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ABSTRACT 

Fabrication of three-dimensional (3D) objects through direct 
deposition of functional materials using 3D printing 
equipment is called additive manufacturing (AM).  Benefits 
of AM include producing goods quickly and on-demand, 
with greater customization and complexity and less material 
waste.  While the use of AM has been growing, a number of 
challenges continue to impede its more widespread adoption, 
particularly in the areas of non-destructive evaluation/non-
destructive testing (NDE/NDT) techniques for AM 
equipment health monitoring and measurement.  In this 
paper, a prognostics and health management (PHM) 
approach to AM equipment health monitoring, fault 
diagnosis and quality control is presented and illustrated 
with a case study. The presented PHM approach is 
developed using two types of NDE/NDT sensors: acoustic 
emission (AE) sensor and piezoelectric strain sensor.  A 
seeded driving belt fault on a fused filament fabrication 
desktop 3D printer is used to validate the feasibility of the 
PHM approach in the case study.  The case study results 
have shown the effectiveness of the presented method for 
AM equipment fault diagnosis and quality control. 

1. INTRODUCTION 

In his 2013 state of the union address, US President Obama 
called three-dimensional (3D) printing “the potential to 
revolutionize the way we make almost everything” (Office 
of the Press Secretary, 2013). Fabrication of 3D objects 
through direct deposition of functional materials using 3D 
printing equipment is called additive manufacturing (AM).  
Benefits of AM include producing goods quickly and on-
demand, with greater customization and complexity and less 
material waste.   If the modern manufacturing which was 
subtractive process by cutting or milling is optimized at 

mass production, the future manufacturing would be called a 
creative customization through 3D printing at consumers’ 
will. 

While the use of AM has been growing, a number of 
challenges continue to impede its more widespread adoption, 
particularly in the areas of non-destructive evaluation/non-
destructive testing (NDE/NDT) techniques for AM 
equipment health monitoring and measurement. According 
to a recent report on measurement science roadmap for 
metal-based additive manufacturing (Energetics 
Incorporated, 2013), current technical barriers or challenges 
in AM were roughly categorized as materials, process and 
equipment, qualification and certification, and modeling and 
simulation. Particularly in the process and equipment 
category, the highest priority in NDE/NDT techniques have 
been specified as: (1) Combining NDE techniques to better 
assess quality via an integrated approach; (2) Adapting 
existing NDE techniques to AM, especially parts, and 
characterizing defects; (3) Lack of affordable quality 
inspection tools for direct metal parts. Even though the 3D 
printing technology has been available since 80s, it was not 
until recent days that 3D printing came to the fore in 
commercial manufacturing. Thus, very few studies have 
been conducted on NDE based 3D printer health monitoring 
and prognostics.  The AM has two unique characteristics: (1) 
relatively long cycle time; (2) high quality standard for 
dimension accuracy.  These unique characteristics of AM 
can be considered as good opportunities for developing 
PHM based approach for 3D printer health monitoring, fault 
detection and quality control.  As the dimension accuracy of 
the printed product can be caused by inaccurate movement 
of the 3D printer, by detecting the 3D printer fault and 
stopping the faulty execution of the printing process, 
manufacturing time, materials, and cost can be saved and 
product quality assured. 

In the related field of rotating machinery fault detection and 
diagnostics, the use of different NDE/NDT techniques such 
as acoustic emission (Yoshioka and Fujiwara, 1984; Tandon 
and Mata, 1999; Tandon and Narka, 2000; Scheer et al., 
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2007; Bechhoefer et al., 2013; Qu et al., 2013 and 2014), 
torsional vibration (Feng & Zuo, 2013), and fiber optic 
strain sensors (Kiddy et al., 2011) has been investigated 
with drivetrain in wind turbine and rotorcraft. In this study, 
the potential capability of acoustic emission (AE) and 
piezoelectric (PE) strain sensors as fault detection and 
quality control technique for AM equipment and product is 
investigated. 

