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ABSTRACT 

With electrical power supplies playing an important role in 

the operation of aircraft systems and sub-systems, flight and 

ground crews need health state awareness and prediction 

tools that accurately diagnose faults, predict failures, and 

project remaining life of these onboard power supplies. 

Among onboard power supplies, switch-mode power 

supplies are commonly used where their weight, size, and 

efficiency make them preferable to conventional 

transformer-based power supplies. In this paper, we present 

a framework of diagnostics and prognostics methodology 

based on an equivalent circuit system simulation model 

developed from a commercially available switch-mode 

power supply, and empirical component degradation models. 

In industrial applications, case-specified modifications can 

be made according to specific experimental or service 

conditions of different commercial products.  First, the 

developed simulation model is validated through 

experimental testing. Then, a series of data are collected 

from simulation to build the baseline and fault databases 

under a fixed load profile. Next, promising features are 

extracted from sensed parameters, and further data analysis 

are conducted to estimate the current health condition and to 

predict the remaining useful life of the target system. Some 

highlights of the work are included but not only limited to 

the following aspects: first, the methodology is based on 

electronic system simulation instead of traditional 

accelerated testing by employing a high-fidelity system 

simulation model and empirical critical component 

degradation models; second, efforts are made in this 

preliminary work to adapt proven prognostics and health 

management techniques from machinery to electronic health 

management, with the goal of expanding the realm of 

electronic diagnostics and prognostics.  

1. INTRODUCTION 

Electronic systems such as electronic controls, onboard 

computers, communications, navigation and radar perform 

many critical functions in onboard military and commercial 

aircrafts. All of these systems depend on electrical power 

supplies for direct current power at a constant voltage to 

drive solid-state electronics. With these power supplies 

playing an important role in the operation of aircraft systems 

and sub-systems, flight and ground crews need health state 

awareness and prediction tools that diagnose faults 

accurately, predict failures, and project remaining useful life 

(RUL) of these components. Among various electrical 

power supplies, switch-mode power supplies (SMPS’s) are 

commonly used in onboard aircrafts where their weight, size, 

and efficiency make them preferable to conventional 

transformer-based power supplies.  

Traditional reliability practices applied in electronics are 

limited to reliability analysis based on historic reliability 

statistics and ageing models/factors of population-specific 

components from commonly accepted resources. Few 

efforts target at developing high fidelity models for specific 

electronic systems. On the other hand, many current 

prognostic and health management (PHM) practices rely on 

extensive highly accelerated life testing (HALT) to obtain 

degradation/failure data or models, which may substantially 

increase product life cycle costing (Brown, D. W., Kalgren, 

P. W., & Roemer, M. J., 2007). To address the need of 

developing higher fidelity models and reducing the life 

cycle costing, this paper proposes the use of a model-based 

diagnostics and prognostics approach for specific electronic 

systems, integrating reliability statistics, domain expertise, 

with experimental testing verification. More specifically, in 

this paper, the efforts are made to develop processes that 

adapt proven PHM concepts from machinery health 

management to electronic systems with the utilization of an 

integrated simulation model combining two empirical 

models in the application of SMPS: a circuit-based SMPS 

simulation model and the components’ degradation models 
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developed based on domain expertise and validated via 

experimental testing.  

A schematic diagram of the proposed model-based SMPS 

diagnostics and prognostics methodology is as shown in 

Figure 1. First, a high-fidelity SMPS system simulation 

model is established and validated via actual system testing 

under a fixed load profile. Single critical component is 

selected with the consideration of both the reliability 

statistics and the specific application. Then, in the fault 

diagnostics module, simulated data are generated to build 

baseline and fault databases under the same load profile. 

Probability of detection (POD) is selected and calculated 

over time for the purpose of fault detection and the trigger 

of failure prognosis. In the failure prognostics module, 

system degradation model is developed and then a model-

based particle filter routine is adopted to estimate the model 

parameters and finally, predict RULs. Note that, all models, 

experimental results and analysis discussed in this paper 

pertain to a commercial-available SMPS as shown in Figure 

2. The target SMPS system is a constant current source with 

the output current of 700mA±15mA. 

