Estimation of Remaining Useful Life Based on Switching Kalman
Filter Neural Network Ensemble

Pin Lim', Chi Keong Goh?, Kay Chen Tan? and Partha Dutta*

1.24 Rolls Royce Singapore, Singapore
Pin.Lim@Rolls-Royce.com
ChiKeong.Goh@Rolls-Royce.com
Partha.Dutta@Rolls-Royce.com

3 National University of Singapore, Singapore
eletankc @nus.edu.sg

ABSTRACT

The proposed method is an extension of an existing Kalman
Filter (KF) ensemble method. While the original method has
shown great promise in the earlier PHM 2008 Data Chal-
lenge, the main limitation of the KF ensemble is that it is
only applicable to linear models. In prognostics, degrada-
tion of mechanical systems is typically non-linear in nature,
therefore limiting the applications of KF ensemble in this
area. To circumvent this problem, this paper propose to ap-
proximate non-linear functions with piecewise linear func-
tions. When estimating the RUL, the Switching Kalman Fil-
ter (SKF) is able to choose the most probable degradation
mode and thus make better predictions. The implementation
of the proposed SKF ensemble method is illustrated by imple-
menting on NASA’s C-MAPSS Dataset as well as the PHM
2008 Data Challenge Dataset. The results show the effective-
ness of the SKF in detecting the switching point between var-
ious degradation modes as well as the improved accuracy of
the SKF ensemble method compared to other available meth-
ods in literature.

1. INTRODUCTION

In the recent years, Condition Based Maintenance (CBM)
has been garnering more attention as it allows industries to
better plan logistics as well as save cost by replacing parts
only when needed. Prognostics being one of the key en-
ablers of CBM has therefore also gained more interest in both
academia and industry. The key notion of prognostics, albeit
not the only one, is to determine the time remaining before a
likely failure. This value is commonly termed as the Remain-
ing Useful Life (RUL) of the system.
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In this paper, a novel prediction algorithm is presented which
is applicable to non linear degradation models. The algo-
rithm assumes that degradation model can be described by
a number of piece-wise linear functions. With each of these
linear functions describing a linear model, the most suitable
model to describe the degradation at any point in time is cho-
sen based on the Switching Kalman Filter (SKF) algorithm.
The remainder of this paper is structured as follows, Section 2
first introduces the datasets used to evaluate the effectiveness
of the algorithm. Section 3 follows by presenting a simple
single neural network approach to evaluate the difficulty of
the problem. Finally in Section 4 the SKF ensemble approach
is presented and evaluated.

2. DATASET

In this paper a total of two datasets were used. The datasets
used are namely the PHM 2008 Data Challenge Dataset as
well as the NASA C-MAPSS Dataset (Saxena & Goebel, 2008),
the C-MAPSS dataset is further divided into 4 sub-datasets
as shown in Table 1. Both datasets contain simulated data
produced using a model based simulation program (named
Commercial Modular Aero-Propulsion System Simulation,
C-MAPSS) developed by NASA (Saxena, Goebel, Simon, &
Eklund, 2008).

Table 1. Dataset details (Simulated from C-MAPSS)

C-MAPSS PHM
Dataset FD001| FD002 | FD003 | FD004 | 2008
Train 100 260 100 248 218
Trajectories
Test 100 259 100 248 218
Trajectories
Conditions 1 6 1 6 6
Fault 1 1 2 2 2
Modes
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The data is arranged in an n-by-26 matrix where n corre-
sponds to the number of data points in each dataset. Each row
is a snapshot of data taken during a single operational cycle
and each column represents a different variable. Included in
the data are three operational settings that have a substantial
effect on engine performance.

Each trajectory within the train and test trajectories is as-
sumed to the be life-cycle of an engine. While each engine
is simulated with different initial conditions, these conditions
are considered to be of normal conditions (no faults). For
each engine trajectory within the training sets, the last data
entry corresponds to the moment the engine is declared un-
healthy. On the other hand the test sets terminate at some
time prior to failure and the aim is to predict the number of
Remaining Useful Life (RUL) of each engine of the test set.

