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ABSTRACT

The limited driving range has been pointed out as one of
the main technical factors affecting the acceptance of elec-
tric vehicles. Offering the driver accurate information about
the remaining driving range (RDR) reduces the range anxiety
and increases the acceptance of the driver. The integration of
electric vehicles into future transportation systems demands
advanced driving assistance systems that offer reliable infor-
mation regarding the RDR. Unfortunately the RDR is, due to
many sources of uncertainty, difficult to predict. The driving
style, the road conditions or the traffic situation are some of
these uncertain factors. A model-based approach for predict-
ing the RDR by combining unscented filtering and Markov
chains is introduced in this paper. Detailed models are im-
plemented for representing the electric vehicle and its energy
storage system. The RDR prediction is validated by a set of
simulation based experiments for different driving scenarios.
Whereas traditional approaches consider the RDR as a deter-
ministic quantity, to our knowledge, this approach is the first
to represent the RDR by a probability density function. We
aim to provide initial steps towards a solution for generating
reliable information regarding the RDR which can be used by
driving assistance systems in electric vehicles.

1. INTRODUCTION

Electric vehicles have emerged as a promising solution for re-
ducing the oil dependence in transportation systems. Never-
theless, their integration into modern transportation systems
is largely limited by the higher cost and the long charging
times, on the one hand, and by the low driving range, on
the other hand. The limited driving range has been consid-
ered as one of the major factors that affect the acceptance of
electric vehicles. However, it has been shown (Franke, Neu-
mann, Bühler, Cocron, & Krems, 2012) that reliable informa-
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tion regarding the remaining driving range (RDR) may help
to overcome the range anxiety, i.e., the fear that the range of
the vehicle is insufficient to reach the desired destination. Un-
fortunately the RDR is not easy predictable. Many stochas-
tic factors such as the driving style, the traffic situation, the
road conditions or the weather largely influence the RDR. It
is therefore necessary to take these factors into account in
order to meaningfully predict the RDR. To the best of our
knowledge, few studies have addressed the RDR prediction.
An approach that predicts the driving load of an electric ve-
hicle based on driving pattern identification has been intro-
duced by Yu, Tseng, and McGee (2012). To this aim, a li-
brary of identified driving patterns is used. Other approaches
address the RDR prediction from a technological point of
view. Conradi and Hanssen (2011) introduced an approach
that combines a web server, a digital map and a mobile ap-
plication. The mobile device sends the position of the vehicle
and the current state of charge (SOC) of the battery to the web
server, which first estimates the energy consumption along all
possible routes and then, based on the SOC, calculates the
maximum driving range. The main drawback presented in
these approaches is that the RDR is treated as a deterministic
quantity.

We introduce an approach that predicts the RDR under a
stochastic framework. The basic theoretical foundation of
this work is based on the work introduced by Daigle and
Goebel (2011), where a model-based approach is applied to
predict the remaining useful life (RUL) of pneumatic valves.
The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed RDR prediction methodology.
In section 3 the model of the electric vehicle is presented.
Section 4 briefly discusses the algorithm for the state estima-
tion. Section 5 explains the steps needed to predict the RDR.
Section 6 presents simulation results for validating the pro-
posed approach. Finally, section 7 concludes the findings of
this paper and provides an outlook on the future work.
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Figure 1. RDR prediction architecture.

2. RDR PREDICTION METHODOLOGY

This section formulates the RDR prediction problem in elec-
tric vehicles and introduces the proposed prediction architec-
ture.

2.1. Problem Statement

The RDR is defined as the distance that an electric vehicle can
drive, with the energy stored in its battery, before recharging
is required. Analogous to the Remaining Useful Life (RUL)
calculation problem (Daigle, Saxena, & Goebel, 2012), the
RDR prediction problem is formally formulated by consider-
ing the electric vehicle as a nonlinear system represented, in
a discrete-time form, by

xk = f (xk−1,uk,vk,wk)
yk = h (xk,uk,nk,wk) ,

(1)

where xk is the state vector, wk is the parameter vector, vk
is the process noise vector, uk is the input vector, yk is the
output vector and nk is the measurement noise vector. f(·)
and h(·) represent the state and output function respectively.
The RDR prediction problem is concerned with predicting
the power demand of the electric vehicle, at a given time kp,
and identifying the distance between the position skp and the
location at which the electric vehicle must be recharged. By
defining a threshold in the form

T (·) =

{
1
0

(2)

it is possible to mathematically determine the recharging
point and therefore the RDR. The challenge lies in determin-

ing the variables on which T (·) depends. This work considers
the battery state of charge (SOC) to be the indicator that de-
termines the threshold condition. Accordingly, the threshold
is expressed as T (SOC). Thus, T (SOC) = 1 if SOCmin is
reached and T (SOC) = 0 otherwise. The SOCmin is usu-
ally dictated by the battery management system (BMS) of the
electric vehicle in order to protect the battery cells from a
possible total charge depletion.