 

Figure 1. Systematic diagram of the proposed methodology. 

 

Figure 2. The SMPS commercial product. 

2. MODELING METHODOLOGY 

In this section, the above-mentioned two types of empirical 

models are introduced: the circuit-based SMPS system 

simulation model and the critical components’ degradation 

models, from which an integrated simulation model is 

generated to serve in the framework of diagnostics and 

prognostics to be introduced in Section 3.  

2.1 SMPS System Modeling  

2.1.1 Model Development 

A circuit-based simulation model for the target SMPS 

system was developed using software PSpice. OrCAD 

PSpice is a Simulation Program with Integrated Circuit 

Emphasis (SPICE) analog circuit and digital logic 

simulation and analysis program, which is widely used in 

academia and industry. First, equivalent circuit models were 

built for individual components, for example, transformers. 

Then, all component models were integrated to build the 

SMPS system circuit model as shown in Figure 3. The 

whole SMPS consists of the input protecting circuit, Active 

Power Factor Corrector (APFC), opto-isolator, comparing 

regulator and other parts. The loads are 44 LEDs in serial 

connection, as shown in Figure 3. 
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Figure 3. SMPS model schematic diagram. 

2.1.2 Model Validation 

Model validation is crucial to the high-fidelity simulation 

model establishment. To validate the established model, 

critical model parameters are usually compared to the 

corresponding experimental outputs from selected testing 

points. In this case, several comparison parameters were 

selected such as MOSFET drive signals (i.e., Vgs, Vds) and 

diode D voltage. The MOSFET drive signal waveforms 

from the model and the experiment are as shown in Figure 4 

as an example. As indicated in Figure 4, the model 

performances generally match with the experimental results, 

and the simulation model is validated. Note that in Figure 4, 

according to the authors’ domain experience, high-

frequency oscillation observed at the simulated waveform 
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changing edges could be attributed to the simulation 

algorithm design, and the small discrepancy between 

simulation and testing values could be due to the testing 

temperature variation and/or the actual system’s Pulse-

Width Modulation (PWM) chip output voltage variation.  

 

(a) 

 

(b) 

Figure 4. Simulation and experimental test waveforms of 

MOSFET drive signals: (a) Vgs, (b)Vds. 

2.2 SMPS Degradation Modeling  

It has been established in several works (Zhang, Kang, Luo 

and Pecht, 2009; Goodman, Hofmeister, and Judkins, 2007) 

that component degradation, especially the critical 

components’ degradation, is the prime contributor to SMPS 

system degradation and eventually functional failure. Thus, 

it is essential to identify the critical components and study 

their degradation progression trends. Here our interest is to 

study the target SMPS system’s soft failure induced by 

system’s functional degradation under a fixed load profile, 

and our hypothesis is that the SMPS system’s degradation is 

only caused by the single critical component’s degradation. 

Thus, the system assumes the same degradation model as 

the critical component. 

2.2.1 Critical Component Identification 

Previous reliability studies of typical SMPS components 

have shown that the majority of failures may be attributed to 

a list of critical components such as metal-oxide 

semiconductor field-effect transistors (MOSFETs), 

aluminum electrolytic capacitors and silicon power rectifier 

diodes (Li, D., & Li, X., 2012). The failures of those 

components correspond to approximately 80% of the total 

failures. In this work, in addition to component reliability 

studies, a failure mode and effects analysis (FMECA) was 

also conducted to generate a list of critical components for 

this specific commercial SMPS. In this paper, for the 

purpose of illustration of methodology, aluminum 

electrolytic capacitor and feedback resistor are selected for 

single critical component degradation study. 