For each of the C-MAPSS dataset the actual RUL value of
the test trajectories were made available to the public while
the actual RUL of the test dataset of PHM 2008 is not avail-
able. However, users can submit their results to the NASA
website to obtain a score limited to one submission per day.
Due to this constrain, most of the analysis done in this pa-
per will be based on the NASA C-MAPSS dataset instead of
the PHM 2008 dataset. The PHM 2008 dataset would instead
be used for comparison against other algorithms proposed in
literature.

2.1. Evaluation Metrics
2.1.1. Scoring Function

The scoring function used in this paper is identical to that
used in PHM 2008 Data Challenge. This scoring function is
illustrated in Eq. (1), where s is the computed score, N is the
number of engines, and d = RUL-RUL (Estimated RUL- True
RUL).

N i
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The characteristic of this scoring function is that it favours
early predictions more than late predictions. This is in line
with the risk adverse attitude in aerospace industries. How-
ever there are several drawbacks with this function. The most
significant drawback being a single outlier would dominate
the overall score, thus masking the true accuracy of the algo-
rithm. Another drawback is the lack of consideration of the
prognostic horizon of the algorithm. The prognostic horizon
assess the time before failure which the algorithm is able to
accurately estimate the RUL value within a certain confidence
level. Finally this scoring function favours algorithms which
artificially lowers the score by underestimating the RUL. De-
spite all these shortcomings, this scoring function is still used
in this paper in order to provide a level comparison with other

methods in literature.

2.1.2. RMSE

In addition to the scoring function, the Root Mean Square
Error (RMSE) of the estimated RULs is also used as a per-
formance measure. RMSE is chosen as it gives equal weight
to both early and late predictions. Using RMSE in conjunc-
tion with the scoring function would prevent the user from
favouring an algorithm which artificially lowers the score by
underestimating but resulting in higher RMSE. Furthermore,
various literature working on this dataset uses RMSE to eval-
uate their algorithms, inclusion of RMSE would therefore al-
low the author to compare results with those available in lit-
erature.

RMSE =

1 N
= > )
N i=1

A comparative plot between the two evaluation metrics is
shown in Figure 1. It can be observed that at lower absolute
error values the scoring function results in lower values than
the RMSE. The relative characteristics of the two evaluation
metrics will be useful during the discussion of results in the
latter part of this paper.

Comparison of scoring function against RMSE for a single engine (N=1)
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Figure 1. Comparison of evaluation metric values for differ-
ent error values

2.2. Data Preparation
2.2.1. Operating Conditions

Several literature (Wang et al., 2008; Peel, 2008; Heimes,
2008), have shown that by plotting the operational setting
values, the data points are clustered into six different dis-
tinct clusters. This observation is only applicable for datasets
with different operational conditions, data points from FD0O1
and FDOO3 are all clustered at a single point instead. These
clusters are assumed to correspond to the six different oper-
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a) Raw Sensor Index 4 for Engine 1 in FD002 b) Normalized Sensor Index 4 for Engine 1 in FD002
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Figure 2. Sensor values (a) before and (b) after normalization

ational conditions. It is therefore possible include the opera-
tional condition history as a feature. This is done by adding
6 columns of data representing the number of cycles spent in
their respective operational condition since the beginning of
the series (Peel, 2008).

2.2.2. Data Normalization

Due to the 6 operating conditions, each of these operating
conditions results in disparate sensor values as shown in Fig-
ure 2. Therefore prior to any testing and training, it is imper-
ative to normalize the data points to be within the range of
[-1,1] using Eq. (3). As normalization was carried out within
the range of values for each sensor and each operating con-
dition, this will ensure equal contribution from all features
across all operating conditions (Peel, 2008). Alternatively, it
is also possible to incorporate operating condition informa-
tion within the data to take into consideration various operat-
ing conditions

(e,f)
(e, f)\ — (l‘ — LToin ) _
Norm(x'“/)) = 273;&3;32 NCY 1,Ve, f 3)

min

where c represents the operating conditions and f represents
each of the original 21 sensors.

