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ABSTRACT 

A statistical method based on symbolic analysis is 

presented for health management of Synthetic Aperture 

Radar systems.  The approach, based on symbolic theory, 

develops statistical models of the underlying system 

dynamics using an underlying Markov assumption and 

tracks the change in model over time to determine system 

health.  The methodology was designed for minimal impact 

to legacy systems and required minimal computational 

effort in order to operate at radar data rates.  The approach 

was applied to radar phase history data corrupted with 

simulated degradation.  Two degradation mechanisms 

were studied: interference and array degradation.  In 

addition, the results of combined degradation were also 

studied in this work.   

 INTRODUCTION 

Health management of systems can result in the reduction 

of necessary man-hours and costs associated with 

maintenance of equipment.  In addition, a health 

management routine can be used to determine the 

remaining useful life of a system and to determine when to 

schedule upcoming repairs.  Data driven methods utilize 

data captured in real-time from the system in order to 

determine the current state of health of the system.  Data 

driven methods form underlying models of the system 

using this captured time series data.  These underlying 

models developed through operation of the system can then 

be used to quantify remaining health. 

The method was originally applied to monitoring the health 

of a dc-dc forward converter in order to predict the 

remaining useful life of the converter (Bower, Mayer, & 

Reichard, 2011)(Bower, Mayer, Reichard, 2008).  The 

Markov assumption is implied for the system under 

investigation from which statistical models are developed 

and tracked through time.  Increasing degradation results 

in perturbing the operational characteristics of the system 

which can result in a shift in the Markov process (Papoulis 

& Pillai, 2002).  This shift can be quantifiable and with 

proper training, predictable in the future for prognostic 

purposes. 

In this work, a symbolic approach was adopted for health 

monitoring of imaging radar payloads on Unmanned Aerial 

Vehicles (UAVs).  These radar platforms are complex 

systems difficult to model classically which makes the 

proposed data based approach ideal for health monitoring.  

The primary objective of this research was to determine the 

feasibility of applying such a method to the high data rates 

seen in an imaging radar platform which is a product of the 

pulse repetition rate of the radar at the desired sample rate 

and bandwidth of the return echoes.  In addition, the 

approach cannot interfere with the operation of the 

platform or radar system.  The methodology was tested 

with radar phase history data and two common issues with 

imaging radars, interference and array degradation were 

investigated.  The results are also expected to lead to an 

ability to discriminate between the two degradation 

mechanisms to assist in optimizing the operation of the 

radar payload.  This paper begins with a discussion on the 

Symbolic Analysis approach specifically applied to the 

imaging radar payload and all details of the approach are 

discussed.  In Section III, a brief review of Synthetic 

Aperture Radar and radar platforms is completed.  Section 

IV reviews the results obtained from the simulations and 

feasibility testing of the approach and the paper concludes 

with future work in Section V. 

 SYMBOLIC ANALYSIS 

Symbolic Analysis is a statistical pattern recognition tool 

based upon symbolic theory.  Most work in the symbolic 

realm deals with the development of optimal models to 

determine the trajectory of modeled system states (Daw, 

Finney & Tracy, 2003).  These methods are used to model 

complex and chaotic systems.  The resultant optimal 

model, known as the ε machine, has a variable dimensional 

structure whose dimensions were constantly adjusted 

depending on the data collected over time.  This variation 

in dimensionality made it difficult to determine deviations 
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between models developed through system usage.  In order 

to make meaningful comparisons between models, a 

machine was developed with a-priori fixed dimensional 

structure (Ray, 2004).  This fixed dimensional machine 

allows for meaningful comparisons between statistical 

models defined at different temporal points in the system’s 

life at the cost of optimality.  Using the SA approach, it is 

possible to generate a measure that quantifies the amount 

of degradation within a recorded observable.  The process 

of SA is shown in the block diagram of Figure 1.  The basic 

methodology requires four steps which will be detailed in 

the next sections. 

 

 
Figure 1. Symbolic analysis of time series data block 

diagram. 

 Data Capture 

Although the process of data capture might seem 

straightforward, the process requires some careful 

consideration.  First, the type of data and where it is 

captured must be known.  This entails the study of the 

underlying system in order to determine the common 

failure points of the system.  Once these failure points are 

known, the rate and length of the data to be recorded must 

be determined. 

Symbolic analysis requires two assumptions.  First, it was 

assumed that the degradation within the system 

monotonically increases.  This means that the system does 

not undergo ‘self-healing’ or is repaired during the 

monitoring process.  Limiting self-healing is important for 

the implementation of remaining health estimation.  