2.2. Prediction Architecture

The RDR is a random variable that is influenced by many
sources of uncertainty. This causes the RDR to be difficult
to predict. For example, the lack of knowledge about the
state variables, such as the SOC, the noise presented in the
measurements or the ignorance regarding the future power
demand, are some of the factors that largely contribute to
the uncertainty of the RDR. Therefore, properly predicting
the RDR requires accounting for these sources of uncertainty.
To this aim we adopt a model-based methodology, as shown
in Fig. 1. The approach proceeds basically in two phases,
namely the state estimation (I) and the RDR prediction (II).

In the first phase, the states are recursively estimated. The
posterior state estimate is computed in two steps. First, a pre-
diction is made to obtain a prior state estimate p (xk|y0:k−1).
In the second step, as new measurements yk become avail-
able, the predicted states are updated to compute p (xk|y0:k).
This estimate establishes the starting point for the RDR pre-
diction phase.

In the second phase, at given time kp, the RDR is predicted
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in two steps. First, future values of the driving profile1 are
predicted by means of Markov chains. In this way the driv-
ing profile is generated as a sequence of random variables{
ukp ,ukp+1, ...,uhl

}
which representatively capture driving

patterns that occur in real-world driving situations. The index
hl denotes the horizon length of the driving profile predic-
tion. In the second step, the uncertainty represented by the
posterior state estimate p

(
xkp |y0:kp

)
is propagated through

the predicted driving profile until the SOCmin is reached.

To carry out such an uncertainty propagation a sample-
based approach in terms of a Monte Carlo simulation is em-
ployed. In this approach the probability density function
p
(
xkp |y0:kp

)
is approximated by a set of samples. Each sam-

ple is independently propagated through the predicted driving
profile until the SOCmin is reached. Once this happens, the
RDR of all samples is identified and used to approximate the
posterior p

(
RDRkp |y0:kp

)
.

3. ELECTRIC VEHICLE MODELING

From a physical standpoint, an electric vehicle can be mod-
eled by a forward-facing (dynamic) or by a backward-facing
(quasi-static) approach (Guzzella & Sciarretta, 2005). In the
forward-facing approach the vehicle is controlled to follow
a desired speed. This approach considers the physical prop-
erties of each component of the powertrain and the dynamic
interaction between them. Although this approach accurately
describes the behavior of the electric vehicle, it requires high
computational effort to solve the differential equations of the
model.

The backward-facing approach overcomes this issue by as-
suming that the vehicle reaches the reference speed. With an
imposed speed profile, the model calculates the forces act-
ing on the wheels and processes them backwards through the
powertrain. The calculation of the power demand depends
only on algebraic equations, which decreases the computa-
tional burden of the model.

Nevertheless, the battery of the electric vehicle cannot be
modeled using this approach since, as already mentioned, the
SOC represents the indicator that determines the threshold
condition of the prediction algorithm. Since this value is de-
termined in the state estimation step, it cannot be represented
by a quasi-static model. For this reason a dynamic model
describes the behavior of the battery. The electric vehicle is
modeled by combining these two approaches, as shown in
Fig. 2.

In the following two sections both parts of the model are ex-
plained in detail. For the sake of better understanding, we
omit expressing the variables of the quasi-static model as time
dependent, since this model is described by a set of algebraic

1The driving profile is characterized by the speed (v) and acceleration (a) of
the vehicle and by the slope (α) of the road.
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Figure 2. Combined quasi-static/dynamic model of the elec-
tric vehicle.

equations. The differential equations of the dynamic model
are expressed in a discrete time form, since both, the state es-
timation and the RDR prediction modules, require a discrete-
time representation of the battery model.