3. SINGLE NEURAL NETWORK APPROACH
3.1. Method Description

The aim of this section is two-fold. Firstly as a prior to exper-
imenting with other methods, the complexity of the problem
was tested using a single Multi-Layer Perceptron (MLP) Net-
work to achieve a baseline performance. This baseline per-
formance then used for comparing the accuracy of the pro-
posed method. Secondly, the method is used to evaluate the
performance of the two different RUL functions presented in
section 3.2 below.

3.2. Arbitrary RUL Function

In its crudest form prognostic algorithms are similar to re-
gression problems. However, unlike typical regression prob-
lems, an inherent challenge for data driven prognostic prob-
lems is determining the desired output values for each input

data point. This is because in real world applications, it is
impossible to accurately determine the health of the system
at each time step without an accurate physics based model. A
sensible solution would be to simply assign the desired output
as the actual time left before functional failure (Peel, 2008;
Baraldi, Mangili, & Zio, 2012). This approach however in-
advertently implies that the health of the system degrades lin-
early with usage (Figure 3a).

An alternative approach is to derive the desired output val-
ues based on a suitable degradation model. For this data-set
(Heimes, 2008) has proposed a piece-wise linear degradation
model which limits the maximum value of the RUL function
(Figure 3b). The maximum value was chosen based on the
observations of the data and its numerical value is different
for each data-set. For the sake of simplicity, the former will be
addressed as ’linear function’ while the latter will be known
as the ’kink function’ in the remainder of the paper.
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Figure 3. Comparison of degradation models. a) Linear

Degradation model, b) Piece-wise Linear Degradation Model

Each of these approaches has their own advantages. The lat-
ter case is more likely to prevent the neural network from
overestimating the RUL, it is also a more logical model as the
degradation of the system typically only starts after a certain
degree of usage. On the other hand, the former case follows
the definition of RUL in the strictest sense which defined as
the time to failure. Therefore the plot of time left of a system
against the time passed naturally results in a the linear func-
tion as shown in Figure 3a. However it should be noted that
in cases where knowledge of a suitable degradation model is
unavailable, the linear model is the most natural choice to use.

3.3. Results

For each sub-dataset within the C-MAPSS dataset, two MLPs
were individually trained using the linear and kink RUL func-
tions as desired outputs. The MLPs were then tested using the
corresponding test sub-datasets and evaluated using Eq. (1)
and Eq. (2). Due to the inherent noise in the data, in order
to capture the variance of each MLP, the whole training and
testing process was repeated for a total of 10 trials. The re-
sults from these trials are expressed in the form of box plots
shown in Figure 4 & 5.
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Figure 4. Scores of MLP trained with linear and kink RUL
functions.

Figure 4 shows that using the linear RUL function resulted
in comparatively much higher variance in scores. However
considering the RMSE plots (Figure 5) the variance of RMSE
values within each dataset is relatively similar. Therefore the
higher variance in scores is due to the nature of the scoring
function. The exponential term in the scoring function could
cause large deviations in the score due to a single inaccurate
estimation. The variance of the RMSE values for both MLPs
could be attributed to the inability of the single MLP to handle
noisy input data.
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Figure 5. RMSE of MLP trained with different RUL func-
tions.

More importantly, all datasets show significant improvements
in both RMSE and scores when the kink RUL function is
used. The lower RMSE values obtained by using the kink
RUL function (Figure 5) is evidence that their respective lower
scores in Figure 4 is due to more accurate predictions instead
of inducing underestimation of RUL. These results agree with
Heimes (2008) that the kink RUL function is a much more
suitable degradation model for these datasets.

4. SWITCHING KALMAN FILTER (SKF) ENSEMBLE
4.1. Method Description

In order to improve the prognostic accuracy of a single MLP
implemented in section 3.3, ensemble methods are explored
to develop a more accurate and robust prognostic method. En-
semble methods are generally used to combine multiple weak
classifiers into a single strong classifier. It has been found that
ensembles would have higher accuracy and generalizability if
each ensemble members are accurate and make errors on dif-
ferent parts of the input space (Maclin & Opitz, 2011). There
are generally two main steps in creating an ensemble: The
first step is to create individual ensemble members, and the
second step to combine the output of the ensemble members.