Secondly, it was assumed that the degradation mechanisms 

act slower than the system dynamics.  This assumptions 

states that when the system is observed and the time series 

data collected, that the degradation in the system during 

this period was assumed to be constant.  In this manner, a 

model of the system was developed based on the constant 

state of degradation.   

For the application to radar platforms, specifically SAR 

systems, the data implemented in the algorithm was the fast 

time scale which was developed from an individual pulse 

(phase history data).  The slow time scale was defined to 

be the pulse rate or repetition rate of the platform.   

 Symbolization 

The next step involves transforming the time series data 

into the symbolic domain.  This step can be thought of as a 

general re-quantization of the original data resulting in a 

coarser distribution.  Symbolization requires the 

determination of the number of partitions to be used as well 

as the type of partitioning.  The two most common types of 

partitioning include uniform partitioning (UP) and 

maximum entropy (ME) partitioning.  The choice in the 

number of partitions will depend on the time series data 

being analyzed as well as the type of degradation and 

features to be analyzed. 

The partitioning was kept invariant over the entire 

monitoring period such that the statistical models 

developed later in the system life can be directly compared 

to the baseline.  The baseline model was defined on the 

healthy state of the system. 

 Uniform Partitioning 

Uniform partitioning divides the range of the time series 

data into equal sized regions where the total number of 

determined partitions are defined as the set P.  Given the 

range of the time series data as U, the partition sizes are 

defined as 𝑈
𝑃⁄  and the boundaries developed from the 

range U.  Each partition region Pi was mutually exclusive 

and exhaustive over the range of the data. The probabilities 

of the partition occurrence in the uniform case are not 

necessarily equal; however, the partitioning structure was 

equal.   

To construct UP, the maximum and minimum of the time 

series data were evaluated and the resultant range was 

divided equally into P regions.  These regions are assigned 

a unique symbol to complete the partition description.  An 

example of UP on a sinusoidal waveform is shown in 

Figure 2. 
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Figure 2. Example of uniform partitioning of a sinusoid. 

 ME Partitioning 

The maximum entropy (ME) partitioning scheme was 

defined by the principle of entropy in determining the 

partition structures.  Recall entropy as shown in Eq. 1. 

 𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 (1) 

The entropy can be maximized by setting 𝑝(𝑥𝑖) =

𝑝(𝑥𝑗), ∀𝑖, 𝑗.  The logarithm to base 2 was used so that the 

unit of entropy is in bits.  In the time series data, 

accomplishing maximization of entropy in the baseline 

case was necessary to make sure all partitions (or symbols) 

have equal probability of occurrence.  The partition 

structure resulting from ME does not necessitate equal 

partitions as in the uniform case but does guarantee equal 

prior probabilities for the partitions in the baseline case.  A 

feature of the ME partitioning scheme is that the partitions 

boundaries are closer in regions of the data where there are 

a dense number of data points.  In regions where there are 

fewer date points, fewer partitions are generated in these 

areas.  An example of ME partitioning on a sinusoidal 

signal is shown in Figure 3.  For the ME case, the resultant 

probability of the symbols was equal compared to uniform 

partitioning whereas the partition regions are equal in size 

with unequal symbol probabilities. 

Once the partitions are defined each partition was labeled 

with a symbol from the alphabet S.  Given a time series X 

of length M, if 𝑥𝑖 ∈ 𝑃𝑖 , 0 ≤ 𝑖 ≤ 𝑀, then assign 𝑠𝑖 →
𝑥𝑖 , ∀𝑖;  𝑠𝑖 ∈ 𝑆.  By implementing the partition structure and 

assigning a unique symbol to each time series date point, 

the end result was called the symbol stream.  This is the re-

quantized time series data that is now transformed into the 

symbolic domain. 

 
Figure 3. Example of ME partitioning of a sinusoid. 

 Statistical Model Development 

Once the partitions have been developed and symbols 

assigned to each partition, the next step is to construct the 

statistical model based on the resultant symbol stream.  

This step consists of another parameter for the SA 

methodology, the depth parameter D.  The depth parameter 

controls the definition of model states.  States in the model 

are formed from D-length subsets of symbols.  Therefore, 

the total number of states in the algorithm given the number 

of partitions P and the depth D is shown in Eq. (2). 

 𝑁𝑠 = 𝑃𝐷 (2) 

As an example, assume a ternary partition scheme is 

implemented that results in three symbols; labeling them -

1, 0, and 1.  The methodology’s resultant statistical states 

depend on the number of symbols in the algorithm as well 

as the chosen depth.  The parameter depth adjusts the 

memory of the resultant symbolic model, that is, the 

parameter controls the groupings of symbols into states.  

