition 0fXact = Mean(u' (%), wj),

is given by: (%) + wj

Xact(t) = {(vaﬂt (XJ)) [3(x € xpred(xj)vak €EI)AXj € xsuc&xivak)}v _ 2

Xpred(Xj) = Xpred(Xj,t) and ¢ Geometric Mean

Xored(Xj,t) = {X | I8 s.txj € a(x,8) A Xj € Xact(t) }, — (%)) = W (H'(%), 6%, 8. X})) ,
XSUC((Xhak) = {X] ‘ Xj € ¢1(X|ak)} = GMear{IJt()Q),QJ),

O(Xi, 8, Xj) = Wi,

For example in Figure 1.(a)
01(x1,1) = ¢1(xg,1) = P1(X13,1) = X3. wherep!(x;) is themvof the corresponding predecessokpf

wherey; is the state at time— 1, ' (x;j) is the membership of andd (X, & X)) = ;.

statex; at timet, Xyred(Xj,t) is all predecessors set of active Themvof each active state is used as the level of activation of

statex; andXsucd Xj, &) is all successors set of the stajeon  each active state and the active state can be multi-menipersh

input symboby. The successofsucd X, a) is the set of alk; state. However, in this paper, we need a single value for each
which will be reached via transition functi@r(x;,ax). Inthe  active state. For this reason, the functi¢f is introduced
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to compute the singlmv corresponding to the state that was In this example

forced to take severahv by these predecessors. The single

membeship valugi'+1(x;) of each multi-membership state X = {X0:X1,++,X13}, the set of states

given by: > ={a,b,c,d,e}, setofinputsymbols
Y={6,a,B,y,u,p,k,&,n}, setofoutput

Xo = {Xo0, U (X0)}, fuzzy subsetinitial state

Ax = {0.04,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1},

t+1 0 t
) = Wal Wi (k) )
wheremis the number of simultaneous transitions from states
X; to statex; prior to timet + 1.

The functionW, should satisfy the minimum requirements Alx) = Fy, if ':1?’ ’
following axioms: N, otherwise

we supposeu’d(xg) = 1 at the beginning angh = {(x0,1)}

m and all the othemvare computed by using the functiéity

1. 0< _‘P% Wa(p' (%), wj)] <1, and/ory;.
i=

Assuming thaG starts operating at tintg and the next three
2. W@ =0 input are”a, e, d” respectively (one at a time), active states
' ¢ ’ and theimvs at each time step are as follows.

3. W Wk (6). a))] = v, if V(W (), a) = V),

same example d¥, are:

e Maximum multi-membership resolution

— p ) = Max [Wai(p'(%),@j)],

i=1tom

» Arithmetic mean multi-membership resolution

_ IJI+1(XJ ) —

)

_i%(u‘(w),m;)
m

4. CASE STUDY Figure 2. Fuzzy discrete event system model.

Consider thé=FAin Figure 4 with several transition overlaps _
and several output labels. It is specified as: * attimetp
_ Xact(to) = { (X0, H(xo)} with 110(x0) = 1,
G = (Xaza 67Y1i07 F)7
XX} if a=a,

The dashed line in Figure 4, between states 12 and 13 repre- Xsued X0, &) = { (%) it a—c

sents a failure event or critical event. The occurrence efiev
"£" bring the system in failure (or critical) mode correspond-

1|
. Xsucd X0, =) = {X1,X2, %3} -
ing to statex;s. |
al

For instance, during the crisis management, the procedures XsuedXj, =) is the set of all (possible) successors of state

designed by one or more organizations for the crisis sitnati % ) ) )

can be applied, or partially applied or no applicable (n¢-sui * attimety, inputis "a”

able) for the current situation. This latter case can be rieode Xact(t1) = { (¢, K (x1)), (%2, M (x2)) } ,
by the statex;3 in Figure 4 and for the reconfiguration, the and

model of crisis must be evolving and accepting missing in-

formation, whose the advantage to develop an evolving fuzzy Xpred(X1,t1) =

finite state automaton for crisis management. Xpred(X,t1) = } {xo}
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and|Xpred(X1,t1)| is the number of predecessors of statewheret!(y;) is the grade membership of the outguat time

