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ABSTRACT

We propose the use of multivariate orthogonal space
transformations and Vector Autoregressive Moving-Average
(VARMA) models in combination with data-driven system
identification models to improve residual-based approaches
to fault detection in rolling mills. Introducing VARMA mod-
els allows us to build k-step ahead multi-dimensional pre-
diction models including the time lags that best explain the
target. Multivariate orthogonal space transformations pro-
vide estimates for the dynamical parameters by rewriting the
equation set of the system at hand, decomposing the mea-
sured data into process and residuals spaces. Modeling in
the process space then produces much more accurate mod-
els due to dimensionality (noise) reduction. Since we use an
unsupervised scheme that requires a priori neither annotated
samples nor fault patterns/models, both model identification
and fault detection are based solely on the on-line recorded
data streams. Our experimental results demonstrate that our
approach yields improved Receiver Operating Characteristic
(ROC) curves than methods that do not employ vector autore-
gressive moving-average models and multivariate orthogonal
space transformations.

1. INTRODUCTION

Unscheduled machine downtime could be reduced signif-
icantly by accurate condition monitoring and early detec-
tion of faults. Thus, expensive repair costs could be min-
imized and production efficiency increased. The concept
of fault detection was formally defined by the ”SAFEPRO-
CESS” IFAC Technical Committee as the ”Determination of
Francisco Serdio et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
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the faults present in a system and the time of detection”. Fur-
ther, they also defined a fault as ”An unpermitted deviation of
at least one characteristic property or parameter of the system
from the acceptable/usual/standard condition” (Isermann &
Ballé, 1997). At the time when the Committee introduced
the terminology to the fields of supervision, fault detection
and diagnosis, most applications supported fault detection by
simple threshold logic or hypothesis testing, but the number
of publications describing much more complex techniques
(such as fuzzy logic or neural networks) was steadily grow-
ing. The main challenge in our application is the detection
of faults, without (i) an analytical description of faults and
process models and (ii) a collection of typical fault patterns.
Approaches using model-based techniques that rely on an-
alytical process (system) models (Dong, Liu, & Li, 2010)
or employ models deduced from the physical definition of
the appearance of a fault (Bolt et al., 2010) or take advan-
tage of a robust observer design (Theilliol, Mahfouf, Ponsart,
Sauter, & Gama, 2010) are unsuited to our application. Nei-
ther are time-series analysis (Chandola, Banerjee, & Kumar,
2009) and vibration monitoring in frequency spaces (spec-
trograms, etc.) (Pichler, Lughofer, Buchegger, Klement, &
Huschenbett, 2012) because the measurement signals are not
completely smooth and continuous in their time line appear-
ance but may show jumping patterns even in fault-free states
due to, for instance, varying systems states. Pattern recog-
nition and classification approaches (Bishop, 2006) cannot
be employed (i) due to the absence of fault patterns and (ii)
because annotated samples are not available since simulating
real faults directly at the system involves high costs and the
risk of component breakdown.

For fault detection in rolling mills, we propose a residual-
based approach that builds upon data-driven techniques, com-
bined with vector autoregressive moving-average models and
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multivariate orthogonal space transformations. Further, we
use a dynamic threshold based on a tolerance band that tracks
the residuals of the models over time after being normalized
by a local error bar. The model-based FD approach takes ad-
vantage of the nominal model of the system to generate resid-
uals (deviations between model predictions and measured tar-
gets) containing information about the faults. Clearly, the
quality of the model is essential for fault detectability and
isolability and the avoidance of ”false alarms” (Frank, Al-
corta, & Köppen-Seliger, 2000).

We conducted our experiments using process history-based
methods which only require large amounts of historical pro-
cess data. There are different ways in which this data can
be transformed and presented as a priori knowledge to a diag-
nostic system. Principal Component Analysis (PCA) and Par-
tial Least Squares (PLS) together with statistical pattern clas-
sifiers form a major component of statistical feature extrac-
tion methods (Venkatasubramanian, Rengaswamy, Kavuri, &
Yin, 2003). Section 2 explains how we handle VARMA mod-
els and describes both PCA and PLS as preprocessing and di-
mension reduction tools and how to combine them with linear
or fuzzy methods. Section 4 comments briefly on preliminary
results which show that the proposed techniques yield better
Receiver Operating Characteristic (ROC) curves than previ-
ous fault detection methods. Section 5 concludes the paper
and presents future research directions.