For instance, if D was unity, the resultant states are 0, 1, 

and -1.  If D was two, the resultant states would be 00, 01, 

10, 11, 0-1, (-1)0, (-1)(-1), 1(-1), and (-1)1 according to (2).  

Shown in Figure 4 is an example of the method continuing 

the above example with the three partition symbolic system 

with D being equal to two applied to a recorded sine wave 

of arbitrary amplitude.  The number of resultant states is 

equal to three.  The example sine wave in the figure is 

divided into zero (0), one (1) or minus one (-1) by a set 

threshold (partition boundary).  The resultant square wave 

like symbol waveform developed by the processor or field 

programmable gate array (FPGA) is shown in the figure.  

The FGPA then counts the state occurrences which can 

then be converted into probabilities to generate what is 

known as the State Probability Vector (SPV). 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 
 

4 

 

 
Figure 4. Example symbolization using three symbols 

with d=2 resulting in nine possible states. 

 

With the symbol sequence 𝑠𝑖 completed, the next step is to 

form states out of the symbols or groups of symbols.  The 

probabilities of the state occurrences can be calculated and 

tracked across each data capture.  These probabilities are 

arranged in a 𝑁𝑠𝑥1 vector, where 𝑁𝑠 represents the total 

number of states in the algorithm given by Eq. (2), which 

is the SPV.  In the case where depth of the algorithm is 

equal to unity, as it is with most cases, the total number of 

states is equal to the number of symbols used.  Choosing D 

equal to unity results in the smallest possible model for a 

given number of symbols thereby reducing computational 

complexity of the approach. 

In addition to tracking the probability of the model states, 

the transition probabilities can also be calculated.  The 

transition matrix captures the dynamics of the symbolic 

model and it is possible to calculate the SPV given the state 

transition matrix as shown in Eq. (3). 

 𝑣𝑖Π = 𝜆𝑖𝑣𝑖 (3) 

In Eq. (3), Π is the state transition matrix, λi is the ith 

eigenvalue equal to unity, and vi is the left eigenvector of 

Π associated with the unity eigenvalue.  Using the 

examples in Figure 2 and Figure 3, the state transition 

matrices are shown in Table 1. 

Table 1.  Example state transition matrices for uniform 

and ME partitioning. 

 

Uniform Partitioning – Π Matrix 

0.99847 0.00153 0.00000 

0.00278 0.99445 0.00278 

0.00000 0.00153 0.99847 

ME Partitioning – Π Matrix 

0.99820 0.00180 0.00000 

0.00180 0.99640 0.00180 

0.00000 0.00180 0.99820 

 

Both of the matrices show little change between either 

types of partitioning.  The results display strong diagonal 

terms as would be expected with symbolic analysis and 

with sinusoidal data.   From the natural progression of the 

sinusoidal data, it is evident that there would be no 

instantaneous transitions between the minimum and 

maximum values resulting in the two zero transitional 

probabilities.  The SPVs for each type of partitioning is 

shown in Table 2. 

 

Table 2.  Example SPV for Uniform and ME Partitioning. 

 

Uniform Partitioning 

0.392 

0.216 

0.392 

ME Partitioning 

0.333 

0.333 

0.333 

The difference between uniform and ME initial SPVs can 

be observed in the above table.  As was mentioned earlier, 

uniform partitioning results in equal partition sizes but not 

equal state probabilities.  The opposite is true with ME 

partitioning with the resultant state probabilities equal but 

the partition sizes are not. 

Once the probabilities or counts as shown in Table 2 are 

known, a distance type metric can be applied to the baseline 

case and future cases to develop an anomaly based on the 

current system operation.  More deviation from this 

baseline will translate into a measureable anomaly at the 

algorithm’s output. 

 Anomaly Generation 

Anomalies inherent to degradation in the system can be 

generated from the use of the SPV between the data 

captures.  The metric quantifies the deviation between the 
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known baseline, commonly known as the healthy state of 

the system, and a future system state.  A measure 

commonly used to quantify an anomaly between captures 

is based on the Manhattan distance given in Eq. (4). 

 A = ‖𝑧𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 𝑧𝑗‖
1

 (4) 

In Eq. (4), 𝑧𝑛𝑜𝑚𝑖𝑛𝑎𝑙  is the nominal (baseline) SPV and 𝑧𝑗 is 

the SPV at iteration j.  From this measure, it is possible to 

quantify anomalies present in the system and how they 

evolve over time and usage.  For the state transition matrix 

anomaly measure, the Frobenious norm of the difference 

between two state transition matrices can be used.  From 

this evolution of the anomaly, it is then possible to define 

a threshold of failure for the system.  The threshold can 

then be implemented in a predictor to estimate remaining 

useful life of the system.   