3.1. Quasi-static Model

An electric vehicle is composed by many components which,
for simplification purposes, can be considered to move uni-
formly. Thus, the electric vehicle can be represented as a sin-
gle lumped mass. As shown in Fig. 3, the force Fx required
by the vehicle is given by

Fx = Fair + Fg + Fr + Fi. (3)

The forces affecting the motion of the electric vehicle are:

• Fair = 1
2ρaircwAv

2 is the aerodynamic drag force,

• Fg = mg sin (α) is the hill climbing force,

• Fr = mgKr is the rolling resistance,

• Fi = ma is the force needed to accelerate/decelerate the
electric vehicle,

where ρair is the density of air, cw is the aerodynamic drag
coefficient, A and m are the frontal area and the mass of the
vehicle, g is the gravitational acceleration, Kr is the rolling
resistance coefficient, α is the inclination (slope) of the road
segment and v is the speed of the vehicle.

v

Fair

Fi, Fg

mg

1
2
Fr

1
2
Fr

Fx

α

Figure 3. Forces acting during the motion of a vehicle.
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The mechanical power Pmec demanded by the electric motor
is easily calculated by means of a polynomial power require-
ment model (Kim, Lee, & Shin, 2013) as follows

Pmec = Fxv =
1

2
ρaircwAv

3 +mg sin (α) v +

+mgKrv +mav. (4)

This model accurately calculates the mechanical power de-
mand of a vehicle with a very low computational cost. The
electrical power demand Pele of the electric motor is then
computed by

Pele =
Pmec

η(ωm, Tm)
, (5)

where η represents the electric motor’s efficiency, ωm = vid
rtire

is the rotational speed of the rotor and Tm = Fxrtire
id

is the
torque demand of the motor. Here rtire and id are the tire’s
radius and the gear ratio of the driveline respectively.

Modern electric vehicles are able to recover a certain amount
of the kinetic energy by means of regenerative braking. Such
systems operate the electric motor in generator mode for de-
livering back the recovered energy to the battery. It is worth
mentioning that η depends on whether the electric drive oper-
ates in motor or in generator mode. Accordingly,

η =

{
ηm (ωm, Tm) ≤ 1, motor mode
ηg (ωm, Tm) > 1, generator mode.

(6)

As shown in Fig. 2, the total electrical power PT of the elec-
tric vehicle is composed of the electrical power demanded by
the electric motor Pele and by the sum of the power Pi con-
sumed by each of the auxiliary components

PT = Pele +

n∑
i=1

Pi. (7)

For the sake of simplicity, the power consumed by each of the
auxiliary components is assumed to be constant.

3.1.1. Input Variables of the Quasi-static Model

To properly employ Eq.(4) in the RDR prediction algorithm,
we need to differentiate between input variables and param-
eters. The input variables of the quasi-static model must be
easily acquirable and should be highly dynamic, so that they
cannot be considered as constant. Table 1 summarizes the dy-
namics and the dependency of the quasi-static model param-
eters. The parameters g and ρair, even though they can be
easily determined, depend on the altitude and rarely change
drastically during a trip. Also m, cw and A are easily ob-
served. They also change slowly since they depend on the
vehicle design. The friction coefficient Kr, despite its high
dynamic, cannot be easily determined. For this reason it is

Table 1. Dynamics and dependency of the quasi-static model
parameters.

Parameter Dynamics Dependency
a
(
m/s2

)
Very high Driver, road, traffic

v (m/s) High Driver, road, traffic
m (kg) Very low Vehicle design
g
(
m/s2

)
Very low Altitude

Kr High Road
α (◦) High Road
ρair

(
kg/m3) Low Altitude

cw Very low Vehicle design
A

(
m2

)
Very low Vehicle design

considered as a constant under the assumption that the road
conditions do not change during the trip.

Our approach considers a, v and α as the input variables for
the quasi-static model, since they meet the requirements pre-
viously mentioned. Accordingly, the input vector is given by

u =
[
v a α

]T
. (8)

3.2. Battery Model

Our approach employs the model of a Li-ion cell shown
in Fig. 4. The model combines the Kinetic Battery Model
(KiBaM) (Manwell & McGowan, 1994) for capturing the
nonlinear effects in the battery capacity, such as the recovery
and the rate capacity effect, with a second order equivalent
circuit based model which captures the dynamic response of
the Li-ion cell. Furthermore, the combined model demands
low computational effort, which makes it suitable for real-
time applications.

ik

Ro(·)

Rs(·) Rl(·)

Cs(·) Cl(·)

VOC(SOC)

Kinetic Battery Model Circuit-based Battery Model

ik SOC
−
+

Vbatt

1− c c

w2 w1d
h1h2

ik

Figure 4. Combined battery model.

Even though the KiBaM was initially developed for lead acid
batteries, it has been shown to be suitable for modeling the
capacity behavior of Li-ion cells (Jongerden & Haverkort,
2009).

The Kinetic Battery Model abstracts the chemical processes
of the battery discharge to its kinetic properties. The model
assumes that the total charge of the battery is distributed with
a capacity ratio 0 < c < 1 between two charge wells. The
first well contains the available charge and delivers it directly
to the load. The second well supplies charge only to the first
well by means of the parameter d. The rate of charge that
flows from the second to the first well depends on both d and
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on the height difference between the wells (h2 − h1). If the
first well is empty, then the battery is considered to be fully
discharged.

