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ABSTRACT

Prognostic and remaining useful life (RUL) predictions for
electrolytic capacitors under thermal overstress condition are
investigated in this paper. In the first step, the degradation
process is modeled as a physics of failure process. All of the
relevant parameters and states of the capacitor are considered
during the degradation process. A particle filter approach is
utilized to derive the dynamic form of the degradation model
and estimate the current state of capacitor health. This model
is then used to get more accurate estimation of the Remain-
ing Useful Life (RUL) of the capacitors as they are subjected
to the thermal stress conditions. The paper includes an ex-
perimental study, where the degradation of a set of identical
capacitors under thermal overstress conditions is studied to
demonstrate and validate the performance of the degradation
modeling approach.

1. INTRODUCTION

Prognostic and Remaining Useful Life (RUL) prediction is
essential for determining the safety and reliability of critical
systems. In the cases where the operators have access to the
system RUL prediction, it becomes easier for them to estab-
lish condition-based maintenance schedules, and thus avoid
failures and expensive system downtime. For autonomous
systems, RUL prediction provides necessary information for
the system to schedule future tasks and missions in an effec-
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tive manner.

Electronic systems need reliable power supplies. Failure
in the power supplies can damage other system elements
through a cascading process. Many electronic modules are
sensitive to the potential level of the supplied voltage and un-
desired change in this level can cause failure in these modules
as well. Also unpredicted voltage variations can damage pro-
cessors and make control modules in the systems unreliable.
Switch mode power supplies (SMPS) can provide different
voltage levels from a single power source by changing the
duty cycle of switching. They are also efficient, light and have
a small size. However the small size affects heat dissipation,
and reliability becomes an important issue in these systems.
Consequently RUL predictions for different elements of these
systems are becoming increasingly important (Goebel et al.,
2008; Celaya et al., 2010; Kulkarni et al., 2009). One of the
key elements in power supply modules and dc-dc converters
are electrolytic capacitors. Failures in these elements is one of
main reasons for the module failures (Goodman et al., 2005).
For the prognostic and RUL prediction of electrolytic capac-
itors like any other element in addition to the current state of
the element, it is necessary to predict its future behavior. If
we can determine and model the main reasons for the degra-
dation of the capacitors, future behavior prediction becomes
a feasible task.

Evaporation of the electrolyte is a main reason for the degra-
dation and finally complete failure of the capacitor. In fact
evaporation of the electrolyte decreases the effective surface
area of the capacitors and consequently their capacitance.
One of the complexities of this problem is that the evaporation
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of the electrolyte in the closed can of the capacitor causes in-
ternal pressure increase, which affects the evaporation rate. It
is also possible that due to the internal pressure the capacitor
body pops exposing the electrolyte to the atmosphere. Un-
der these circumstances, the capacitor electrolyte first shows
abrupt increase in evaporation rate, but after its top pops, the
evaporation rate becomes constant. Work on capacitor degra-
dation modeling in (Celaya et al., 2012) considered the evap-
oration rate to be constant and derived the degradation model
for electrolytic capacitors under electrical overstress condi-
tion. With this simplification, the derived model is linear and
the authors could apply the Kalman filter scheme to estimate
the current state of health of the system. In this paper, the
evaporation rate is not held to a constant value. Two differ-
ent degradation trajectories are considered: one for the situa-
tion where the capacitor casing remains perfect, therefore, the
evaporation rate decreases with time, and a second when the
casing cracks, therefore, the evaporation rate for the capaci-
tor electrolyte remains constant. A general model is derived
by combining these two models. Since the general derived
degradation model is nonlinear, unlike (Celaya et al., 2012),
we adopt the particle filter approaches (Arulampalam et al.,
2002) for state estimation of the nonlinear dynamic system.
The particle filter approach is also utilized to estimate param-
eters of the model for each capacitor. To determine the ef-
fectiveness and performance of the particle filter approach,
we used experimental data generated in (Kulkarni et al., Sep
2012) to validate our approach.

The paper is structured as follows. Section 2 discusses the
degradation processes and the physics of failure model cor-
responding to the degradation processes. Section 3 discusses
the particle filter approach for state estimation in the prog-
nostic algorithm. Particle filtering method for parameter es-
timation is discussed in this section as well. An algorithm
for computing the RUL of the capacitor is presented as the
last part of this section. Section 4 is about the experimental
setup and parameter estimation. 15 electrolytic capacitors are
studied under thermal over stress condition. The leave one
out method is utilized to validate the parameters of the model
and the derived model is used to make prognostic predictions.
Section 5 demonstrates RUL prediction results and the con-
clusions are presented in Section 6.

2. DEGRADATION MODELING

Prognostics approaches start with the current state of a com-
ponent or device and employ systematic methods to predict
future system behavior. Having an accurate model of the
degradation process provides a methodology for predicting
future component behavior. In this section, the degradation
model of the electrolytic capacitor is discussed and devel-
oped. We start with the structure of electrolytic capacitors
and then discuss the degradation process. Last, a discretized
form of the continuous degradation model is derived.