The anomaly can be used as a diagnostic measure to 

determine the amount of degradation the system has 

incurred over its lifetime or to be used as a prognostic 

measure.  If training data exists for the system, the anomaly 

measure can then be used in a prognostic application to 

predict the remaining useful life of the system. 

 SYNTHETIC APERTURE RADAR 

The focus of the effort was in applying the Symbolic 

Analysis health management approach to SAR platforms.  

These platforms are imaging based radars that operate in 

frequency ranges up to the 10s of GHz.  While the 

methodology is applicable to many systems aboard 

remotely piloted aircraft, the SAR platform was targeted 

for this research because of its importance to missions as 

well as the high cost of maintenance and repairs.  A health 

methodology such as the one based on SA can reduce these 

costs dramatically.   

The imaging radar works by mathematically assuming that 

a series of radar pulses and returns were generated and 

measured by a single large radar antenna (synthetic 

aperture) (Richards, Scheer, & Holm, 2010).  In order to 

operate, the platform must be travel some finite distance 

during the pulse intervals. 

The radar class investigated was the Active Electronically 

Scanned Array (AESA) radar (Melvin & Scheer, 2013).  

The radar itself is made up of hundreds of smaller 

transmit/receive (T/R) modules.  Each one of these 

modules contains the necessary electronics for transmitting 

and receiving radar pulses.  The T/R modules also contain 

the phase control block which in combination with all the 

other modules allows the array to electronically scan. 

An example block diagram of a T/R module is shown in 

Figure 5.  The T/R Module contains dual channels for both 

receiving reflections as well as for transmitting.  Common 

to the two paths is the phase shifter for each individual 

element to steer the beam.  The attenuator is used to add an 

amplitude taper to the overall array to improve the transmit 

characteristics.  Two switches are used to select transmit 

and receive channels as necessary.  The transmit path 

consists of the driver and power amp to gain the signal to 

the antenna element. The power is sent to the antenna 

through SW2 which is typically a circulator.  Switching the 

channel to receive, the first element is the Low Noise 

Amplifier (LNA) with a pre-amplifier filter.  The diode on 

the input is used to protect the LNA and for impedance 

matching. 

 
Figure 5. Example block diagram of a T/R module for an 

AESA radar element. 

  

A general imaging SAR diagram is shown in Figure 6.  The 

cross-range resolution of SAR imagery is dependent on the 

number of pulses sent out by the platform used in the image 

formation.  The cross-range of a SAR image is the direction 

in line with the flight path of the radar system.  The range 

direction is that which is perpendicular to the flight path.  

To increase range resolution, a wide bandwidth pulse is 

needed which would in turn require a short pulse emitted 

from the radar system as this short pulse would have wide 

bandwidth.  However, to get enough signal power out such 

that echoes are detectable, a large instantaneous power is 

required which is currently unattainable with current solid-

state transmitters.  Instead, a frequency chirp is used so that 

lower instantaneous power can be used.  In order to further 

improve the range resolution of the chirp, the resultant 

frequency chirp is pulse compressed. 

 
Figure 6. SAR radar imaging concept diagram. 
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Two types of degradation to radar images were simulated 

for the analysis.  These events were jamming, classified as 

an external degradation event, and array degradation which 

is an internal degradation event. Both were simulated for 

the symbolic analysis routine.  The results of these 

simulations were then used as input for the SA algorithm.  

The degradation simulations were developed to model 

electronic counter measures as well as deterioration effects.   

The data readily available from AFRL’s Sensor Data 

Management System (SDMS) was in the form of phase 

history.  The phase history data is complex with both I and 

Q, containing both magnitude and phase of the echoes 

received at the radar.  The phase history is calculated from 

the raw echo samples by using known platform related 

constants (flight path, etc.) and scaling (range scaling).  

The result is a phase history data matrix containing all NP 

pulses sent from the transmitter with NS samples per pulse.  

The symbolic algorithm operates on each column of the 

phase history matrix resulting in NP iterations of the 

algorithm.  The algorithm parameters must be chosen 

appropriately considering the number of samples available 

for processing and for probability convergence. 