By applying load to the battery, the charge in the first well is
reduced, which leads to an increment in the height difference
between both wells. After removing the load, certain amount
of charge flows from the second well to the first well until
the height of both wells is the same. In this way the recovery
effect is taken into account by the model. The rate capacity
effect is also considered in this model. For high discharge
currents, the charge in the first well is delivered faster to the
load in comparison to the charge that flows from the second
well. In this scenario there is an amount of charge that re-
mains unused. The consideration of this effect is especially
important for applications in electric vehicles, since the un-
used charge might eventually increase the driving range.

The KiBaM yields two difference equations which describe
the change of capacity in both wells in dependence of the
load ik, the conductance d and the capacity ratio c:

w1,k+1 = a1w1,k + a2w2,k + b1ik, (9)

w2,k+1 = a3w1,k + a4w2,k + b2ik, (10)

where

(
a1 a2

a3 a4

)
= e

 −dc d
1−c

d
c − d

1−c

∆t

(
b1
b2

)
=

∆t∫
0

e

 −dc d
1−c

d
c − d

1−c

ϑ
dϑ

(
1
0

)
.

The term ∆t is the sampling time used in the discretization of
the model. The battery SOC is given by

SOCk =
w1,k

cCn3600
, (11)

where Cn is the nominal capacity of the battery. The right-
hand-side equivalent circuit of Fig. 4 is compounded of three
parts, namely, the open circuit voltage VOC, a resistance Ro
and two RC networks.

The voltage VOC changes at different SOC levels, and is given
by the following empirical equation

VOC(SOC) = a1 −
a2

SOC
− a3SOC + a4 ln(SOC) +

+a5e(
−a6

1−SOC ) + a7SOC2 + a8SOC4 +

+a9 ln(1− SOC) + a10 sin(a11SOC).

(12)

The ohmic resistance Ro captures the I-R drop, i.e., the in-
stantaneous voltage drop due to a step load current event. The
RsCs andRlCl networks capture the voltage drops due to the

electrochemical and the concentration polarization, respec-
tively. In Fig. 4 the dependency of these parameters on the
temperature and on the SOC is represented by the term (·).
This part of the model yields two difference equations which
describe the transient response of the battery:

vs,k+1 = e−
∆t

RsCs vs,k +
(
−Rse−

∆t
RsCs +Rs

)
ik, (13)

vl,k+1 = e
− ∆t

RlCl vl,k +
(
−Rle−

∆t
RlCl +Rl

)
ik. (14)

Accordingly, the state vector of the battery model is given by

xk =
[
w1,k w2,k vs,k vl,k

]T
. (15)

The output yk of the system, represented by the terminal volt-
age Vbatt,k, is then computed as follows

yk = Vbatt,k(SOC) = VOC(SOC)+Roik+vl,k+vs,k. (16)

As presented in the previous section, the quasi-static model
computes the total electrical power demand PT . Neverthe-
less, the battery model requires the load current ik as the in-
put variable. Therefore, it is necessary to express ik in terms
of PT . The load current ik can be obtained from the defini-
tion of electrical power P = IV . Considering P = PT and
V = Vbatt the terminal voltage can be expressed as

Vbatt =
PT
i
. (17)

By substituting Eq. (17) into Eq. (16) and solving for i, the
current at time k is given by

ik = −
C −

√
C2 − 4PT (uk)Ro

2Ro
, (18)

with
C = (VOC(SOC) + vs,k + vl,k) .

PT (uk) expresses the dependence of the total electrical
power demand on the input vector given by Eq. (8). The
solution with the positive part in the square root term of Eq.
(18) is neglected, since its consideration would cause some
current to be supplied by the battery when PT = 0, which in
practice is not possible.

4. STATE ESTIMATION

At the beginning of the estimation and prediction steps the
system states, and especially the initial SOC, are unknown.
To obtain an accurate prediction of the RDR, the prediction
module needs an initial starting point that is as accurate as
possible. For that reason the state estimation has to converge
to the true value before the prediction is carried out. In the
prediction framework shown in Fig. 1 the task of the estima-
tion step is to compute p(xk|y0:k), i.e., to represent the most
up-to-date knowledge of the state variables at given time k
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based on the history of measurements of the system.

For state estimation in nonlinear systems Bayesian tracking
algorithms such as the particle filter (PF) (Rigatos, 2009), the
extended Kalman filter (EKF) or the unscented Kalman fil-
ter (UKF) (Julier & Uhlmann, 2004) are the most established
ones. This study uses the UKF as suggested by Daigle et al.
(2012), because of the smaller number of sampling points and
reduced computational complexity compared to the PF. The
next section briefly describes the framework of the unscented
Kalman filter that was implemented in this work.