In order for the ensemble to generate better results, the gen-
eralization of the ensemble must be improved. This can be
obtained by having diversity in the ensemble members. The
most commonly used method to create ensemble members
include input data sampling techniques such as Bagging and
Boosting (Zhou, 2012; Re & Valentini, 2011). In this paper,
networks with different network topology are used to create
ensemble members as this method has less variables to tune
as compared to boosting and bagging.

Combination of output from ensemble members is usually
taken as a weighted mean or median of the ensemble member
outputs (Zhou, 2012). The weights are usually determined
based on the training error of each ensemble member (Krogh
& Vedelsby, 1995). Peel (2008) proposed an alternative com-
bination method which uses a Kalman filter to combine the
output of several neural networks. This method has shown
great promise by wining the IEEE Gold for PHM 2008 Data
Challenge. In his work, both the training function for the
neural networks and the model used in the Kalman filter as-
sumes a linear degradation function thus limiting its applica-
tion to linear cases. This section extends this method by using
a Switching Kalman Filter (SKF) for piecewise linear appli-
cations. Thus allowing implementation of a similar ensemble
for other degradation patterns.

4.2. Ensemble Members

In this paper MLPs with different number of hidden neu-
rons are used as ensemble members. The number of hidden
neurons were randomly picked from a uniform distribution
of integers between 5 to 25 inclusive. The maximum num-
ber of hidden neurons was limited to prevent over fitting on
the training set, thus ensuring generalization on unseen data
points. A total of 4 ensemble members were generated per
ensemble.

4.3. Aggregation based on Kalman Filter (KF)

KFs and its variants have been widely used for machine learn-
ing applications. These applications range from simple state
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prediction (Borguet & Léonard, 2009) to training of neural
network weights using the Extended Kalman Filter (EKF)
(Singhal & Wu, 1989; Puskorius & Feldkamp, 1991). In this
paper, the traditional KF and its variant the SKF will be used.

4.3.1. Kalman Filter

The more commonly used application of the KF is as a for-
ward pass state estimator. The filter predicts the hidden states
for the next time step given the history of estimated states and
observing noisy outputs. The predicted states are considered
optimal as the filter aims to minimize the uncertainties in the
estimate (AL-Mathami, Everson, & Fieldsend, 2012). Prior
to using the KF, the system must be modeled as a linear sys-
tem as shown

Ty = Axe_1 + we
_ “4)

Zt = H Tt + VUt
where z; is the state vector at time ¢, A is the transition ma-
trix, z; represents the output observations, H is the observa-
tion matrix, w; and v, are the process noise and observation
noise respectively. Based on the model a recursive process is
then carried out whereby the prediction step is carried out by

lﬁt = Aft_l 5
B, = AP, AT +Q )
where P, is the state covariance matrix and @ is the process
error covariance matrix. The KF then updates the estimate
based on the new observations. The updating step is then
carried out by the following equations

K, = BHT[HP,HT 4+ R]™*
Q_S‘t f i’t + Kt[Zt — ]i[i’t] (6)
P, =[I - KH|P,

where R is the observation error covariance matrix and K is
the Kalman gain at time ¢. For illustrative purposes, the state
x4 is chosen as

RUL,

= { ARUL, ] ,ARULy = RUL; — RULi_1 (1)

It is therefore straight forward to express the kink RUL func-
tion as a piecewise linear function with their respective linear
KF model expressed as

10 11
ACZ{O 1}141:{0 1} ®)

where A is the model for the initial constant RUL phase and

Ay is the model for the linear degradation phase, assuming a
gradient of —1 for the linear degradation phase. In addition,
the outputs from individual neural networks are taken to be
the observations, therefore the observation vector z; and H
are set as

RUL, 1 0
Zr = JH=| o .. 9)
RUL, 1 0
where RUL,, is the output of the nt" neural network in the

ensemble. Further details of modeling the ensemble outputs
is covered in Peel (2008) and Baraldi et al. (2012).