The phase history data implemented in this work was from 

the 2D/3D Imaging Gotcha Data Challenge (‘Gotcha’ 

dataset).  This data contains phase history over 360° of 

azimuth of an urban environment consisting of numerous 

vehicles, roads, and other targets.  Each degree of azimuth 

incorporates approximately 117 pulses with 424 frequency 

samples per pulse.  The data was collected in the X-band 

(7 – 11 GHz) with a 640 MHz bandwidth.  The data 

contains H/H, H/V, V/H, and V/V (transmit/receive) 

polarizations where H is horizontal and V is vertical.  The 

different polarizations enable additional details about 

targets to be extracted from the reflected signals.  An 

example from the Gotcha dataset is shown in Figure 7.  The 

image was formed from 5° of azimuth resulting in a cross-

range resolution of 0.19 m and a range resolution of .24m.  

The scene size is approximately 102 m by 108 m. 

 
Figure 7. Example Gotcha SAR image. 

 

The image of the parking lot located in the scene is shown 

in Figure 8 with the ground truth for the image in Figure 7 

is shown in Figure 9.  Figure 8 shows a view of the parking 

lot contained within the Gotcha scenes while Figure 9 

shows the ground truth for the entire scene.  The image in 

Figure 7 used the back projection algorithm for image 

generation (Gorham, & Moore, 2010).  Additional 

photographs for the environment and targets can be found 

with the Gotcha Data Set (GOTCHA, 2011). 

 

 
Figure 8. Parking lot image for Gotcha radar data. 

 

 
Figure 9. Gotcha ground truth. 

 

 RESULTS 

In the Phase I work, the algorithm was simulated in a 

MATLAB environment investigating the SA response to 

both jamming and array degradation mechanisms.  This 

section describes the approaches used to simulate the two 

degradation mechanisms as well as the results from the 

algorithm.  The objective of each simulation was to 

determine the output of the SA algorithm to the 

degradation mechanisms presented in the data.  In this 

manner, the output of the SA algorithm could also be used 

to intelligently classify the type of degradation (or mixture 

thereof) present within the system.   

 Jamming Degradation 

The first type of degradation simulated was for radar 

jamming attacks.  Jamming attacks are electronic 

countermeasures deployed to confuse or disrupt the normal 

operation of radar systems.  There are two main types of 

jamming, one is related to denial of operation and the other 

is false target injection.   
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False target jamming uses an intelligent transceiver in 

which the source radar is monitored, manipulated, and re-

transmitted.  The re-transmitted signals can be used to 

obscure the location of ground-based objects or introduce 

false targets in the radar system.  This type of attack falls 

under what is known as Digital Radio Frequency Memory 

(DRFM) (Kwak, 2009)(Mehalic, & Sayson, 1992)(Berger, 

2001).  This type of attack learns the behavior of the source 

radar and transmits a manipulated signal back to the 

receiver.  The other type of attack implementing DRFM is 

the denial of operation.  A ground based or other receiver 

learns the transmitted characteristics of the source radar 

and transmits noise at those frequencies.  The transmitted 

noise then significantly reduces the ability to resolve 

objects in the image produced through SAR mapping.   

Mathematically, Gaussian noise is given in Eq. (5) shown 

below. 

 
𝑁(𝜇, 𝜎) =

1

√2𝜋𝜎22 𝑒
−

(𝑥−𝜇)2

2𝜎2  (5) 

In order to simulate a jamming attack and inject the 

additive Gaussian noise into the system, the parameters μ 

and σ2 (mean and variance) must be known.  These 

parameters are estimated from the radar data and 

considered as the healthy non-degraded parameters.  With 

the parameters defined, the noise is added into the system 

as shown in Eq. (6). 

𝑃𝐻𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑒𝑑 = 𝑃𝐻𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝑁(𝛼𝜇0, 𝛼𝜎0)

+ 𝑗𝑁(𝛼𝜇0, 𝛼𝜎0) 
(6) 

In (6), PH is the Phase History, α is a scalar, and 𝑁(𝜇, 𝜎) is 

the additive Gaussian noise.  Note that in Eq. (6), the noise 

is added to both the real and imaginary components of the 

PH.  Each additive noise component is independent of each 

other.  The scalar, α, is defined in Eq. (7). 

 
𝛼 = 10

𝑃(𝑑𝐵)
20  (7) 

The parameter controls the strength of the jamming attack 

such that if P(dB) = 0, the Signal-to-Noise Ratio (SNR) of 

the resultant system would be 0 dB.  The resultant power 

of the jamming noise would equal to that of the returned 

echoes.   

The jamming corruption was then implemented on the 

Gotcha data set.  In this case, 𝑃(𝑑𝐵) was chosen to be 0 

dB.  The estimated noise parameters are shown in Table 3. 