2. MODELING

2.1. Methodology step by step

Our methodology at a glance is shown in Figure 1. In the
workflow, four different pathways can be follow, thus ob-
taining the different combinations of models, i.e. the models
without any additional issue (raw models), the VARMA mod-
els (including the lags of the channels), the models trained
on the projected spaces and the VARMA models trained on
the projected spaces. Along these pathways, how a dataset
is spanned to include lags and how a model can be trained
in a projected space is also depicted. The methodology also
include a preprocessing step cleaning the data.

2.2. VARMA (Multi-regressive) Models

Inspired by Auto-Regressive Moving Average (ARMA) mod-
els, which model a channel by its own lags, we use lags in
our multidimensional and multichannel approach. Thus, the
dataset containing the candidate channels to explain a target
is first spanned with the candidate channels’ lags (Figure 1).
To this end, each channel in the dataset is delayed several
times by different amounts (1 to L in our experiments). Then,
the model of each channel including all the channels’ lags
is learned by means of a modified variant of forward selec-
tion (Miller, 2002) over the spanned dataset. Thus, we ob-
tain separate and independent multivariate time series mod-

Figure 1. Methodology workflow. All combinations of meth-
ods can be obtained following the four different pathways.

els, fi, i = 1, ...,M .

Starting from the general definition of the model of a channel
chi as a function fi of other channels (where no lags are used),
and using the notation [t] to express the lag operator (also
known as backshift operator, at time t), it becomes straight-
forward to pass from the particular model definition where
the set of candidate channels for explaining the target is ob-
tained from the spanned dataset including lags (cf. Figure 1).
The functional relation without lags is then

chi[t] = fi(ch1[t], ...,chi−1[t],chi+1[t], ...,chM[t]) , (1)

while the functional relation with lags is

chi[t] = fi(chp[t− k], ...,chq[t− l], ...,chr[t−m]) , (2)

where k varies from 0 (i.e., allowing channels without lags
to participate in the model definition) to L, and p,q,r 6= i
(lags of chi are not included) but not necessarily p 6= q 6= r.
Thus, models are potentially obtained where no lags, different
lags from the same channel, or different lags from different
channels appear as input. To do not allow lagged versions of
chi will avoid introducing the information of the (potentially
faulty) channel as an input of the final model.
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Previous work using autoregressive models in the fault de-
tection area can be found in Schöener, Moser, and Lughofer
(2008), M. Yang and Makis (2010) and T. Yang (2006). These
use AR, ARX and ARMA models respectively, but we have
not found evidence of VARMA models applied for the pur-
pose of fault detection. However, our results demonstrate that
this new functional relation enriches the model set since they
yield better ROC curves (see section 4). A detailed descrip-
tion of ARMA models and its variations is provided in Holan,
Lund, and Davis (2010).

2.3. (Fuzzy) Principal Components Regression

Principal component analysis (PCA) (Jolliffe, 2002) is a vec-
tor space transformation that identifies the most meaningful
basis to re-express the original space while preserving maxi-
mum variance in a minimum number of dimensions and filter-
ing out the noise. When starting from correlated data, PCA
is a good technique to transform the set of original process
variables into a new set of uncorrelated variables that explain
the main trends of the process. The PCA decomposition is

X =
m

∑
h=1

vhrT
h +G =V RT +G , (3)

where V, R and G are scores, loadings and residuals, respec-
tively. Since PCA was first introduced as a tool (Jackson
& Mudholkar, 1979), numerous publications have described
fault detection using PCA, comprising both practical appli-
cations (Odgaard, Lin, & Jørgensen, 2008) and theoretical
studies (Tamura & Tsujita, 2007). We, however, do not use
PCA directly as a fault detection method; instead we go a
step further and use a Principal Component Regression (PCR)
technique –see Jolliffe (2002). PCR exploits the PCA capa-
bilities as a dimensionality reduction tool in order to produce
a new set of regressors to train a linear method with them (see
Figure 1). Since the model trained with the PCA scores can
be changed (a linear model is used in PCR), several variants
are possible. We used both PCR and Fuzzy PCR (FPCR) in
our experiments. For FPCR we used a Takagi-Sugeno fuzzy
model (TSK) trained with an extended version of SparseFIS
as explained in Lughofer and Kindermann (2010).