2.2.2 Critical Component Degradation Modeling 

System/component degradation modeling is tightly 

connected with the usage, environmental and operational 

conditions, or, the corresponding load profile U composed 

of critical stress factors. It is recommended in practice to 

integrate the stress factor influence into the degradation 

modeling. However, studying the fault progression as a 

function of varied load profiles is beyond the scope of this 

paper. Thus, here, we fix the SMPS load profile including 

three stress factors: input voltage, load resistance and 

temperature. For the choice of modeling approach, we adopt 

the feature-based modeling, as the degradation of electronic 

components usually reflects in their performance parameters’ 

drifting from the nominal values. 

a) Aluminum Electrolytic Capacitor Degradation 

Aluminum electrolytic capacitors are known for their 

comparatively low reliability, and due to their criticality in 

SMPS systems they are a good candidate to study their 

degradation modeling and its contribution to system’s 

failure. The performance of those components depends on 

the anode metal oxide film. With the thickening of anodic 

metal oxide film, the equivalent series resistance (ESR) 

increases and its capacitance decreases, while hydrogen 

produced from the cathode reaction accelerates the 

evaporation of electrolyte, which causes aluminum 

electrolytic capacitors’ degradation. 

The equivalent circuit model of the aluminum electrolytic 

capacitor in this application is as shown in Figure 5. In 

Figure 5, C7 and C11 represent capacity values; R39 and R43 

represent ESR values.  
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Figure 5. Aluminum electrolytic capacitor equivalent circuit 

model in PSpice. 

 

Given a fixed operational temperature, the capacitor 

degradation rate is constant. The capacity and ESR values 

change as the aluminum electrolytic capacitor degrades, as 

expressed in Equations (1) and (2): 

   ( )        (      )                   (1) 

 ( )                                           (2) 

where   = 0.3 Ω,   =220 µF,        
  ,      

    . The degradation model parameter values are 

empirically selected. 

b) Feedback Resistor Degradation 

In an SMPS system, the feedback circuit monitors the 

output voltage and compares it with a reference voltage. In 

the feedback loop, the degradation of feedback resistor plays 

a vital role in SMPS’s reliability. Theoretically, with the 

reference voltage unchanged, an increase of feedback 

resistance will lead to a decrease of SMPS output current as 

indicated in Equation (3): 

      
  

  
                                     (3) 

where    and    are SMPS average output current and 

feedback resistance under healthy condition, and    is the 

degraded feedback resistance. In this SMPS module, the 

feedback resistor is composed of two resistors in parallel. 

The empirical degradation models are as shown as follows: 

            
     

            
    .                        (4) 

3. METHODOLOGY FOR MODEL-BASED DIAGNOSTICS 

AND PROGNOSTICS 

In the field of PHM, fault diagnostics and failure 

prognostics techniques are usually classified according to 

the way that data is used to describe the behavior of the 

system: data-driven or model-based approaches. When the 

domain expertise is available to build a reliable degradation 

model of the monitored system, model-based diagnostics 

and prognostics approaches are preferable than the data-

driven techniques. Figure 6 shows the systematic diagram 

for the proposed framework of model-based diagnostics and 

prognostics with Particle Filter (PF). In this case, the real-

time data comes from the simulation model. 

 

 

Figure 6. Model-based diagnostics and prognostics diagram. 

 

3.1 Model-Based Diagnostics Module 

A fault diagnostics module involves the tasks of fault 

detection and isolation, and identification (FDI). In general, 

this procedure may be interpreted as the fusion and 

utilization of the information present in a feature vector 

(measurements), with the objective of determining the 

operation states (i.e., being healthy or fault presence) of a 

system and the causes for deviations from particularly 

desired behavioral patterns.  

In the model-based diagnostics framework, at any given 

instant of time, it provides a probability distribution 

function (PDF) estimate for meaningful physical variables 

in the system. In this case, simulation measurements at 

every time instant were collected from the integrated 

simulation model as introduced previously, and PDFs were 

generated from corresponding measurement histograms. 

Then, hypothesis testing through calculating current and 

baseline PDFs is used to generate fault alarms, and other 

statistical analysis tools may be used to extract additional 

information about the detection and diagnostic results. For 

example, in this case, POD is defined as below: 

POD = 1 – Type II error. 

Based on the calculated PODs from simulation, a fault 

detection threshold is set up in terms of POD. An illustrative 

example of fault detection confidence derived from type II 

statistical hypothesis testing with an example fault detection 

threshold is as shown in Figure 7. An illustration of fault 

progression with regard to the comparison of current and the 

baseline PDFs are as shown in Figure 8. 
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Figure 7. Estimator confidence metric derived from type II 

statistical hypothesis testing. 