 

Table 3:  Estimated Noise Parameters from Gotcha Radar 

Data 

 

Estimated Noise Parameters from Radar Data 

 Real Imaginary 

Mean, μ 2.450e-7 8.373e-8 

Variance, σv
2 6.461e-4 6.461e-4 

 

This results in the scalar, α, having the value of unity.  The 

resulting image is shown in Figure 10. 

 
Figure 10. Jamming corruption:  Gotcha SAR image. 

 

Compare the results of Figure 10 to those in Figure 7 which 

contain the original image.  As anticipated, the jamming 

significantly reduces the ability to resolve objects in the 

image.  The stronger reflections in the scene due to metallic 

objects can still be seen due to the starburst effect; 

however, the details of the road and parking lot are 

significantly reduced.   

The PH data with the included jamming noise was then 

implemented in the SA algorithm.  The parameters used in 

the analysis are shown in Table 4. 

 

Table 4:  SDAAD Parameters for ME and Uniform 

Partitioning – Jamming 

 

Parameters Number of 

Partitions 

Depth Resultant 

Number of 

States 

Uniform 

Partitioning 

6 1 6 

Maximum 

Entropy 

6 1 6 

 

For all of the following results, the SA routine was 

implemented on the magnitude of the PH data.  The 

magnitude was chosen as it would represent any change 

between both the real part and the imaginary component of 

the PH.  Other features that could be used are the individual 
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real or imaginary components or the angle between the real 

and imaginary components. 

 Jamming – Uniform Partitioning 

The first set of results was developed with uniform 

partitioning.  The resultant anomaly for the uniform 

partitioning jamming attack is shown in Figure 11.  Recall 

that the signal to noise ratio (SNR) of this system was 

simulated to be 0dB in order to simulate a significant 

strength jamming attack to the radar platform. 

 
Figure 11. Jamming corruption:  anomaly results – 

uniform partitioning. 

 

In the figure, the jamming attack is clearly seen in the last 

117 pulses of the image.  In addition, the effects of 

jamming on these pulses, which represent about 20% of the 

total image, were shown in Figure 10.  If the entire group 

of return pulses had been jammed, the image would have 

been totally corrupted but in order to demonstrate the 

change from a jammed pulse to a non-jammed pulse only 

the last 117 return pulses were jammed.  The resulting 

anomaly has a magnitude of about 0.85.  A threshold could 

be implemented around an anomaly magnitude of 0.8 to 

detect this type of degradation. 

 Jamming – ME Partitioning 

The resultant anomaly magnitude formed from the state 

probabilities using the anomaly measure is shown in Figure 

12. 

Comparing these results to those obtained from the uniform 

partitioning, they are both similar in that both partitioning 

methods detect the added jamming noise at the instance it 

was injected.  The resultant magnitude of the anomalies is 

also comparable at about 0.85.  A notable difference is in 

the anomaly measure before the jamming.  As can be 

observed in the ME partitioning, the anomaly is slightly 

larger.   

 
Figure 12. Jamming corruption: anomaly results – ME 

partitioning. 

 

Recall that ME partitioning results in partition structures 

that finely divide dense regions of data and coarsely divide 

sparse regions.  This also results in equal initial partition 

probabilities and hence symbol probabilities that evolve 

with degradation.  Due to this distribution, any small 

deviation, either from degradation or environment, can be 

detected by this partitioning methodology.  Figure 12 

shows a slightly larger anomaly magnitude which is a 

result of slight differences in data between pulses.  This 

slight increase may be problematic when the approach is 

applied to a data from a fielded system.  Because of this, 

uniform partitioning may be the most appropriate partition 

approach for future work.  

 Array Degradation 

Array degradation was the next type of degeneration that 

was simulated.  This type of degradation represents internal 

platform degradation and was also implemented using the 

SAR Gotcha dataset.  From the T/R module (Figure 5), 

there are two paths within each array module.  The weakest 

link in each module is the power amplifier used as the final 

stage to drive the antenna.  It was assumed in this analysis 

the amplifier fails such that the module can no longer 

transmit.  Since the receive path is still intact, it is assumed 

that the module can receive echoes. 

If the amplifier fails and the receive path is still active the 

overall transmit power decreases but the receive gain 

remained the same.  It is known that the output power of an 

array degrades according to Eq. (8) (Rutledge, Cheng, 

York & Weikle, 1999). 