SparseFIS relies on a top-down approach that takes a maxi-
mum number of (allowed, feasible) rules as inputs and dis-
cards out as many rules as possible to find a compact rule set
through an enhanced numerical optimization process which
is a non-linear version of the projected gradient descent algo-
rithm (Daubechies, Defrise, & Mol, 2004). SparseFIS also
uses an extended form of TS fuzzy models, since it integrates
rule weights ρ ∈ [0,1] as rule importance levels, thus prefer-
ring some local regions over others.

f̂ (~x) = ŷ =
C

∑
i=1

Ψi(~x) · li(~x) Ψi(~x) =
ρiϕi(~x)

∑
C
j=1 ρ jϕ j(~x)

, (4)

where li are the linear consequent functions and ϕ(~x) denotes
the activation degree of the i-th rule. The analytical model
of FPCR results from substituting the inputs in (4) by those
transformed (and usually reduced) by the PCA orthogonal
projection in (3).

2.4. (Fuzzy) Partial Least Squares

Partial Least Squares (PLS) handles correlated inputs, reduc-
ing the dimensionality of the input and target variables by
projecting them to the directions maximizing the covariance
between them. The projection combines highly correlated
variables into new one-dimensional variables. The PLS pro-
jection explained in terms of scores and loadings corresponds
to Equations (5) and (6).

X =
m

∑
h=1

th pT
h +E = T PT +E . (5)

Y =
m

∑
h=1

uhqT
h +F =UQT +F . (6)

These equations are called PLS outer relation, where T and U
are input and target scores, P and Q are input and target load-
ings, and E and F are input and target residuals. The relation
between score vectors th and uh is called inner relation.

Some previous work combined PLS with fuzzy systems in
what is called Fuzzy Partial Least Squares (FPLS) (Bang,
Yoo, & Lee, 2002), a subset of Nonlinear Partial Least
Squares (NPLS) techniques. This FPLS approach takes the
PLS outer relation as a reduction tool to remove collinearity
and then applies a Takagi fuzzy model to capture and model
the nonlinearity in the projected latent space. To the best of
our knowledge, FPLS has not been used in fault detection,
though there is published literature on PLS for process moni-
toring describing its theoretical properties (Li, Qin, & Zhou,
2010), on PLS and its variants with practical applications in
fault detection (Muradore & Fiorini, 2012), Wang, Kruger,
and Lennox (2003), and on fuzzy systems successfully ap-
plied in process monitoring tasks (Angelov, Giglio, Guardi-
ola, Lughofer, & Luján, 2006). Our results demonstrate that
it is also feasible to use the combination of PLS+TSK (i.e.,
FPLS) in the fault detection domain. As described in Section
2.3, we used a TSK model trained with an extended version
of SparseFIS. Analogously, the analytical model of FLSR
results from substituting the inputs in (4) by those resulting
from the PLS projection (5).

2.5. Dynamic Residual Analysis (On-line)

The online fault detection uses a dynamic analysis of the
residuals of the system. Figure 2 shows how the residual sig-
nal may be affected by a fault in a monitored channel. The
(real) example illustrates how the dynamic band mimics the
fault when the fault is too small and how the tolerance band

3



Annual Conference of the Prognostics and Health Management Society 2013

is exceeded and a fault is signaled when the fault intensity
is sufficiently great to affect the residual signal. This strat-
egy provides a flexible way of handling the residuals, reacting
more dynamically to their basic trend.