X1, and t. In this papery; can be a state with multi-membership. For
example,
|Xpred(X17t1)| = |Xpred(X27t1)| =1
and when e attimet;
Xprealxj Ol < 1, Yace(ta) = {(a, 7(a)), (B, T9(B))}
the statex; have a singlenvandW¥; is used to compute _ {(a i (x0)), (B “tl(xz))}

pt(x;) for the statex;, othewise the functiok; is used.
e attimety, the active state, andx; generate the same

Themvof x; andx; is computed by: output labelu, i.e., see Figure 4
I‘ltl(xl) = Lpl(uto(xo)a 5(X07a7 Xl) = L"’1(17 01)1
U (xp) = W1 (1 (x0), 8(%0,8,Xz) = W1(1,0.5), Yact(tz) = { (1, T2 (1), (K, T2(K)) }
and = {(1, (12 (xa) u207)]), (K, 12(xe))},
xsuc({xl, ) {Xa,X5, X6, X7}, most of applications, the output should be crisp. Therefore

the output of a fuzzy system should be defuzzified in an ap-
propriate way to be usable by the environment and the outputs
are assumed to be observable.

Xsucd X2, = ) {X6,%7,%8},
. attlmetz, |nput is"e”

Xact(t2) = {(xa, K2 (xa)), (X7, 2 (x7)), (Xg, H'? (Xg)) },
A diagnoser must be able to detect and isolates faults and

and failures (Sampath, Sengupta, Lafortune, Sinnamohideen, &
U2 (Xg) = W1 (U (x1),0(X1,€ Xs), Teneketzis, 1995). In this paper, the diagndsgris a finite-
U2 (x7) = Wi (U (xq), O(X1, € %7), state Automaton which takes the fuzzy output sequence of
2 (xg) = Wi(p' (x2), (%2, € Xg), the systemj.e., {(y1, T (y1), -, (Yk T*(¥k))} as its input,
and and based on this sequence calculates #se* — {0} to
which x; € X must belong a time that paiy, T (yk)) was
Xsucd X4,8) = Xsucd X7,d) = XsucdXs,d) = {X10} , generated. The diagnosB is given by:
and Dg = (ZY.{.A,20,),
Xpred(x4at2) = Xpred(x7at2) ={x¢},
Xpred(x&tZ) = {x2}, with
| Xpred(X4,t2)| = [Xpred(X7,t2)| = 1 and
|Xpred(Xe,t2)| = 1, » Zisthe set of standard diagnoser state,
* attimets, input |ts d « Y isthe set of standard diagnoser input,
Xact(t3) = {X10, H*(x10)} we recall, Y is the output of modél
and

« A isthe set of standard dianoser output,
Xpred(X10,t3) = {X4,%7,X8} , & [Xpred(X10,t3)| > 1,
hence, the state g is forced to take several differemty,

{ :ZxYx — Zx A is the standard diagnoser state tran-

thenW; is used to computg'(x;). sition function,
pa(ts) = Wi (K2 (xa), 5(xa,d, X10)), « 7z is the start state set of the standard diagnoser,
— to
a(ts) = ‘Pl(ﬂt (x7),0(x7,d,%10)), « Qe Zisthe (non-empty) set of terminal states
Ha(t3) = W1(H2(xs), 6(Xs,d,X10)),
U8 (x10) = Wo [Ua(t3), ta(t3), ua(ta)] , Let {; and{> be the two projections of of Dg, with {; and

{» are given by

to computeu's (x;0), we can use Maximum multi-membership - _ _
resolution given by relation (3) or Arithmetic mean multi- Q@0 Y1) = {21 [FA A (21, 4) € (2o Yiern)
membership resolution defined by relation (3). (26 Y1) = {Ai | 3zt A (B2, Ai) € {26 Y1) b

The fuzzy set of all active outpuite., output labels together (2 Yier1) = (§a(2e Yier1): €2(Zc, Y1)

with theirmVs, at timet denoted a¥act(t), is called the active  yjith A, = A (z11) andz C Z is the state estimate @ at
output set at tim¢, given by: timek.