AE is commonly defined as transient elastic waves within a 
material, caused by the release of localized stress energy 
(Mathews, 1983).  The advantage of using AE sensor as 
failure analysis source is that AE propagates from the 
epicenter to sensing apparatus within materials while 
vibration sensor requires perpendicular installation along 
with the vibration direction. Identifying vibration direction 
is sometimes painful if their sources are combinative. Also, 
AE signals are distinguishable from acoustic signals in that 
acoustic signals generally lie on the audible range of human 
(e.g. 20 Hz ~ 20 kHz). On the other hand, AE signals lie on 
a higher frequency range (e.g. 1 kHz ~ 1 MHz). Thus a high 
sampling rate between 2 to 10 MHz has been a typical 
choice of sampling rate for AE data collection. Other issues 
may arise including a high data volume and complicated 
feature of AE signals, which make the AE data processing 
challenging. However, it has been also reported that AE 
sensors are more sensitive in early fault detection than 
vibration sensors with various gear and bearing fault 
diagnostic applications (Yoshioka and Fujiwara, 1984; 
Tandon and Mata, 1999; Tandon and Narka, 2000; and 
Scheer et al., 2007).  

The feasibility of using fiber optic strain sensors to detect 
damaged gearbox was recently reported by Kiddy et al. 
(2011). In their study, fiber optic strain sensors were 
mounted on a helicopter transmission test rig to investigate 
the detectability of gear fault conditions. However, the low 
maximum sampling rate (up to 1 kHz) of the fiber optic 
strain sensor limits its wide applicability in machinery fault 
detection. On the other hand, the PE strain sensors measure 
torsional vibration by quantifying terminal voltage 
difference released by deformed piezoelectric material. 
Unlike the fiber optic strain sensor, PE strain sensor has a 
merit in higher sampling rate up to 100 kHz. Compared to 
the conventional strain gauge sensors and accelerometers, 
the PE strain sensors have certain advantages that could be 
summarized as follows: (1) ability to measure the first 
derivative of physical deformation, (2) high linearity and 
sensitivity from their superior noise immunity as compared 
to differentiated sensing performance of conventional strain 
sensors (Lee and O’Sullivan, 1991; Banaszak 2001), (3) 
high frequency range (Jiang et al., 2014), (4) space-
efficiency without a structural change on the measuring 
target (Kon et al., 2007), and (5) negligible temperature 
effect on the measurement output (Sirohi and Chopra, 2000; 
Jiang et al., 2014). The aforementioned benefits allow PE 

strain sensors to potentially have greater sensing resolution 
and accuracy. 

Up to today, no investigation on 3D printer health 
monitoring and fault diagnosis has been reported in the 
literature.  In this paper, an investigation into the feasibility 
of PHM based AE and PE strain signal analysis techniques 
for 3D printer fault detection and quality control is reported. 
The remainder of the paper is organized as follows. Section 
2 provides a detailed explanation of the proposed 
methodology. In Section 3, the details of the experimental 
setup and the seeded fault tests on a 3D printer test rig for 
validating the proposed methodology are provided. Section 
4 presents the 3D printer fault detection results from the 
seeded fault tests.  Finally, Section 5 concludes the paper. 

2. METHODOLOGY 

An overview of the proposed methodology is provided in 
Figure 1. As shown in Figure 1, a data acquisition (DAQ) 
system is used to collect the AE signals and PE strain 
signals at the same time. While the PE sensor is directly 
connected to the DAQ, the AE sensor, on the other hands, is 
connected to the DAQ board through a hardware based 
heterodyne frequency reduction device. Then, filter bands 
are chosen for each sensor to remove noise in the collected 
signals before they can be used to compute condition 
indicators (CIs) for fault detection.   The key components of 
the methodology are explained in the next two sections. 
Section 2.1 provides a brief review of the hardware based 
heterodyne technique for AE sensor and the computation of 
CIs for 3D printer fault detection is followed in Section 2.2. 