In order to formulate the tolerance band for each new incom-
ing data sample~x(k) at time instance k, its affected residuals
res1(k), ...,resm∗(k) to all m∗ models f1, ..., fm∗ are calculated
and normalized according to the models’ confidence

resm(k) =
| fm(~x(k))− ym(k)|

con fm(k)
(7)

where fm is the model prediction, ym is the observed target
and con fm is a local error bar capturing different certainty
levels (confidence) for different regions of the input space ac-
cording to distribution, noise level, density, etc. of our train-
ing data. The inverse covariance matrix of the model inputs
XT X provides a reliable representation of dense and sparse
data regions (Nelles, 2001), and by multiplying it with the
noise level σ2, the noise intensity is incorporated

cov{parm}= σ
2(XT X)−1 . (8)

Since the noise level of the training data is usually unknown,
we use an unbiased estimator (Söderström & Stoica, 1988)

σ̂
2 =

2∑
N
k=1(y(k)− ŷ(k))2

N−deg
, (9)

where N is the number of data samples in the training data and
deg is the degrees of freedom. For new test data samples Xtest ,
the covariance matrix of the model outputs ŷtest becomes

cov{ŷtest}=~xtest σ̂
2(XT X)−1~xT

test = con fm , (10)

and is equivalent to the confidence. Thus, Equation (10) ex-
press the local error bars in the case of Linear Regression.

As long as the linear parameters of the consequent functions
in the Takagi-Sugeno fuzzy systems are estimated by a lo-
cal learning approach, the formula can also be exploited for
its partial local linear models. Then, a nestling of the conse-
quent hyper-planes to the models surface can be observed as
analyzed in Angelov, Lughofer, and Zhou (2008). This yields
a good approximation of the global model consisting of local
linear pieces, which can be used to calculate error bars for
each rule consequent function separately and to connect them
with weights, thus forming an overall error bar for the whole
fuzzy model. The error bar of an evolving (TS) fuzzy model
with C rules, for a specific sample~xact can be calculated by

ŷm±
√

cov{ŷm}= ŷm±
∑

C
i=1 ϕi(~xact)

√
cov{ŷm,i}

∑
C
i=1 ϕi(~xact)

, (11)

where ŷi is the estimated value of the ith rule consequent func-
tion, for which cov{ŷm,i} is calculated as in (10) by using the
inverse weighted matrix (XT

i QiXi)
−1 corresponding to the ith

rule and the noise variance as in (9). Hence,

cov{parm,i}= σ̂
2(XT

i QiXi)
−1 . (12)

The symbol ϕi(~xact) denotes the membership degree of the
current point to the ith rule and ŷm the output value from the
TS fuzzy model for the current input point~xact .

The tolerance band equation is completed with the equations
of the incremental/decremental tracking along the timeline,
where the mean (13) and standard deviation (14) of the resid-
uals are computed.

µi(k) =
N1µi(k−1)+ resi(k)− resi(k−T )

N2
(13)

σi(k) =
1

N2
(N1σi(N−1)+N2∆µi(k)2+

(µi(k)− resi(k))2−N2∆µi(k−T )2−
(µi(k−T )− resi(k−T ))2) (14)

where resi(k−T ) = 0,µi(k−T ) = 0,N1 = k− 1,N2 = k for
all k < T and N1 = N2 = T for k ≥ T , and ∆µi(k) = µi(k)−
µi(k−1). Combining (13) and (14) yields the tolerance band
around the residuals of a given model

tolbandi(k) = µi(k)+n∗σi(k) , (15)

where n is the parameter in the fault detection method and
produces the ROC curve when varied.

Finally, our FD system is composed of M identified models,
thus producing M residuals signals that are evaluated in paral-
lel. The OR condition is used to identify faults: if a tolerance
band in (15) is exceeded by at least one model, a fault alarm
is triggered.

3. EXPERIMENTAL SETUP

We have not real faults in our datasets, so we were required
to introduce them artificially. This was done by an automatic
process, selecting 10 channels at random and introducing a
fault in each one. The fault parameters, i.e. type (abrupt of
incipient), shape (only for incipient faults) and position were
also chosen randomly. The process intentionally skips intro-
ducing faults in the warm-up of the detection system, which is
an initial stage (20 samples) where faults are neither assumed
nor signaled. It also skips faults in regions where the nom-
inal signal is constantly zero. Keeping the random-chosen-
parameters of a fault, it is replicated with 5 different inten-
sities (5%, 10%, 20%, 50%, 100%). Since each dataset is
composed by 5 different files to test, this led to 50 faults to be
detected in each tested dataset at each fault intensity.