Yact(t) = { (W, t(y)} and Yaa(T) = Yaat(to + [T, The diagnoser state transition is given by
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[ u/T(z)
(152 (Z1)) = € (% Vi) ex
A(Zer1) = $a(Z Yer1) e
Zer1 = {1(2 Yern) A(za)
\ "
= Xsucd Za: ) N 22 (2, Yies 1) a/t'(z) p/T'(25)
SUC 3 1 s Yk+1)5 @/rk(zk? ) > 6 /E Tt(le)\
Figure 5 shows the standard diagnoser for the discrete evebt{ % Az) A(z5) 13
system model of Figure 4, withh = {xo}. Each state of the Az (7t AMz11)
diagnoseDg, shown as a rounded box in Figure 5, is a set of > xox
states of the system. An output symbol and a failure condix(6/1'(z) ST - " :
tion are associated with each diagnoser state. For instamce [ BT (=) | M=) ) ‘E/TX(ZE’) N ”X/T )((210)
see the importance of having a complete model for the diag-{— > o [C 10 2
noser, we suppose at tirk¢he output sequenéd@auén” is N k)\(zz)j (/T (z)) A(20) \_ A (20))
observed, then the state estimate;ig= {x11,x12} and sys- ST
tems condition fronzy is A (z10) = N. The successors of state - ~ ] YE)
estimatezyg is: ZsucdZ10) = 11 = {X13} OF ZsuedZ10) = 20 = y/T(z3) 2
{Xo}. If the next output symboly, 1 is anything other thad J * L TN
or 6, we get 2 (z) H/T(2)
\_J L X9
Zsucd Z10) = Xsued 21, a_H)) N{1(z1, Y1) = 0, \ A) )

that means the observation generated aftés inconsistent . . .
with the model dynamic and the diagnoser cannot procee ;]gure 3. Dlagnoser_ c_)f fuzz;id|screte evenisystem model
T : - own in Figure 44 (z)i—oto10 = N andA (z11) = F.

When the output sequence is inconsistent with the model of

the system, then we have to revise the modeb dfy adding

new state(s) and/or new transition(s) respectivel mndz,

that we believe are missing in the nominal model. This sit-

uation may be interpreted as a normal or abnormal situation, G — extenc{é,x’, M) = (XUX,ZUM,Y, $new Xo)-

because we add new states and/or transitions. Detecting and _

adding new states and/or transitionsX¥nand/or inZ of G~ And G’ is called the extension @ by X’ and, with X' is

is called learning diagnoser. A algorithm of a learning diag the set containing all new states dnds the set containing all

noser is presented in the next section. new transitions founded. The set transitidris empty, if the
modelG of the system is consistent with the output sequence.

Let be a dynamic mod&’ of G defines as

5. A ALGORITHM OF A LEARNING DIAGNOSER The algorithm presented in Algorithm 1 is the algorithm for

A learning diagnoser is a standard diagnosis that tolerfant ahe learning diagnoser and evolving fuzzy state automaton.
missing informationi.e., transitions and states, about the sys-

tem to be diagnosed. The learning diagnoser must be able t6. APPLICATION EXAMPLE

learn the true model of the systeé®) when missing informa-

. Nowadays, the crisis management is an important challenge
tion about the system are presented. Y g P g

for medical service and research, to develop new technical o
Let anewbe a new event detected and not foun iof system  decision support system to guide the decision makers. The

G, then the new set of input events®fis given by crisis management is a special type of collaboration, there
fore several aspects must be considered. The more important
Znew= 2 U {@new} - aspect in a crisis management is the coordination (and com-

munication) between different actors and groups involved i
the crisis management. Hence, the capacity to take fast and
efficient decisions is a very important challenge for a lvette
exit of crisis. Because the context and characteristicsisisc

such as extent of actors and roles, the management becomes

A transitionxy Snew . is ordered pair of state denoting a tran-
sition from the statey to the statex,. Let ¢’ be the extend
function transition ofp of the systenG such that