 

Figure 1. Overview of the 3D printer fault diagnosis with 
PE strain sensor and AE sensor. 
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2.1. The Heterodyne Technique 

To apply AE based NDE/NDT techniques to machine fault 
detection and diagnosis, one technical challenge is to deal 
with the data storage and processing burden caused by the 
typical high sampling rate of AE sensor (from several MHz 
to 10 MHz).  To meet the challenge, frequency shifting 
technique, namely heterodyne (Fessenden, 1913) based AE 
fault detection and diagnosis methods have been developed 
for gearboxes (Bechhoefer et al., 2013; Qu et al., 2013; 
2014). The heterodyne technique downshifts the frequency 
of the AE signals so that a sampling rate comparable to 
vibration analysis can be utilized. Qu et al. (2013 and 2014) 
have shown the effectiveness AE based fault detection and 
diagnosis using heterodyne technique with a sampling rate 
as low as to 20 kHz  for a split torque type gearbox. The AE 
based NDE/NDT techniques implemented with heterodyne 
are significant as size of AE data needs to be stored and the 
computational cost can be significantly reduced. The 
heterodyned AE technique implemented in this paper works 
similarly to a radio quadrature demodulator: shifting the 
carrier frequency to baseband, followed by low pass 
filtering. Mathematically, heterodyning is based on the 
trigonometric identity. For two signals with different 
frequency ଵ݂  and ଶ݂ , respectively, their product could be 
written as: 

 
sinሺ2ߨ ଵ݂ݐሻ	 sin	ሺ2ߨ ଶ݂ݐሻ

ൌ
1
2
cosሾ2ߨሺ ଵ݂ െ ଶ݂ሻሿ െ

1
2
cosሾ2ߨሺ ଵ݂  ଶ݂ሻሿ 

(1)

where ଵ݂  is the AE carrier frequency and ଶ݂  is the 
demodulator’s reference signal frequency. In applications, 
any desired new output signals called as heterodynes, one at 
the sum ଵ݂  ଶ݂, and the other at the difference ଵ݂ െ ଶ݂, are 
utilized upon necessity. Technically, the heterodyning 
technique is aimed especially at demodulating the amplitude 
modulated signals. The amplitude modulation process can 
be mathematically expressed as: 

	 ܷ ൌ ሺܷ ݉ݔሻ cos߱ݐ	 (2)

where, 	ܷ  is the amplitude modulated signal, ܷ  is the 
carrier signal amplitude, ݉ is the modulation coefficient, ݔ 
is the signal of interest, and ߱  is the carrier signal 
frequency. By introducing an amplitude and frequency for ݔ 
by ܺ  and Ω, respectively, the signal of interest ݔ  can be 
represented as:  

	 ݔ ൌ ܺܿݏΩݐ	 (3)

Note that it is assumed that Ω is much smaller than ߱. Then, 
with the heterodyning technique, the modulated signal will 
be multiplied by a unit amplitude reference signal cos	ሺ߱ݐሻ. 
Then the resulting ܷ can be written as: 

 
ܷ ൌ ሺܷ ݉ݔሻ cosሺ߱ݐሻ cosሺ߱ݐሻ

ൌ ሺܷ ݉ݔሻ 
1
2

1
2
cosሺ2߱ݐሻ൨	

(4)

Substituting Eq. (3) into Eq. (4) yields: 

ܷ ൌ
1
2
ܷ 

1
2
݉ܺܿݏΩݐ 

1
2
ܷܿݏሺ2߱ݐሻ


1
4
݉ܺሾܿݏሺ2߱  Ωሻݐ  ሺ2߱ݏܿ െ Ωሻݐሿ 

(5)

Since ܷ is assumed not to contain any useful information 
related to the modulated signal, it could be canceled out. 
From Eq. (5), it can be concluded that only the second term 
ଵ

ଶ
݉ܺܿݏΩݐ  will remain after applying low pass filter, 

while the high frequency components around frequency 2߱ 
will be removed. In the final heterodyning demodulation 
step, the signal frequency can be reduced to 10s of kHz. The 
resulting frequency range for AE signals becomes 
comparable to that of typical vibration signals. Thus, a 
lower sampling rate in an AE data acquisition system can be 
used. The heterodyned AE data acquisition procedure is 
shown by comparing it with the conventional AE method in 
Figure 2. 

 

Figure 2. Comparison of the heterodyned AE data 
acquisition procedure with the conventional AE methods. 