4.1. Unscented Kalman Filter

The UKF applies the so-called Unscented Transform (UT) to
approximate the distribution of the state variables. The UT
considers each variable x as a random variable with mean
x̄ and covariance Px and computes the mean ȳ and covari-
ance Py of the output variable. This computation is carried
out by choosing a set of deterministically weighted points
Si = {wi,Xi}, which are sampled from the distribution of
x and are known as sigma points (Julier & Uhlmann, 2004).
The sigma points are then propagated through a nonlinear
function Yi = g(Xi) that relates both the sigma points and
the transformed sigma points. The posterior mean and covari-
ance of the output variable can be recovered by

ȳ ≈
2L∑
i=0

wiYi (19)

Py ≈
2L∑
i=0

wi (Yi − ȳ) (Yi − ȳ)
T
. (20)

Many methods have been developed for selecting sigma
points and these methods along with the choice of their pa-
rameters play an important role for the accuracy of the state
estimation (Daigle & Goebel, 2010). In this study, the sym-
metric unscented transform is used. Here the set of 2L+1
sigma points are selected as:

X0 = x̄ i = 0

Xi = x̄ +
(
γ
√

(L+ λ) Px

)
i

i = 1, ..., L

Xi = x̄−
(
γ
√

(L+ λ) Px

)
i

i = L+ 1, ..., 2L,

(21)

with the weights given by

w
(m)
0 = λ

L+λ i = 0

w
(c)
0 = λ

L+λ + (1− α2 + β) i = 0

w
(c)
i = λ

2(L+λ) i = 1, ..., 2L,

(22)

where L refers to the number of states in the state vector
and

(√
(L+ λ) Px

)
i

is the ith column of the square root
of the weighted covariance matrix. The parameters λ, α, β

and γ serve for scaling the sigma points in the state space and
are chosen according to the (heuristic) recommendations of
Julier and Uhlmann (2004). The algorithm 1 summarizes the
main steps for state estimation using the unscented Kalman
Filter.

Algorithm 1 Unscented Kalman Filter for State Estimation

Initialize:
x̂0 = E [x0] ,P0 = E

[
(x0 − x̂0) (x0 − x̂0)

T
]

For k = 1...,∞
1. Calcualte sigma points:
Xk−1 =

[
x̂k−1 x̂k−1 ± γ

√
Pxk−1

]
2. State prediction:
a. Propagate the sigma points through the system model:
Xk|k−1 = f (Xk−1,uk−1)

b. Calculate the propagated mean and covariance:

x̂−k =
2L∑
i=0

w
(m)
i Xi,k|k−1

P−xk
=

2L∑
i=0

w
(c)
i

(
Xi,k|k−1 − x̂−k

) (
Xi,k|k−1 − x̂−k

)T
+Rv

c. Sigma point propagation through the output model:
Yk|k−1 = h (Xk−1)

d. Calculate the propagated mean:

ŷ−k =
2L∑
i=0

w
(m)
i Yi,k|k−1

3. Measurement update:
a. Calculate the estimated covariance:

Pyk =
2L∑
i=0

w
(c)
i

(
Yi,k|k−1 − ŷ−k

) (
Yi,k|k−1 − ŷ−k

)T
+Rn

Pxkyk =
2L∑
i=0

w
(c)
i

(
Xi,k|k−1 − x̂−k

) (
Yi,k|k−1 − ŷ−k

)T
b. Calculate the Kalman gain K:

Kk = PxkykP−1
yk

c. Update the state estimation and covariance:
x̂k = x̂−k + Kk

(
yk − ŷ−k

)
Pxk

= P−xk
−KkPykKT

k

The UKF estimate of xk =
[
w1,k w2,k vs,k vl,k

]T
is used to calculate the output yk = Vbatt,k(SOC) by using
Eq. (16). The output voltage yk depends on the SOC which
is not part of the state vector. Therefore the SOC has to be
calculated from the states in the algebraic Eq. (11). As fur-
ther explained in the following section, if a RDR prediction is
desired at given time kp, the prediction module uses the last
estimation x̂kp , from which a new set of sigma points is gen-
erated. The set of new sigma points is then used as the initial
condition for the prediction step.