5o if 3 = Bney & in: Snew more difficult in orderto_ take dgcisions, but aI;o to excleang
Prew(Xd, &) = ew . information or to coordinate different groups involved. eTh
XX if xag X, difficult to take a decision can be also due to random factors,
91(xg,8) otherwise, such as stress, emotional impact, road conditions, weather

conditions, etc. During the crisis management, it is hard to
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initialization;

while input is g and active state time-t 1is x do
read symbol g

Xj = ¢l(xi7ak);

Yi = Yir1 = P2(%i, &),

Xsued Xi, ) = {VxseX| Xs € ¢:_|-(Xiaak)} ;
if X is the start state and time ig then

| Xpred(xjat) =0;
else
| Xpred(Xj;t) = {V X € X|[xj€ ¢l(xi7ak)};
end
if (XsucdXi, @) N {1(Z, Yi1) 7 0) then
if (|Xpred(Xj,t)| = 0) then
Xact = Xo;
Xsued X0, &) = {V Xs € X | Xs € ¢1(vaak)} ;
Ise if (| Xpred(Xj,t)| = 1) then
single mv of all active states
ut(x) of each state x Xact is computed by
(X)) = WK (%)), (%, 8k, X)) ;
Xact = {(Xj, M'(X}) } ;
| XsucdXj, ) = {¥ %s € X | Xs € P1(xj,a) } ;
else

D

several my
M= [Xpred(Xj, )] ;
fori=1to mdo

| pi=Wa(p (%), 8(%, 8k, %) );
end
HH(xj) = Max(py, B2, -+ , km-1, Mm);
Xact = { (%, 1 (%)) } 5
Xsued Xj, &) = {VXS eEX|Xs€ ¢1(Xj,ak)} ;
end
Diagnoser method
go toDy;
else _ _
go to inconsistency
detection of new transition and/or state
XsuedXi, ) N {1(Z, Yir1) = 0;
we suppose for all new transitipn
O(Xi,a,Xj) =0;
if (x; € X&a € Z) then
new transition between (past state) to x
(active state)
else ifx; € X & ay ¢ Z then
updatez;
2 ay;
else
update X and;
X —Xj;
2
end
end
end

Algorithm 1: Evolving fuzzy finite state automaton

active state have been forced to take different

say exactly an actor’s stress has changed from low to high.
For this reason, it is important to integrate these factothé
model of crisis management for decision-making. Hi6A
presented above is used to takes into account the stress of th
actors involved in the crisis management.

6.1. Our FFA model of crisis management

In this paper, we propose a model (no generic model) applied
on the teanBAMU ! from Hospital of Troyes in France, dur-
ing TEAN? exercise.

The team oSAMU is composed of the following actors:

+ Rear Basé€ (RB): Operations Coordination,

e Communication Cente©C): collecting information and
sharing withRB,

« First Team: first intervention, sending the first evaluatio
(result) about the crisis to theC,

* Advanced Medical Post\MP): Intervention and evacu-
ation of victims, sending the complete evaluation to the
CC.

TheF SAof the T EANexercise is shown in Figure 4.

Figure 4. A example of modelisation of a scenario of crisis
with finite state automaton and the weight corresponds to the
stress of actors involved.

The discrete event model showed in Figure 4T&AN ex-
ercise, allows one hand to monitor the communication and
coordination between various groups involved in crisis man
agement, and also to supervise some specific behaviors that
are critical situations. Thus the factor’s stress of themct
involved is estimated for decision-making.

Consider thé=-FA in Figure 4 with several transition overlaps
and several output labels. It is specified as:

Gn = (xa za 61Y7"Xba F)7
1SAMU is Service Emergency Medical Assistance.

2TEAN is the name of the exercise.
3Other word, Rear Base is decision makers
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The dashed line in Figure 4, between states 6 and 7 represerntput are ‘a” respectively (one at a time), active states and

a critical event. The occurrence of evéiiit' bring the system
in or critical mode corresponding to stateandc ; is the

stress of actors involved in crisis management.