 
Finding a proper reference signal is critical to the successful 
implementation of the heterodyne technique in AE data 
acquisition. Since each AE sensor product from varying 
manufacturers has a unique frequency characteristic, the 
following optimization process based a linear chirp function 
is performed so that the root mean square (RMS) of the 
demodulated output signal could be maximized. The 
optimization process is described in Qu et al. (2014).   

2.2. CIs for 3D Printer Fault Detection 

Table 1 provides the definitions of CIs investigated for 3D 
printer fault detection in this paper. The CIs can be defined 
into five general types: root mean square (RMS), peak to  
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Table 1. The definitions of the CIs. 
 

  
Input Signal ሺݔூேሻ 

  
Raw AE EO NB AM FM 

CI 

      Description 
 
 
Equation 

Raw 
heterodyned 

AE data 
ሺݔ௪ሻ 

Energy 
operator: a 

residual of the 
autocorrelation 

function 
ሺݔாைሻ 

Narrow 
band pass 

filtered 
ሺݔேሻ 

Amplitude 
modulation 

of NB 
filtered signal 
ሺܯܣሺݔேሻሻ 

Frequency 
modulation 

of NB 
filtered signal
ሺܯܨሺݔேሻሻ 

Root 
mean 
square 
(RMS) 

ூேሻݔሺܵܯܴ ൌ ඩ
1
ܰ
ݔ

ଶ

ே

ୀଵ

 .ூேሻ: measures the magnitude of a discretized signalݔሺܵܯܴ 

Peak to 
peak 
(P2P) 

ܲ2ܲሺݔூேሻ

ൌ
ሺmax	ሺݔூேሻ െ minሺݔூேሻሻ

2
 

ܲ2ܲሺݔூேሻ: measures the maximum difference within the data range. 

Skewness 
(SK) 

ூேሻݔሺܭܵ

ൌ

1
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ଷ

ቈට
1
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ଶ

ଷ 

 ூேሻ: measures the asymmetry of the data about its mean value. Aݔሺܭܵ
negative SK value and positive SK value imply the data has a longer or fatter 

left tail and the data has a longer or fatter right tail, respectively. 

Kurtosis 
(KT) 

ூேሻݔሺܶܭ

ൌ
ܰ∑ ሺݔ െ ሻேݔ̅

ୀଵ
ସ

ൣ∑ ሺݔ െ ሻேݔ̅
ୀଵ

ଶ
൧
ଶ 

 ூேሻ: measures the peakedness, smoothness, and the heaviness of tail inݔሺܶܭ
a data set. 

Crest 
factor 
(CF) 

ூேሻݔሺܨܥ ൌ
ܲ2ܲሺݔூேሻ
ூேሻݔሺܵܯܴ

 
 ூேሻ to describeݔሺܵܯܴ ூேሻ andݔூேሻ: measures the ratio between ܲ2ܲሺݔሺܨܥ

how extreme the peaks are in a waveform. 

Note: ݔ is ith element of the input data	ݔூே; ܰ is the length of the input data  ூே; maxሺ⋅ሻ returns the maximal element ofݔ
input data	ݔூே; min	ሺ⋅ሻ returns the minimal element of input data ூே defined asݔ	is a mean value of the input data ݔ̅ ;ூேݔ ∑ ݔ

ே
ୀଵ /

ܰ 

 
 
peak (P2P), skewness (SK), kurtosis (KT), and crest factor 
(CF).  Each type of CI can be computed using different 
input signals.  In addition to raw signals, other types of 
input signals can be generated: energy operator (EO), 
narrow band (NB), AM, and FM. The EO introduced by 
Teager (1992) is defined as the residual of the 
autocorrelation function as following: 

 
ாை,ݔ ൌ ݔ

ଶ െ ିଵݔ ⋅   ,ାଵݔ
(for ݅ ൌ 2, 3, … , ܰ െ 1) 

(6)

where ݔாை, is the ith element of EO data; ݔ is the ith element 
of the input data	ݔூே. NB is the time domain representation 
after applying narrow band of interest which could be seen 
in frequency domain. Finally, AM and FM are obtained by  
 
 

 
amplitude modulation and phase modulation of the NB 
filtered data. 