4.3.2. Kalman Smoother

In contrast to the KF, which estimates the optimal state given
observations up to time ¢, the Kalman smoother aims to esti-
mate the optimal state at time ¢ given the observations from 1
to T', where T represents the total length of data observations
(AL-Mathami et al., 2012). The Kalman smoother is an anal-
ogous backwards recursive process which estimates the states
from the end of the observation data. Therefore combining
both forward and backward pass gives the optimal estimated
state given the whole observation data.

At the last time step the variables £ and P are initialized as

T =X
2 2 10
Py — Py (10)
where 7 is the smoothed state and P is the smoothed covari-
ance. The smoothed states can then be calculated based on the

following recursive equations where ¢ decreases from 7" — 1
to 1 (AL-Mathami et al., 2012).

Jy = (PBAT)PY
T =3+ (J(@) — AZ)) T (11)

Pt:pt+Jt(Pt+1 —if)t+1)JtT

4.4. Switching Kalman Filter (SKF)

Eq. (8) in the earlier section has shown that the Kink degrada-
tion function can be modeled using two linear systems. The
outputs of the ensemble members would therefore need to be
combined using the suitable KF model. This problem is fur-
ther compounded by the fact that the switching point between
the two models differ for every engine. Thus making it diffi-
cult to pre-define a rule to switch between the two models. To
circumvent this problem a SKF (Murphy, 1998; AL-Mathami
et al., 2012) is implemented to autonomously determine the
switching point.

In this application, SKF predicts the most probable hidden
discrete model given the observations and the models. The
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Figure 6. Directed graphical probabilistic model of SKF

graphical probabilistic model of the SKF for aggregating en-
semble methods is shown in Figure 6. Based on the figure,
the SKF determines the sequence of models which would
most likely result in the series of observations. Similar to the
KF, the SKF computes the posterior probability of the model
given the observations in two passes. The forward pass calcu-
lates P(S; = j|xt, x1.4—1) while the backwards pass calcu-
lates P(S; = j|z¢.1). An illustrative example of the forward
pass calculation is shown below

For each t, j:

_ _ P(z¢|St=j4,21.4—1) P(St=jlz1.4—1)
P(Se = jlee, 2101) = CAESIRY)

(12)
=102 Z(i,§)P(Si—1 = i|@1.0-1)

c

where

c= P(x¢|wre-1) = 85 Le(5)2:Z (4, §) P(Si—1 = i|w1:6-1)
Ly = P(z4|Sy = j,x1:0-1) ~ N(zy, Ajzi—1, Q)
Z(Z,]) = P(St = _]|Sf = iaxlzt—l)

(13)

It should be noted that Z (3, j) is a predefined transition matrix
which contains the probability of transition from one model
to another. Thus, based on this calculated probability, the
most probable model can be chosen. The backwards pass can
be calculated in a similar manner and therefore will not be
repeated here. For more details on the SKF, readers can refer
to Murphy (1998) and AL-Mathami et al. (2012)

In this implementation, the output of the trained ensemble
members are taken to be the observations and switching mod-
els corresponds to the two KF models expressed in Eq. (8).
The most probable sequence of models is first determined by
the SKF, the corresponding KF models can then be applied
to aggregate the outputs of individual ensemble members to
obtain the estimated RUL value. Figure 7 shows an example
of the SKF algorithm estimating the degradation of an engine
from the training set. It can be observed that the predicted
switching point between the two models by the SKF corre-
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Figure 7. Example of SKF Ensemble output on a training
engine

sponds well with the predefined kink location in the RUL
function. It should also be noted that the initial conditions
of the Kalman filter is re-initialized for each engine.

4.5. Results

In this section the performance of the SKF ensemble is illus-
trated and compared with the original KF ensemble method.
The KF ensemble was recreated to the best of knowledge
based on the details given in Peel (2008). Furthermore, re-
sults obtained from Section 3.3 are also included for com-
parison purposes to highlight the effectiveness of ensemble
methods. Similar to previous sections, all the experiments
were repeated for a total of 10 trials, the results obtained from
these trials are then expressed in the form of a boxplot.