In this example

theirmvs at each time step are as follows.

e attimety
Xact(to) = {(¥0, H°(x0) }

X = {Xo0,%1, -+, %7}, is the set of states, which occur with different Xsucd X0, @) = X1,
membership degree((xo),--- , u' (x7)). Xsued X0, 25) = {x1}.
> ={ab,c,d,e f,g,h}, setofinputsymbols

Y = {y1,¥2,¥3,¥a,Ys,¥7}, Setof output events
%0 = { (X0, 1" (%) = 0)}, starting state

A(x) = Fi(abnormal modg if =7,
N = N(normal modg, otherwise

Table 1. List and definition of the states.

States

Definition

X0

No crisis

X1

Onset Crisis

X2

Information received at the communication center (CC)

Information arrived at the police center

X3
Xa

Information received at the Emergency department

X5

Information arrived at the Advanced Medical Post (AMP)

X6

Information received at the accident area

X7

The model is unpredictable for this crisis situation

Table 2. List and definition of outputs.

Output labels Definition

Yo No coming call

V1 Accident is happen

Yo Information arrived to CC

V3 Information arrived to police office

Va Preparation of the Intervention Team
Vs Preparation of the AMP

Ve New Actors arrived in the accident area
y7 uncontrolled situations (conditions)

Table 3. List and definition of the transitions (events).

events

Definition

A call from (or about) a accident

Sending Team to the accident site

Sending information to CC and police office

Sending information to Emergency

Sending the first evaluation to CC

Sending final evaluation to CC

End of crisis management without success

Q= I |O|T|D

End of crisis management with success

In this example, we suppose at the beginniffgxy) = 0 (i.e,
stress level is very low) and all the otheware computed by

using approaches presented in section 3.

XsuedXj, a—”>) is the set of all successors of state
e attimety, inputis’a”

Xact(t1) = {(x1, 4" (x1))},

Yaci(t1) = {(y1, 7%(21)) }, andt™ (z1) = 1'% (x1) = p* (x1)

at timet; the weight corresponding to the stress of the
people involved iswp 1 = 0.01 and this weight is esti-
mated by the expert of the crisis management.
Xpred(X1,t1) = Xo, and|Xpred(X1,t1)| is the number of pre-
decessors of active state. |Xpred(Xj,t)| = 1, then, the
active statex; is not forced to take multi-membership.

XsuedX1,€) = {X2,%3},

6.2. Diagnoser model off EANexercise

The standard diagnoser for the fuzzy discrete event system o
crisis management model illustrated in Figure 4 is shown in
Figure 5, withzg = {xo}. Each state of the diagnosBEn,
shown as a rounded box in Figure 5, is a set of states of
the system. An output symbol corresponding to the oper-
ating condition of the system is associated with each diag-
noser state. For example, to see the importance of having
a complete model for the diagnoser, we suppose at time
the output sequencéyy; (seeFigure 4) is observed, then
the state estimate i = {x;} and the operating condition
from zy is A (z1) = N. The successors of state estimatés:
ZsucdZn) = {22,z3} = {X2,X3}. If the next output symbaok 1
iS Yo, we get

Zsucdz1) = Xsued 21, a_H>) Nd1(z1,¥t41) =0,
that means the observation generated aftas inconsistent
with the model dynamic and the diagnoser cannot proceed.
When the output sequence is inconsistent with the system’s
model, then we have to revise the modelGfby adding in
this application a new transitioa{ey) from the state; to the
statexg(s) (see Figure 4). This situation may be interpreted
as a normal or abnormal situation. Detecting and adding new
states and/or transitions ¥aand/or inz of G is called learn-
ing diagnoser.

7. CONCLUSION

In this paper, we have dealt with the failure diagnosis offuz
finite state automaton for systems operating in non-station

Assuming thaG, starts operating at tintg and the nextthree environment. We have presented in our paper, the definition
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