3. EXPERIMENTAL SETUP 

This section covers the experimental setup used to establish 
the AE and PE strain sensor based 3D printer fault diagnosis 
technique. The methodologies were validated with a desktop 
3D printer using fused filament fabrication. Section 3.1 
introduces the 3D printer test rig and Section 3.2 covers the 
seeded fault test. 

3.1. The 3D Printer Test Rig 

Figure 3 shows the 3D printer test rig and the DAQ system 
used in the seeded fault test in this paper. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

 
Figure 3. The 3D printer test rig and the DAQ system. 

 

The 3D printer test rig composes two main parts: (1) 
heterodyned AE based DAQ system, (2) 3D printer. The  
DAQ system includes a National Instruments’ DAQ board 
with a maximum analog input sampling rate of 1.25 MHz, 
AE sensor attached on the 3D printer, demodulation board 
(AD8339), analog amplifier with gain 20/40/60dB, and 
function generator. The 3D printer (Makerbot, 2014) has a 
layer resolution up to100	μm, position precision of 11	μm 
on X and Y axes and 2.5	μm on Z axis, and a nozzle of 0.4 
mm diameter controlled by two stepper motors and wear 
resistant oil-infused bronze bearings. 

3.2. 3D Printer Seeded Fault 

According to the troubleshooting maintenance document 
(Makerbot, 2014) of the machine, one potential problem is 
the looseness of the belt driving the motion of the extruder 
nozzle. Thus, a malfunctioned toothed belt scenario was 
artificially created and simulated in this paper. The seeded 
fault was created by inserting five small pieces of metal 
wire into the slots between teeth of belt to create faulty 
operation during printing process. Figure 4 shows the 
seeded fault created by inserting a metal wire piece into the 
slot between two teeth on the toothed driving belt to 
simulate the looseness of the driving belt. The inserted 
metal wire piece was cut into the same dimensions in size as 
the slot between the belt teeth so that the slot was perfectly 
filled with the metal wire piece. Then the metal wire piece 
was tied on the belt with a thin flexible tape. 

 

 

Figure 4. Seeded fault on toothed belt. 
 
The 3D printer was run with and without the fault seeded 
driving belt to produce ten sets of bolt and nut (five sets for 
each conditions).  Individual run took about 28 minutes to 
print one set of bolt and nut. For sample consistency, a total 
of six heterodyned AE data samples were recorded for 10 
seconds at pre-specified time locations from each run. The 
data acquisition procedure for the seeded fault test is 
depicted with a flowchart in Figure 5.  

 

Figure 5. Data acquisition procedure. 
 
Figure 6 shows the 3D outputs of the healthy and faulty 3D 
printers.   Under the normal printing conditions, the printed 
nut and bolt should smoothly thread together and function 
as intended.  Under the faulty printing condition, even 
though the pair of printed bolt and nut appears to be normal, 
the bolt can only be turned into the nut half way.  This 
clearly indicates that the threads on the bolt or inside the nut 
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were not printed up to the required precision due to the 
driving belt fault in the 3D printer. 

 
Figure 6. 3D outputs from the healthy and the faulty 3D 

printers. 

4. RESULTS 

This section covers the 3D printer fault diagnostic results 
from the AE and PE strain sensor based technique. Section 
3.1 explains AE signal analysis results and Section 3.2 the 
PE strain sensor signal analysis results. 

4.1. AE Signal Analysis Results 

The AE signal analysis results for the seeded fault tests 
conducted on the 3D printer test rig are provided in this 
section. Figure 7 shows the spectrums of AE data samples. 
By examining the spectrums in Figure 7, two different 
frequency regions were chosen for the low pass and narrow 
band pass filters: low frequency region up to 20 kHz and 
narrow band frequency around 3906 Hz. As shown in 
Figure 7, a remarkably high peak was observed within low 
pass range from all of AE samples. These peaks are 
specifically located at 3906 Hz.  So a narrow band pass 
filter with a band width of 3906±3 Hz around the peak 
frequency location was chosen. 