5. RDR PREDICTION

A prediction starts at given time kp. Here, the posterior es-
timate p (xkp|y0:kp) serves as the starting point for the pre-
diction. As already mentioned in section 2, a sample-based
approach for predicting the RDR is used. Therefore, the set
of sigma points Sikp = {X i

kp, w
i
kp}, calculated by the UKF
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in the state estimation step, is used and propagated forward
in time through simulation. All sigma points are propagated
independently by following the predicted driving profile until
T ikp = 1, i.e., until each sigma point reaches the SOCmin.
The posterior mean RDRkp and its covariance PRDRkp

can
be recovered, in a similar fashion as in Eq. (19) and Eq. (20),
by

RDRkp ≈
2L∑
i=0

wikpRDRi
kp , (23)

PRDRkp
≈

2L∑
i=0

wikp(RDRi
kp − RDRkp)(RDRi

kp − RDRkp)T

(24)

As stated above, the propagation of all sigma points requires
an hypothesized future driving profile. This work employs
a stochastic approach based on Markov chains to predict the
driving profile. The predictions are generated in such a way,
that characteristic driving patterns of real-world driving situ-
ations are captured.

5.1. Driving Profile Prediction

Driving profiles can be modeled as a discrete-time Markov
chain (T. Lee & Filipi, 2011). In this work two Markov chains
are used. First, future values of speed and acceleration are
generated by a 2D chain. Second, the slope profile is pre-
dicted by means of a 1D Markov chain independent of the
speed and the acceleration. To apply a Markov chain the in-
put space is quantized, for the speed/acceleration pair and for
the slope, in such a way that each input variable takes a finite
number of values. The inputs are given by {u1,u2, ...,uhl

},
with uk =

[
uvak uαk

]T
. Here uavk =

[
vk ak

]
and

uαk = αk represent parts of the input space given by the
speed/acceleration pair and by the slope respectively, with hl
as the horizon length of the predicted profiles.

The Markov chain assumes that the transition probability
from uk to uk+1 only depends on the current state and not
on the history of previous states.

The transition probabilities among the states are grouped in a
transition probability matrix (TPM) Φ such that

pij = Φ (uk+1 = j|uk = i) , (25)

where pij is the ijth element of Φ.

In this paper two transition probability matrices are used,
namely Φva and Φα. The transition probabilities of Φva are
estimated from historical driving data and from standard driv-
ing cycles. The resolution of Φva for the speed is 1 km/h in
the interval [0, 130]km/h and for the acceleration it is 0.2
m/s2 in the interval [−3, 3]m/s2. Φα is estimated from real
road height profiles and has a resolution of 0.5◦ in the interval

[−10, 10]◦. These resolutions offer a good trade-off between
computational effort and accuracy in the prediction.

For estimating both TPMs the maximum likelihood estima-
tion method (T. C. Lee, Judge, & Zellner, 1970) is applied.
The transition probability pij is computed by

pij =
nij
s∑
j=1

nij

=
nij
ni
, (26)

where nij is the number of times a transition from ui to uj
has occurred, and ni is the total number of occurrences of ui.
Algorithm 2 summarizes the steps required for the prediction
of a driving profile.

Algorithm 2 Driving Profile Prediction

Require: Φva,Φα, vkp , akp , αkp , hl
Ensure: {uk,uk+1, ...,uhl

}
Initialize:
i← 0
k ← kp
vi ← vkp , ai ← akp , αi ← αkp
for l = 1 to hl do

Randomly draw uavj = [ vj aj ] for the next state ac-
cording to Φva

(
uvak+1 = uvaj |uvak = uvai

)
vk+1 ← vj
ak+1 ← aj
uavk+1 ← [ vk+1 ak+1 ]
Randomly draw uαj = αj for the next state according to
Φα
(
uαk+1 = uαj |uαk = uαi

)
αk+1 ← αj
uαk+1 ← αk+1

Create the driving profile
uk+1 ← [ uavk+1 uαk+1 ]

T

i← j
k ← k + 1

end for

The prediction is initialized with the current values vkp , akp
and αkp . Both Markov chains are generated separately in an
iterative manner, until the desired length hl of the profile is
reached.

5.2. RDR Characterization

Until now the prediction of the RDR, as computed by Eq.
(23), requires propagating the set of sigma points through
a single predicted driving profile. Nevertheless, this proce-
dure only accounts for the uncertainty related to the state es-
timation. Therefore, the uncertainty presented in the driv-
ing profile prediction is not taken into account. This issue is
approached by generating multiple hypotheses about the fu-
ture driving profile and by propagating the set of sigma points
through each of them. In this way the uncertainty of the driv-
ing profile is accounted making the prediction of the RDR
more meaningful.