 𝑑𝐵𝐿𝑂𝑆𝑆 = 20𝑙𝑜𝑔10(1 − 𝛽) (8) 

The total transmit power loss can then be related to the 

percentage of failed elements β.  The received power 

derived from the radar range equation is given in Eq. (9) 

(Richards et al, 2010). 
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𝑃𝑟 =

𝑃𝑡𝐺𝑡𝐺𝑟𝜆2𝜀

4𝜋3𝑅4
 (9) 

In (9), Pt is the power transmitted, Gt is the gain of the 

transmit antenna, Gr is the gain of receive antenna, λ is the 

carrier wavelength, ε is related to the target’s radar cross 

section (RCS), and R is the range to the target.  In normal 

radar operation, the same antenna receives and transmits 

resulting in the same gain.  However, the loss in transmit 

power can be modeled by applying a scalar directly to Gt 

which then directly results in a decrease in the received 

power since it is assumed that the receiver gain remains 

constant due to the fact that all elements can functionally 

receive echoes.   

The transmit gain during the degradation simulation is 

shown in Figure 13.  As was done with the jamming 

simulation, the array degradation was applied to 117 

individual pulses on a single degree of azimuth.  In this 

manner, each pulse was scaled by the values of the linear 

relationship shown in Figure 13.   

 
Figure 13. Array degradation simulation: Transmit gain 

plot, Gt for use in Eq. (9). 

 

The scaling in the figure results in an applied -3 dB transmit 

loss to the antenna.  This level was chosen as it is 

considered the failure point for a transmitting antenna.  A 

3dB loss translates to approximately 29% of the element 

modules failing in the array.  An image formed from a 

simulated degraded array is shown in Figure 14. 

 
Figure 14. Array degradation: Gotcha SAR image. 

  
The image degradation is minimal compared to the original 

non-degraded image shown in Figure 7.  The image details 

of the parking lot can still be seen in the degraded image 

including the roadways and parked vehicles.  For the SA 

analysis, the parameters implemented are shown in Table 

5.  The parameters implemented were the same as was 

implemented in the jamming simulation.   

 

Table 5:  SDAAD Parameters for ME and Uniform 

Partitioning – Array Degradation 

 

Parameters Number of 

Partitions 

Depth Resultant 

Number of 

States 

Uniform 

Partitioning 

6 1 6 

Maximum 

Entropy 

6 1 6 

 

 Array Degradation – Uniform Partitioning 

The resultant anomaly formed from the deviation of these 

states from the baseline is shown in Figure 15.  The figure 

shows the increasing anomaly that follows the degradation 

profile simulated.  Note that the return pulse numbers in 

Figure 13 coincide with the algorithm output return pulse 

numbers in Figure 15. 
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Figure 15. Array degradation:  anomaly results– uniform 

partitioning. 

 

For this simulation, the degradation profile was simulated 

on the second to last azimuth angle again applied to 117 

pulses.  The last azimuth angle was maintained at the -3dB 

degradation level.  The increase in anomaly is observable 

and when the degradation is constant, the resultant 

anomaly is constant as well.  The result also demonstrates 

the possibility of implementing a remaining useful life 

predictor on this type of degradation.  This would assume 

that the array would degrade slowly over its useful life 

before needing to be pulled from the platform for repair.  

Through these simulations, the anomaly magnitude from a 

jamming event resulted in a larger anomaly magnitude 

which was due to the simulation.  For example, weaker 

jamming attempts or more array degradation could result 

in comparable anomaly magnitudes.  In future work these 

situations will be resolved by the classifier stage.  In 

addition, the past history of the algorithm output can be 

used to discriminate between wear-out phenomenon in the 

array and deliberate platform jamming. 

 Array Degradation – ME Partitioning 

The resultant anomaly formed from the same simulation 

using ME partitioning is shown in Figure 16. 

As was done with the simulation under uniform 

partitioning, the degradation was applied to the second 

from the last azimuth degree so that the final degree could 

be held at the -3dB array degradation level.  The resultant 

anomaly plot was similar to that obtained with uniform 

partitioning and the resultant magnitudes are also 

comparable.  In this case, the -3dB anomaly magnitude is 

only slightly larger due to the larger nominal anomaly from 

pulses 1 through 400 (~0.15 for ME to ~0.10 for Uniform).   

 
Figure 16. Array degradation:  anomaly results – ME 

partitioning. 

 

This result was also observed with the jamming results of 

the previous section.  The difference is slight and the 

resultant responses from the partitioning methods remain 

similar.  Since the results are similar, the application of this 

approach to SAR platforms would dictate that either 

partitioning method could be implemented.  Obtaining 

more data from fielded system may give more insight into 

which approach would be more applicable for degradation 

monitoring.  From this initial research, although the results 

are positive in general, a determination of which 

partitioning methodology is superior to the other cannot be 

stated.  