In Figure 8, RMS result from the low pass filter is provided. 
The resulting RMS of the heterodyned AE sample showed 
clear separation between healthy and faulty 3D printing 
condition. In Figure 8(a), RMS values at each sample 
location and trial are presented. In Figure 8(b), the averaged 
RMS values with a 95% confidence interval at each sample 
location are provided. 

In Figures 9 to 12, CIs from the narrow band filtered AE 
signals are provided. Among all the CIs tested, majority of 
those that show a clear separation between the healthy and 
faulty conditions were computed from narrow band filtered  
signals.  Note that the bandwidth of this narrow band is in 
the low frequency filter region. A clear separation between 
the healthy and faulty 3D printing conditions with a 95% 
statistical significance can be observed for the following AE 

based CIs: RMS, NB-RMS, NB-P2P, AM-RMS, and AM-
P2P. 

 

Figure 7. Spectrum of 3D printer AE signal samples: (a) 
healthy, (b) faulty. 
 

 

Figure 8. RMS of healthy and faulty low pass filtered results: 
(a) all data, (b) average with 95% confidence interval. 

 

Figure 9. RMS from narrow band pass filtered result: (a) all 
data, (b) average with 95% confidence interval. 
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Figure 10. Peak to peak from narrow band pass filtered 

result: (a) all data, (b) average with 95% confidence interval. 
 

 
Figure 11. RMS from amplitude modulation result after 
narrow band pass filtered result: (a) all data, (b) average 

with 95% confidence interval. 
 

 
Figure 12. Peak to peak from amplitude modulation result 

after narrow band pass filtered result: (a) all data, (b) 
average with 95% confidence interval. 

4.2. PE Strain Signal Analysis 

In processing the PE strain sensor signals to extract CIs for 
the 3D printer fault detection, a similar strategy used by 
Kiddy et al. (2011) was applied. In their study, PE strain 
signals were divided into two parts based on their frequency: 
low frequency part and high frequency part. Actual damage 
detection was performed on the high frequency part of the 
strain sensor data using condition indicators. Thus, in this 
research, high pass filtered PE strain signals were used to 
compute the CIs. In search for the appropriate filter band, 
the fast kurtogram (Antoni, 2007) was applied to exam the 
impulsivity locations of PE strain signals collected from the 
healthy 3D printers.  

Provided in Figure 13, a sample fast kurtogram result from 
the healthy 3D printer is displayed. The area in dark red 
color indicates the location of impulsivity. Statistical result 
of the fast kurtogram is summarized in Table 2. The 90% 
and 95% trimmed mean indicate that the impulsivity of PE 
sensor signals are located around 3.3 kHz to 4.2 kHz, 
respectively. Thus, a high pass band above 3 kHz was 
selected.  Here a ܺ	% trimmed mean is the average of the 
data after ሺ100 െ ܺሻ% of the outliers are removed.  

 
Figure 13. A sample fast kurtogram of PE strain sensor 

result from the healthy 3D printer. 
 
Among all the CIs computed using PE strain signals, only 
RMS showed a clear separation of the faulty condition from 
the normal condition. The RMS of the PE stain signals and 
the averaged RMS with 95% confidence intervals for both 
the healthy and faulty conditions are provided in Figure 14. 

 
Table 2. Statistical results of Fast kurtogram. 

 

Healthy 

90% trimmed mean 95% trimmed mean 

Center 
frequency 
value (Hz)

3320 4199 
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Figure 14. RMS of healthy and faulty PE strain signals: (a) 

all data, (b) average with 95% confidence interval. 
 

4.3. Results Summary 

The 3D printer seeded fault detection results using both the 
AE sensor and PE strain sensor can be summarized in Table 
3. 

 
Table 3.  Summary of the 3D printer fault detection results 

using AE and PE strain sensors. 