7



Annual Conference of the Prognostics and Health Management Society 2013

After all sigma points, along all predicted driving pro-
files, reach the SOCmin, i.e., T ijkp = 1, the posterior
p
(
RDRkp |y0:kp

)
is approximated by means of the kernel

density estimation (Bowman & Azzalini, 1997)

p
(
RDRkp |y0:kp

)
≈ 1

Nuh

Nu∑
j=1

K

RDRkp − RDR
j

kp

h

,
(27)

whereNu is the number of predicted driving profiles, K (·) is
the kernel, which in this work is Gaussian, and h is a smooth-
ing factor known as bandwidth. It must be noted that the esti-
mate kernel density estimate is based only on the set of mean

posteriors
{

RDR
j

kp

}Nu

j=1
calculated with Eq. (23), as shown

in Fig. 5. This implies that the covariances
{

Pj
RDRkp

}Nu

j=1

are not taken into account. In our case this is justified since
the uncertainty added by driving profile prediction is consid-
ered to be large in comparison to the uncertainty related to the
state estimation. For the sake of better understanding, Fig. 5
shows the propagation of only one sigma point through all
predicted driving profiles.

T ij
kp = 1 {

RDR
j
kp

}Nu

j=1

p
(

RDRkp |y0:kp

)

S
O

C

qlow

skp

sigma point propagation

Multiple driving profile

Estimated kernel density

RDRkp

qhigh

Traveled distance

Figure 5. Propagation of one sigma point through multiple
driving profiles.

Since p
(
RDRkp |y0:kp

)
is usually non Gaussian, we rely on

the median for estimating the RDR and on quantiles, here rep-
resented by qlow and qhigh, as the measure of spread (Hoaglin,
Moesteller, & Tukey, 1983).

6. RESULTS AND DISCUSSIONS

This section demonstrates and validates the proposed ap-
proach for predicting the RDR. The performance and the ac-
curacy of the proposed approach for different driving scenar-
ios, namely the city, rural areas and the highway, is inves-

tigated. Accordingly, the standard driving cycles shown in
Fig. 6 are used in the simulations.
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Figure 6. Standard drive cycles used in the simulation.

The parameters of both, the quasi-static and the battery
model, are presented in table 2. The parameter of the quasi-
static model are obtained from manufacturer’s data sheets of
the Nissan Leaf (Hayes, Oliveira, Vaughan, & Egan, 2011).
The rolling resistance coefficient Kr is chosen to represent a
dry road. It must be noted that the parameters of the battery
model, correspond to those of one cell. These parameters
are identified with the help of experimental data from a Li-
ion cell. Since the parameters of the equivalent-circuit based
model depend on both, the temperature and the battery SOC,
they can not be considered as constant. Therefore, lookup ta-
bles are used to store them. To properly simulate the behavior
of the entire battery pack, the cell capacity and the nominal
voltage are scaled up to 24 kWh and 403.2 V respectively.
For all experiments a temperature of 25 ◦C is assumed.

Table 2. Parameters of the quasi-static and the battery model.

Quasi-static Model Battery Model
Parameter Value Parameter Value

A 2.29 m2 Cn 2.15 Ah
cw 0.28 Vnom 4.2 V
m 1520 kg Vlim 2.8 V
Kr 0.7 d 1.4× 10−5

Tm,max 280 Nm c 0.96
Pele,max 80 kW
rtire 0.3 m
ρair 1.226 kg/m3

g 9.81 m/s2

8
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Each experiment is carried out as follows. First, for each
driving scenario a sufficiently large drive cycle is created, so
that the electric vehicle can drive until it reaches the SOCmin.
During the simulation both the current and the terminal volt-
age of the battery are measured, which are then used by the
UKF for estimating the states of the battery. The RDR is
predicted every 1000 seconds for the city scenario and every
500 seconds for both, the simulation in rural areas and on the
highway. The reason for this is that the time needed for sim-
ulating each scenario largely depends on the speed range of
the drive cycle. The higher the speed of the drive cycle, the
shorter the time it takes to finish the simulation and therefore
the lower the amount of RDR predictions that can be done.

For the sake of demonstration, Figs. 7, 8 and 9 depict the RDR
prediction process at prediction time kp = 2, i.e., after 1000
seconds for the city scenario and after 500 seconds for the
rural and highway scenarios. In all cases, the initial battery
SOC is approximately 0.9. Multiple simulations are carried
out simultaneously based on the predicted driving profiles.
We have set SOCmin = 0.1 for all experiments. As it can
be seen, the SOC curves evolve tighter during the simulation
of the highway scenario than in the first two scenarios. This
causes the uncertainty related to the predicted driving profiles
to be lower and therefore the estimated RDR kernel density
is narrower.
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Figure 7. Predicted RDR represented by a kernel density in
the city scenario.