This automatic process produces the test files of a run. A run
therefore is the execution of a method over these test files,
one time per fault intensity.
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Figure 2. Detection of a fault (drift with exponential shape) in
the residual space using a tolerance band. Different fault in-
tensities are shown. The upper line (blue) is a dynamic thresh-
old, whereas the lower line (green when below the threshold,
red otherwise) are the residuals. The thin line (black) belongs
to the trend of the residuals, i.e. its mean.

The datasets were composed by 240 channels, that after the
cleaning process were cut down to 51 and 45 for Dataset 1
and Dataset 2 respectively. There were 9676 samples to train
and 8959 samples to test in Dataset 1, whereas Dataset 2 had
11462 samples to train and 12716 samples to test.

4. RESULTS

We base our results on the average of 10 runs, leading to
500 candidate faults to be detected in each tested dataset at
each fault intensity. The different fault intensities determine
the minimum deviation from the nominal state that a method
can detect. Since the results are expressed in terms of ROC
curves, the outputs of the experiments are comparable. The
sensitivity parameter is the width n in the n∗σ tolerance band
(15); it was increased by steps of 1, from 1 to 10. As we were
especially interested in low false alarm rates (< 10%), the X
axis of the ROC curves (Figure 3) ranges from 0 to 10 (%).
The Y axis denotes the detection rate, and the larger the Area
Under the Curve (AUC), the better the method.

Figure 3, up, left, shows how Linear Regression using the
spanned datasets (thus obtaining VARMA models) and trans-
forming the dataset using PCA improves ROC curves com-
pared to those of purely linear methods. When the dataset is
not spanned but only transformed, the ROC curve produced
by the test is even better (recall that better means that the
Area Under the Curve (AUC) is greater). In this case, both
the expansion of the dataset using lags and the orthogonal
transformation help to improve the fault detection capabili-
ties, but when combined, the result is not as good as when
training the method only in the transformed (i.e., PCA) space.
This result seems to be consistent with the analogous case us-
ing SparseFIS instead of Linear Regression. Figure 3, up,
right, illustrates a behaviour similar to that described previ-
ously. SparseFIS produces an improved ROC curve when the
method is trained (and tested) on the spanned and transformed
dataset, that is, using VARMA models and PCA. When the
method is trained with the transformed dataset without lags
(i.e. without VARMA models), the ROC is better for one

dataset but worse for the other. Therefore, PCA as a prepro-
cessing stage helps to improve the fault detection capabilities
of our approach either with Linear Regression or with Sparse-
FIS, but to spanning the dataset with lags seems to yield no
further improvement.

The results are different when PLS is used. Figure 3, down,
left, shows how Linear Regression trained in a transformed
space using PLS without spanning the datasets (i.e. without
VARMA models) produces better ROC curves than the lin-
ear method itself. With the PLS transformation, the lags also
play a role. When the Linear Regression is trained in both
transformed and spanned space, the VARMA models yield a
greater AUC, as seen in the ROC curves. In Figure 3, down,
right, where Linear Regression is substituted by SparseFIS,
the result is consistent: the method trained (and tested) with
VARMA models in the transformed space using PLS pro-
duces better ROC curves than the model alone. Then, the use
of VARMA models on the transformed space still produce a
gain in the ROC curves. This is particularly noticeable for
’Dataset 1’, where the use of lags clearly increases the AUC.

Tables ?? and ?? show the detection rates for each method
when establishing thresholds for the false alarm rates in 3%,
5% and 10%, The highest rate per column is highlighted in
bold font and ’n/a’ denotes that the method is not able to
achieve a false alarm rate of X% or lower.

As can be seen, the methods trained in the transformed space
yield better results than methods trained in the original space.
As for transformation, PLS is clearly preferable to PCA; al-
though PCA produces better results than methods using the
original space, it is outperformed by PLS. VARMA models
and PLS appears to be a good combination, since the winning
approaches use a transformed space and a VARMA model.
The results do not indicate which model is preferable, since
Linear Regression and SparseFIS are winners the same num-
ber of times, i.e. 9 out of 18. Apparently, SparseFIS better de-
tects low-intensity faults, whereas Linear Regression is best
suited for high-intensity ones.