4.5.1. C-MAPSS Dataset

Figure 8 illustrates the scores of all methods described in
this paper for all four sub-datasets within C-MAPSS. It is
observed that both linear MLP or KF ensemble displayed
high mean and large variance of scores. In addition all four
methods achieved RMSE values of the same order (Figure 9).
Based on these observations, coupled with the characteristics
of each evaluation metric (Figure 1), it can be implied that
the high scores are caused by certain outliers in predicting
the RUL. This phenomenon could probably be attributed to
the use of the linear RUL function which might lead to over-
estimating of the RUL, thus resulting in significantly higher
scores.

In addition, the high scores exhibited by the Linear MLP and
KF ensemble resulted in a badly scaled boxplot making it dif-
ficult to illustrate and compare the relative performance of the
remaining algorithms. Therefore more in depth comparison
of the four methods will focus mainly on the RMSE values
instead (Figure 9).
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Based on Figure 9, it can also be deduced that the SKF en-
semble outperforms that KF ensemble significantly. The SKF
ensemble achieved much lower RMSE values which is most
likely attributed to the use of the kink RUL function to model
the degradation of the system. These results reaffirm the hy-
pothesis arrived in Section 3.3 that the kink RUL function is
a much more accurate model for this dataset.
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Figure 9. RMSE of various algorithms for all C-MAPSS
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As expected, both KF and SKF ensemble methods resulted
in significantly lower RMSE variance compared to their re-
spective linear and kink MLPs. This can be attributed to the
ability of ensembles to aggregate the outputs of individual
ensemble members thus resulting in a lower variance. In ad-
dition, the use of KF helps to filter out noise from the output
of the ensemble (Figure 7) thus resulting in increased robust-
ness against inherent noise in the data. The same observa-
tions can be seen in Figure 10 which shows in greater detail
the comparison box plot between the SKF ensemble and the
single MLP trained with a kink training function. In addition
to obtaining lower variance in RMSE values, the SKF ensem-

ble also exhibited lower mean RMSE values. Thus showing
that the SKF ensemble outperforms the original MLP in both
accuracy and variance in predictions.
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Figure 10. RMSE of MLP with Kink training function and
SKF for all C-MAPSS Datasets.

Comparing the scores between the Kink MLP and the SKF
ensemble (Figure 11) for all datasets showed that both meth-
ods achieved scores within the similar range. However the
SKEF slightly out performs the Kink MLP by exhibiting less
variance in scores throughout the 10 trials. This phenomenon
can be similarly be attributed the ability of ensemble to be
more robust to noise as mentioned in the earlier paragraph.
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Figure 11. Scores of MLP with Kink training function and
SKF for all C-MAPSS Datasets.

4.5.2. PHM 2008 Dataset

In this section, the algorithms were tested on the test dataset
for PHM 2008. The estimated RULs of 218 engines within
the dataset were then uploaded to the NASA Data Repository
website and a single score was then returned by the website.
The results were also compared with available literature that
provided suitable scores for comparison.

Based on the results it can be seen that the SKF ensemble
produces significantly lower scores and outperforms the other
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Table 2. Scores for various algorithms on PHM 2008 test
dataset

Methods \ Scores
Single MLP (Linear) 118338
Single MLP (Kink) 6103.46
KF Ensemble 5590.03
SKF Ensemble 2922.33
Gibbs Filtering (Le Son, Fouladirad, & Barros, 2012) | 4170

methods. However as mentioned in Section 2, submission of
estimated RULs are limited to once a day. Thus the scores
shown in Table 3 are from a single submission. Therefore
these scores are also subject to variance as seen in earlier sec-
tions.

5. CONCLUSION

In this paper we have demonstrated the effectiveness of a
SKF ensemble for systems with non-linear degradation pat-
terns. In addition, the performance of the SKF ensmeble
on NASA’s C-MAPSS dataset has shown improvement over
other methods in literature. Implementation on these simu-
lated datasets simply serve as a proof-of-concept for the pro-
posed method at this stage. This method has also wide ap-
plications to other prognostic situations where the system in-
volved has more than one degradation mode. An example
would be where the degradation pattern of the system changes
due to external factors such as operating conditions or over-
haul maintenance. In view of the range of possible appli-
cations, the authors have plans to implement the proposed
method on a real-world dataset and validate its effectiveness.
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