 COMBINED DEGRADATION 

Separate degradation mechanisms such as those above can 

be easily identified when they occur by themselves.  More 

interesting is the case when multiple degradation 

mechanisms occur simultaneously.  For this reason, the two 

degradation mechanisms above were simulated 

simultaneously with the effects superimposed in the data.  

For instance, the array was first degraded by applying the 

degradation to the second from the last azimuth angle of 

data and holding the last angle of data at -3dB degradation.  

At this point, a jamming attack was simulated on top of the 

array degradation. 

In this case, the parameters for the test were, six partitions, 

depth of unity, and the partitioning method was uniform.  

In this case, uniform was arbitrarily chosen since each 

approach yielded similar results in the previous analysis.  

The resultant SAR image formed from the combined 

degradation is shown in Figure 17.  As with previous 

simulations, the jamming power was again set to 0dB. 
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Figure 17. Combined degradation: Gotcha SAR. 

 

In the image, the degradation is observable with the 

jamming being the strongest source of degradation.  

Compare this image to that obtained from jamming only, 

Figure 10.  The two images look similar with Figure 17 

showing slightly more image degradation.  The resultant 

anomaly from this combined effect is shown in Figure 18. 

 
Figure 18. Combined degradation:  anomaly results– 

uniform partitioning. 

 

The results in Figure 18 show a distinct combination of the 

two degradation effects.  In pulses 400 through 480, the 

array degradation is clearly seen.  In pulses 480 through 

580, the combined effects of jamming and array 

degradation are seen although the strength of the jamming 

attack overcomes that of array degradation and manifests 

itself as a discontinuity in the anomaly magnitude.  The 

discontinuity that arises from jamming attacks could be 

implemented in the degradation classifier and assist in 

determining whether degradation is internal or external. 

 CONCLUSION AND FUTURE WORK 

The method of Symbolic Analysis was demonstrated using 

simulated degradation in SAR phase history data.  Under a 

MATLAB environment, both jamming and array 

degradation were simulated and the results observed.  The 

simulations analyzed the results from both uniform and 

maximum entropy partitioning methods under the same 

number of partitions and algorithm depth.  The data used 

was phase history data that was corrupted with degradation 

representing jamming and array failure events.  Once 

corrupted, the magnitude of this data was used as the input 

into the SA algorithm.  The results show similarities 

between the two with ME being slightly more sensitive to 

the data as compared to uniform.  In addition, the results 

were simulated with combined degradation mechanisms.  

In these cases, it was shown that it is possible to perform 

classification on the resultant algorithm output such that 

degradation can be identified.  From these initial results, it 

seems to be the case that uniform partitioning would be 

preferable to ME to reduce the probability of false 

positives. 

QorTek has been awarded a Phase II research program to 

expand the methodology and apply to both healthy and 

degraded field data from imaging radars.  The new research 

project will investigate the results of the Phase I to validate 

the simulations as well as to expand the number of 

degradation mechanisms to model.  Another objective of 

this research is to expand on the degradation classification 

as well as investigate the application of prognostics to the 

approach.  QorTek plans to also use this research to 

definitively determine if there is a superior partitioning 

methodology between the two presented in the initial work.  

In addition, the Phase I work only investigated using the 

magnitude and not the angle of the complex data.  The 

Phase II work will investigate using additional features and 

using the partitioning approach to generate a one-

dimensional symbolic data set.  It is anticipated that the 

algorithm will be implemented and a prototype flight-

tested on a SAR radar payload.   

The output of the SA can be utilized in a prognostic 

application.  The output of the algorithm would provide a 

measurement of degradation which would act as an input 

for a Kalman-type predictor.  As was observed, the output 

of the algorithm is related to the amount of degradation 

sustained by the radar.  Since the exact evolution of the 

radar faults are not exactly known, a generic model must 

be implemented for the Kalman filter.  A kinematic-motion 

model could be applied for the Kalman model.   Future 

work will also address the determination of how much 

degradation can be sustained by the payload until it is 

deemed ‘failed.’  This work is anticipated to be carried out 

in the Phase II program. 
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NOMENCLATURE 

A = anomaly 

α = noise scaling constant 

β = percentage of failed array 

D = symbolic depth 

H(·) = entropy 

M = time series data length 

Ns = number of states 

p(·) = probability 

Pi = ith partition 

si = ith symbol 

U = time series data amplitude range 

X = time series data 

z = state probability vector 

𝑣𝑖 = ith eigenvector 

𝜆𝑖 = ith eigenvalue 

Π = state transition matrix 
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