 

 

(a) 

 

(b) 

Figure 8. Baseline (left) and estimated (right) PDFs of (a) 

the mild and (b) the severe fault levels. 

3.2 Model-Based Prognostics Module 

A health-based failure prognostics module is usually 

triggered after the fault is detected, and the major task is to 

estimate RUL of the target system/component. In the 

process of model-based prognostics, the degradation model 

is expressed as a function of given load profile U, time t, 

and model parameters to be estimated ϴ, or, mathematically, 

   (     ).                                  (5) 

Note that Load profile U includes the contribution from the 

system external inputs and different stress factors as 

introduced before. The model parameters are estimated by 

integrating the degradation model with the observed health 

data. The RUL is calculated based on estimated model 

parameters.  

In this paper, we realize the model-based prognostics in the 

PF framework. The methodology takes advantage of the 

empirical fault/degradation model, and a nonlinear process, 

a Bayesian estimation method using PF and real-time 

measurements. A merit of using PF for model-based 

prognostics is it combines RUL prediction and model 

estimation. Prognosis is achieved by performing two 

sequential steps, prediction and filtering. Prediction uses 

both the knowledge of the previous state estimate and the 

process model to generate the a priori state PDF estimate for 

the next time instant, or mathematically, 

 (  |    )  ∫  (  |    )  (      |      )             (6) 

Unfortunately, this expression does not have an analytical 

solution in most cases. Instead, Sequential Monte Carlo 

(SMC) algorithms, or PF, are used to numerically solve this 

equation in real-time through the use of efficient sampling 

strategies. PF approximates the state pdf using samples or 

“particles” having associated discrete probability masses 

(“weights”), as expressed in Equation (7),  

 (  |    )    ̃(    
 )   (         

 )       ,         (7) 

where     
  is the state trajectory and      are the 

measurements up to time t. The simplest implementation of 

this algorithm, the Sequential Importance Re-sampling (SIR) 

particle filter, updates the weights using the likelihood of    
as  

         (  |  )                             (8) 

Long-term predictions are used to estimate the probability 

of failure in a system given a hazard zone that is defined via 

a probability density function with lower and upper bounds 

for the domain of the random variable, denoted as     and 

   , respectively. The probability of failure at any future 

time instant is estimated by combining both the weights 

    
( )

 of predicted trajectories and specifications for the 

hazard zone through the application of the Law of Total 

Probabilities. The resulting RUL PDF, where      refers to 

RUL, provides the basis for the generation of confidence 

intervals and expectations for prognosis, 

 ̂     ∑  (       |   ̂    
( )         )

 
             (9) 

In this case, we use a predetermined failure threshold 

instead of a hazard zone for the illustration of methodology. 

4. RESULTS 

In the SMPS simulated degradation process, we fixed a load 

profile of temperature      , input voltage       , 

load resistance       , ran the integrated simulation 

model and monitored 10 output parameters: output current, 

voltage ripple, capacitance current ripple, capacitance 

voltage, transformer consumption, MOSFET consumption, 

MOSFET voltage, diode reverse voltage, and 47K resistance 

consumption. 
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4.1 Case Study: Aluminum Electrolyte Capacitor  

4.1.1 Model-based Diagnostics 

In the above-mentioned 10 output parameters, the amplitude 

of the output voltage ripple (VR) was substantially 

influenced by the degradation of aluminum electrolyte 

capacity. Therefore, VR amplitude was selected as a raw 

feature for further processing. In one cycle of SMPS 

degradation simulation, we collected 13 baseline and fault 

VR datasets with the time step of “thousand-hours”, i.e., at 

                   . At every time step, Gaussian 

noise     (      ) was added to every VR measurement 

to represent uncertainty introduced by measurement noise, 

and 60 measurements of VRs were collected with an 

example as shown in Figure 9. Based on the measurement, 

the histograms were computed and the histogram of every 

faulty dataset was compared to the one of the baseline 

dataset with an example as shown in Figure 10, and the PDF 

was computed from the corresponding histogram. Then 

POD was calculated and recorded as shown in Table 2. Note 

that, in this case, we fixed the false alarm rate (Type I error) 