Sensor Type AE Sensor PE Strain Sensor 

Sampling 
frequency 

100 kHz 100 kHz 

Filter 
bandwidth 

Low pass 
band 

(< 20 kHz) 

Narrow band 
(3906 ± 3 Hz) 

High pass band 
(> 3k Hz) 

Effective CIs 
selected 

RMS 
NB-RMS, NB-
P2P, AM-RMS, 

AM-P2P 
RMS 

 
As shown in Table 2, for both the AE sensor and PE strain 
sensor used in the case study for 3D printer fault detection, a 
sampling rate of 100 kHz was used for data acquisition.  For 
AE sensor signals, two band pass filters were used: a low 
pass filter and a narrow band filter.  When the low pass filter 
was used, RMS provided the best performance and was able 
to detect the fault.  When a narrow band filter was used, the 
following CIs were able to detect the fault: NB-RMS, NB-
P2P, AM-RMS, and AM-P2P.  For PE strain sensor signals, 
a high pass filter was used and only one CI, RMS, was able 
to detect the fault. 

It has to be pointed out that the 3D printer fault was detected 
right after the first sample data was collected by both the AE 
and PE strain sensor in the seeded fault test.  In real AM 
application, it can take up to several days to print out a 
product by a 3D printer.  Therefore, significant amount of 

manufacturing time, materials, and cost can be saved and 
the quality of the product can be assured if a 3D printer fault 
can be detected and the printer be stopped days before it 
finishes printing the defective product.   

5. CONCLUSIONS 

In this paper, an investigation into the feasibility of PHM 
based AE and PE strain signal analysis techniques for 3D 
printer fault detection and quality control was reported.  The 
presented PHM approach was developed using two types of 
NDE/NDT sensors: AE sensor and piezoelectric strain 
sensor.  A seeded driving belt fault on a fused filament 
fabrication desktop 3D printer was used to validate the 
feasibility of the PHM approach in the case study.  For the 
AE signal analysis in particular, a high peak in the 
frequency domain was detected and a narrow band pass 
filter around the peak was used to extract multiple condition 
indicators to detect the fault. On the other hand, in the PE 
strain analysis, the fast kurtogram was used to determine the 
proper high-pass filter band to obtain high frequency 
components to obtain effective fault detection CIs. The 
results have shown that the driving belt seeded looseness 
fault could be detected by both of the AE and PE strain 
sensor analysis methods.  The methods presented in this 
paper could be extended to other potential 3D printing faults 
such as material feed or additional mechanical component 
faults.  
 

REFERENCES 

Antoni, J. (2007). Fast computation of the kurtogram for the 
detection of transient faults, Mechanical Systems and 
Signal Processing, Vol. 32, No. 1, pp. 108 - 124. 

Banaszak, D. (2001). Comparison of piezoelectric strain 
sensors with strain gages, Proceedings of the Annual 
Meeting of the American Statistical Association, August 
5 – 9, Atlanta, GA. 

Bechhoefer, E., Qu, Y., Zhu, J., & He, D. (2013). Signal 
processing technique to improve an acoustic emission 
sensors, Proceedings of the Annual Conference of the 
Prognostics and Health Management Society 2013, 
October 14 – 17, New Orleans, LA. 

Energetics Incorporated. (2013). Workshop summary report: 
measurement science roadmap for metal-based additive 
manufacturing, National Institute for Standards and 
Technology (NIST), U.S. Department of Commerce, 
May 13. 

Feng, Z. & Zuo, M. J. (2013). Fault diagnosis of planetary 
gearboxes via torsional vibration signal analysis, 
Mechanical Systems and Signal Processing, Vol. 36, 
No.2, pp. 401 - 421. 

Fessenden, R. A. (1913). Electric Signaling Apparatus, US 
Patent 1050441A, January 14. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

9 

Lee, C. K. & O’Sullivan, T. (1991). Piezoelectric strain rate 
gages,” Journal of the Acoustical Society of America, 
Vol. 90, No.2, pp.945 - 953. 

Kiddy, J. S., Samuel, P. D., Lewicki, D. G., LaBerge, K. E., 
Ehinger, R. T., & Fetty, J. (2011). Fiber optic strain 
sensor for planetary gear diagnostics, NASA Technical 
Report: NASA/TM-2011-217123, NASA Glenn 
Research Center, Cleveland, OH. 

Kon, S., Oldham, K., & Horowitz, R. (2007). Piezoresistive 
and piezoelectric MEMS strain sensors for vibration 
detection, Proceedings of the SPIE: Sensors and Smart 
Structures Technologies for Civil, Mechanical, and 
Aerospace Systems, Vol. 6529, pp. 1 - 11. 