5. CONCLUSIONS AND FUTURE WORKS

We have introduced vector autoregressive moving-average
models in combination with multivariate orthogonal space
transformations to the fault detection domain. Using ROC
curves, we have demonstrated that, in terms of detection
rates, our approach outperforms approaches in which either
the datasets are not spanned with lags (time delays) or or-
thogonal transformations are not performed before the mod-
eling stage. When PCA transformation is used, the expansion
of the datasets with the lags produces no clear improvement
in fault detection capability, and the VARMA models can be
ignored in this case. In contrast, when the datasets are trans-
formed using PLS, VARMA models help to improve the ROC
curves, and therefore their fault detection capabilities.
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Figure 3. ROC curve (% detection (Y) vs % false alarm (X)) improved. Initial (worst) curves belong to Linear Regression (LR);
curves are improved when using PCR with lags; best curves use PCR without lags.

Table 1. Dataset 1. Highest detection rates with different fault and false alarm levels

Method

5% Fault 20% Fault 100% Fault
Max. False Alarms Max. False Alarms Max. False Alarms

< 3% < 5% < 10% < 3% < 5% < 10% < 3% < 5% < 10%
Linear Reg. 42.95 42.95 52.53 64.24 64.24 69.24 74.89 74.89 77.86
PCR 63.05 73.15 73.15 82.70 89.40 89.40 89.95 93.72 93.72
PCR + lags 47.10 64.10 64.10 63.39 79.95 79.95 86.41 94.40 94.40
PLS 61.77 61.77 72.91 81.22 81.22 89.98 92.84 92.84 96.43
PLS + lags 73.54 81.67 88.79 85.36 89.16 93.15 93.09 94.99 96.86
SparseFIS 34.45 34.45 39.87 45.08 45.08 49.65 51.59 51.59 53.67
PCA + SparseFIS 35.10 58.78 58.78 38.56 57.38 57.38 37.91 49.65 49.65
PCA + SparseFIS + lags 42.50 64.04 64.04 51.16 65.39 65.39 54.17 61.06 61.06
PLS + SparseFIS 35.78 35.78 54.26 52.37 52.37 63.92 63.24 63.24 73.05
PLS + SparseFIS + lags 78.11 85.65 91.30 85.44 89.42 94.41 73.81 77.33 81.86

Table 2. Dataset 2. Highest detection rates with different fault and false alarm levels

Method

5% Fault 20% Fault 100% Fault
Max. False Alarms Max. False Alarms Max. False Alarms

< 3% < 5% < 10% < 3% < 5% < 10% < 3% < 5% < 10%
Linear Reg. 21.08 23.36 30.57 29.06 35.97 45.63 47.72 53.40 59.07
PCR 43.49 57.78 67.69 54.57 68.43 78.58 69.49 80.46 85.11
PCR + lags 40.13 40.13 50.21 48.31 48.31 58.59 65.76 65.76 76.46
PLS 43.15 58.62 68.09 51.28 64.90 72.69 58.54 72.84 80.44
PLS + lags 39.13 52.79 67.20 53.78 67.87 79.24 74.45 85.93 91.42
SparseFIS n/a 14.51 29.68 n/a 20.43 36.55 n/a 32.79 47.88
PCA + SparseFIS 36.96 54.00 63.72 35.96 54.48 64.75 36.66 50.76 63.42
PCA + SparseFIS + lags 12.63 20.30 34.04 16.60 24.77 42.49 26.04 34.40 52.77
PLS + SparseFIS 56.08 61.34 69.55 63.49 69.15 76.96 63.65 71.26 76.13
PLS + SparseFIS + lags 56.76 62.05 80.37 63.92 66.68 75.75 66.76 69.92 79.05
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Testing our approach with more datasets and performing sta-
tistical tests on the results will be part of future work. Future
work will also concentrate on Fault Identification (FI). In FI,
the Fault Detection system goes further, providing additional
indications, with confidence measurements, of signaled faults
and their locations; this should equip the operator with more
information for the decision making process. How a fault de-
forms a model is a potential starting point for future research.
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