at 5% and monitored POD change as fault evolves. Recall 

that POD = 1 – Type II error. Figure 10 and Table 2 both 

show that the POD values increased as the SMPS degraded 

over time. Here, we chose POD=95% as the SMPS fault 

detection threshold to trigger our prognosis module. As 

indicated in Table 2, based on the given fault detection 

threshold, the first 8 datasets (i.e., t=0h, 1000h, …, 7000h) 

was regarded as the training data sets, while the last 5 (i.e., 

t=8000h, …, 12,000h) as the testing datasets.  

 

Table 2. POD between the faulty and the baseline datasets. 

t 

(kh) 

1 … 4 5 6 7 8 9 … 12 

POD 0 … 0 0.018 0.334 0.769 0.994 1 … 1 

 

Voltage ripple Voltage ripple Voltage ripple ... Voltage rippleGet 60 measurement value

Figure 9. VR baseline (t=0h) measurements in PSpice. 

 

 

 

Figure 10. Comparison of faulty data at 6000h and baseline 

histograms. 

4.1.2 Model-based Prognostics with Particle Filter 

Once the fault detection threshold (i.e.,        ) was 

reached, the SMPS RUL prognosis routine was triggered. 

An empirical degradation model is expressed by an 

exponential growth model as  

       (  )                               (10) 

where x is VR, t is time, and a, b, c are unknown model 

parameters. The above SMPS degradation model can be 

rewritten in an iterative form of  

       (   ) (       )              (11) 

Both the model parameters and the RULs were estimated 

using PF. Here empirically we set the SMPS performance-

based failure threshold as VR=0.3. The prediction diagram 

results in the form of probability are shown in Figure 11 (a). 

Figure 11 (b) and (c) show the RUL predictions at arbitrary 

cycles of 6,000h and 1,1000h respectively, in the form of 

distribution along with the 90% confidence interval (CI). As 

indicated in Figure 11 (b) and (c), the probabilistic RUL 

prediction was updated and the prediction accuracy 

improved over time.  
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 (b) 

 

(c) 

Figure 11. SMPS prognostics results in the case of 

aluminum electrolyte capacitor degradation: (a) prognosis 

module diagram results, (b) RUL pdf prediction at t=6,000 h, 

and (c) RUL pdf prediction at t=11,000 h. 

 

4.2 Case Study: Feedback Resistor Degradation 

The above-mentioned methodology is also adapted to the 

case of feedback resistor degradation diagnostics and failure 

prognostics. RUL results are illustrated in Figure 12. As 

indicated in Figure 12, the output current decreased as the 

feedback resistor degraded over time. 

 

 

(a)  

 

(b)  

 

(c)  

Figure 12. SMPS prognostics results in the case of feedback 

resistor degradation. (a) prognosis module diagram results, 

(b) RUL pdf prediction at t=10,000 h, and (c) RUL pdf 

prediction at t=11,000 h. 
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5. CONCLUSIONS 

This paper introduces a novel framework of a model-based 

SMPS fault diagnostics and failure prognostics 

methodology, which leverages the knowledge of the 

component physics and degradation physics to assess the 

health status, diagnose faulty conditions and predict RULs. 

The methodology is based on electronic system simulation 

by employing a high-fidelity system simulation model and 

empirical critical component degradation models. General 

procedures and simulation results are presented in two case 

studies of critical component degradation. Although the 

discussion is limited in the scope of a specific simulated 

model from a commercially available SMPS product, the 

methodology can be extended to other SMPS systems with 

related adjustment of the simulation model and the 

component degradation models based on corresponding 

system test results and the knowledge of critical component 

ageing behaviors. Future work is needed to study other 

cases for single critical component degradation, to study the 

scenario when multiple faults are injected simultaneously 

(i.e., multiple component degradation), to study the impact 

of varied loads on the RUL predictions, and to explore the 

damage accumulation degradation modeling approach in 

addition to the feature-based modeling approach as adopted 

in this paper.  
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