6.1. Performance of the RDR Prediction

To evaluate the performance of the RDR prediction, the rela-
tive accuracy (RA) and the alpha-lambda (α− λ) metrics are
employed (Saexena, Celaya, Saha, Saha, & Goebel, 2009).

The relative accuracy measures the error in the RDR predic-
tion relative to the true RDR. The RA is given by

RAkp = 100

1−

∣∣∣RDR∗kp − RDRkp

∣∣∣
RDR∗kp

 , (28)
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Figure 8. Predicted RDR represented by a kernel density in
the rural scenario.
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Figure 9. Predicted RDR represented by a kernel density in
the highway scenario.

where RDR∗kp represents the ground truth RDR at time kp
and RDRkp is the predicted RDR at that time. The α−λmet-
ric serves to evaluate whether the predicted RDR’s lie with-
ing specified bounds. These bounds are usually calculated as
a fraction of the true RDR. We set a value α = 0.15. Ta-
ble 3 summarizes the calculated RA for each driving cycle at
different prediction times.

As it can be seen in Figs. 10, 11 and 12, the proposed ap-
proach performs similar for each driving scenario. The sim-
ulation for the city scenario was done based on the UDDS
drive cycle. The predicted RDR falls near the true RDR for
the entire simulation. Also quantiles q5 and q95 fall within the
bounds of the α metric for most part of the simulation. The
second scenario, namely the rural areas, is simulated base on
the ARTEMIS rural drive cycle (Andre, 2004). The results
also show an acceptable accuracy. Nevertheless, in this case
the RDR is overestimated for most part of the simulation and
the area between q5 and q95 doesn’t fall withing the bounds.
The reason for this is, that the transition probability matrix
used for the prediction of the driving profiles in this sce-
nario combines information of both, the city and the highway.
For this reason, the predicted profiles don’t always properly

9
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Table 3. RDR prediction performance.

kp RAUDDS RARURAL RAHWFET

1 96.67 88.90 98.39
3 99.17 90.81 97.01
5 99.48 91.89 97.59
7 98.64 92.22 92.65
9 98.69 91.63 96.25

11 96.48 92.40 86.01
13 98.11 99.70 42.68
15 85.47 97.41 −−
17 91.92 53.47 −−
19 73.17 −− −−
21 90.56 −− −−

represent this driving scenario. The third scenario is repre-
sented by the HWFET driving cycle. As it can be observed in
Fig. 12, the predicted RDR’s during the simulation are very
close to the true values. Moreover, the uncertainty band given
by the quantiles lies very tightly withing the α bounds. The
deviation presented towards the end for both the rural and the
highway scenario is due to the acceleration phase at the begin-
ning of each prediction, since it always starts from the stand-
ing position. This makes the predicted energy consumption
at the beginning of the prediction to be larger in comparison
to the real one, where such acceleration phase is not present.
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Figure 10. RDR predictions for the UDDS drive cycle.

7. CONCLUSIONS AND FUTURE WORK

This work presents a model-based approach for predicting the
RDR in electric vehicles. The proposed approach proceeds in
two steps, namely the state estimation and the prediction step.
Detailed models for determining the power demand of elec-
tric vehicles and for describing the dynamic behavior of the
battery are also presented. Our approach takes into account
the sources of uncertainty that influence the RDR. First, a
Bayesian tracking algorithm, namely the unscented Kalman
filter was implemented to estimate the SOC of the battery.
In the second step, this estimate is used as the starting point
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Figure 11. RDR predictions for the ARTEMIS rural drive
cycle.
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Figure 12. RDR predictions for the HWFET drive cycle.

for the RDR prediction. Here, the set of sigma points, ob-
tained from the state estimation, is propagated forward in
time by letting them follow multiple predicted driving pro-
files. A stochastic approach based on Markov chains for pre-
dicting the driving profiles is employed. The RDR is then
computed as a probability density function approximated by
the distribution of the propagated sigma points. The proposed
approach is demonstrated and validated by means of a series
of simulation experiments. The experiments allowed to pre-
dict the RDR under different driving situations. The obtained
results have shown that the RDR can be accurately predicted
for given scenarios with our approach. Nevertheless, the ef-
ficiency of the algorithm still largely depends on the number
of evaluated driving profiles. An aspect we aim to investi-
gate in the future is therefore to describe the driving profile
parametrically. In this way the uncertainty, i.e., the proba-
bility distribution of the parameters can be incorporated in
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the unscented transform. Other aspect that we plan to inves-
tigate is the adaption of the driving profile prediction to the
driving style, which may increase the accuracy of the RDR
prediction. To this aim it would be necessary to update Φva

according to new observed driving data.
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