MakerBot Industries, LLC. (2014). Replicator2 Desktop 3D 
Printer User Manual, Brooklyn, NY. 

Mathews, J. R. (1983). Acoustic Emission, Gordon and 
Breach Science Publishers Inc., New York, NY, USA. 

Office of the Press Secretary. (2013). Remarks by the 
President in the State of the Union Address, February 
12, 2013. http://www.whitehouse.gov/the-press-
office/2013/02/12/remarks-president-state-union-
address 

Scheer, C., Reimche, W., & Bach, F.W. (2007). Early fault 
detection at gear units by acoustic emission and wavelet 
analysis, Journal of Acoustic Emission, Vol. 25, No. 1, 
pp. 331 – 340. 

Sirohi, J. & Chopra, I. (2000). Fundamental understanding 
of piezoelectric strain sensors, Proceedings of Journal 
of Intelligent Material Systems and Structures, Vol. 11, 
No. 4, pp. 246 - 257. 

Tandon, N. & Mata, S. (1999). Detection of defects in gears 
by acoustic emission measurements, Journal of 
Acoustic Emission, Vol. 17, No. 1-2, pp. 23 - 27. 

Tandon, N. & Nakra, B. C. (2000). Comparison of vibration 
and acoustic measurement techniques for the condition 
monitoring of rolling element bearings, Tribology 
International, Vol. 25, No. 3, pp. 205 - 212, 1992. 

Teager, H. M., & Teager S. M. (1992). Evidence for 
nonlinear sound production mechanisms in the vocal 
tract, , Speech Production and Speech Modeling 
Symposium, Time Frequency and Time-Scale Analysis, 
edited by Hardcastle, W. J. and Marchal, A., Springer, 
Amsterdam, Netherlands. 

Qu, Y., He, D., Bechhoefer, E., & Zhu, J. (2013). A new 
acoustic emission sensor based gear fault detection 
approach, International Journal of Prognostics and 
Health Management, Vol. 4, Special Issue on Wind 
Turbine PHM, pp. 1 - 14. 

Qu, Y., He, D., Yoon, J., VanHecke, B., Bechhoefer, E., & 
Zhu, J. (2014). Gearbox tooth cut fault diagnostics 
using acoustic emission and vibration sensors - a 
comparative study, Sensors, Vol. 14, No. 1, pp. 1372 - 
1393. 

Yoshioka, T., & Fujiwara, T. (1984). Application of 
acoustic emission technique to detection of rolling 

bearing failure, American Society of Mechanical 
Engineers, Vol. 14, No. 1, pp. 55 - 76. 

 

BIOGRAPHIES 

Jae Yoon received his B.E degree in 
Control engineering from Kwangwoon 
University, Republic of Korea, worked at 
Samsung Electronics Co. Ltd. as a 
product engineer from 2006 through 
2008. He then received M.S. degree in 
Mechanical engineering from the 
University of Florida. He joined the 

Intelligent Systems Modeling & Development Laboratory in 
the department of Mechanical and Industrial Engineering at 
the University of Illinois-Chicago to pursue Ph.D. degree. 
His current research interests include: machinery health 
monitoring for CBM, data-driven methods for diagnostics, 
and model based and data mining based prognostics, 
encompassing reliability engineering. 

 

David He Dr. He is a Professor and 
Director of the Intelligent Systems 
Modeling & Development Laboratory in 
the Department of Mechanical and 
Industrial Engineering at The University 
of Illinois-Chicago.  Dr. He’s research 
areas include: machinery health 
monitoring, diagnosis and prognosis, 

complex systems failure analysis, quality and reliability 
engineering, and manufacturing systems design, modeling, 
scheduling and planning. 

 

Brandon Van Hecke received his B.S. in 
Industrial Engineering from the University 
of Illinois at Chicago in 2010. He is a 
Ph.D. candidate in the Department of 
Mechanical and Industrial Engineering. 
His research interests include digital signal 
processing, machinery health monitoring, 
bearing and gear fault diagnostics based 

on the evaluation of vibration and acoustic emission signals, 
and condition based maintenance. 

 