2.1. Electrolytic Capacitors Structure and Capacitance

If we open the aluminium can of an electrolytic capacitor we
see the anode and cathode foils, and the electrolyte soaked
in the separator paper all wrapped up together as shown in
Figure 1. In the electrolytic capacitors that we study, ethyl
glycol is the chosen electrolyte. The cathode and anode foils
are aluminium. Also, the oxide layer on the surface of the
anode acts as the dielectric. This oxide layer in contact with
the electrolyte acts as a perfect insulator. By wrapping up the
papers high capacitance is achieved in the minimum space.

Anode Foil

Cathode Foil

Connecting Leads 

Aluminum Tabs

Electrolyte Paper

Figure 1. Cylindrical Electrolytic Capacitor Structure
(Kulkarni et al., Sep 2012).

The capacity of the capacitance is defined in terms of its ge-
ometric structure. From the first principles of electromag-
netism the total lumped capacitance of a flat plate electrolytic
capacitor is:

C =
εA

do
, (1)

where ε is dielectric constant of the electrolyte, A is the ef-
fective surface of the electrolyte and do is the oxide thickness.
Rolling the plates of electrolytic capacitors double the capac-
itance of these capacitors (Tasca, 1981). This improvement
achieves due to utilizing both sides of foils in the new struc-
ture. Consequently the capacitance of the presented structure
in Figure 1 can be expressed as follows.

C =
2εA

do
. (2)

Assuming that the separator paper thickness is negligible and
the space between anode and cathode is completely filled by
the electrolyte the volume of the electrolyte can be computed
as:

V = A ∗ d, (3)

where d is the distance between anode and cathode foils.
Therefore, the capacitance can be expressed based on elec-
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trolyte volume by:

C =
2εV

dod
. (4)

Equation (4) demonstrates how the evaporation of the elec-
trolyte decreases the capacitance of the electrolytic capaci-
tors. The electrolytic capacitor capacitance, C decreases di-
rectly in proportion to electrolyte volume, V, as it evaporates
due to raised ambient temperatures. In the next section, we
study the evaporation process for the electrolyte in greater de-
tail.

2.2. Modeling Electrolyte Evaporation

The rate of evaporation and consequent decrease in the liquid
volume depends on the surface area of the liquid, its molecu-
lar volume, and the evaporation rate (Rdner et al., 2002). So
we can write:

dV

dt
= −AJω, (5)

whereA is the surface of electrolyte, J is the evaporation rate
and ω is the volume of electrolyte (ethyl glycol) molecule. If
we substitute A by V

d in (5) we have:

dV

dt
= −JωV

d
(6)

An important parameter in the derived equation is the evap-
oration rate. Typically the evaporation rate is not a constant
parameter; it increases as the ambient temperature increases,
therefore, the temperature at the capacitor core increases. In
fact, if the molecules of electrolyte have more kinetic energy
the probability that they leave the surface increases and con-
sequently the evaporation rate increases. In our study, the am-
bient temperature in the experimental chamber is maintained
constant. The other factor which affects the evaporation rate
is pressure. Increasing the pressure at the surface of the liq-
uid decreases the probability that molecules leave the surface,
which means that the evaporation rate decreases. Further, a
large pressure increase has other consequences, e.g., the top
of the capacitor casing may pop. This releases all of the built
up gases, bringing the surface pressure on the electrolyte sur-
face back to the atmospheric pressure levels. We discuss the
evaporation rates for two different scenarios: (1) capacitor
casing not pierced, implying the inside of the capacitor is a
closed system and (2) capacitor casing damaged and popped.
Capacitor as Closed System: As long as the capacitor cas-
ing is not pierced the capacitor is a closed system. In this
situation, by evaporation the escaped molecules accumulate
in the can and increase the pressure on the electrolyte sur-
face. The increase in the pressure decreases the evaporation
rate. The decrease in the evaporation rate continues and after
some time it becomes so small that practically the evaporation
stops. At this point the numbers of molecules which leave the
liquid and return to it are almost the same and the vapor is

said to be saturated. In the enclosed system, we use the expo-
nential function to model the evaporation rate, i.e:

J = J0e
−βt, (7)

where J0 is the initial value of the evaporation rate
which is function of temperature and density of the liq-
uid. β determines how fast the evaporation rate de-
creases and depends on the volume of the enclosed space.
Open System with Capacitor Casing P ierced: The pri-
mary reason to covering the capacitors with an aluminum can
is to protect the electrolyte from evaporation (Kulkarni et al.,
Jun 2012). However it is possible that a large increase in
the internal pressure can pop or crack the cover in some way
and the electrolyte escapes into to the atmosphere. When this
happens, the evaporation rate after an initial increase becomes
constant because the capacitor can is not a closed space any-
more. In this case the evaporation rate is:

J = Jopen, (8)

where Jopen depends on the temperature, atmosphere pres-
sure and liquid concentration. As a next step we discuss the
capacitor degradation model next.

2.3. State Space Model for Capacitance Degradation

To model capacitor degradation, a state space model with ca-
pacitance and evaporation rate as the state variables is consid-
ered. Using (4) one can write:

dC

dt
=

2ε

dod

dV

dt
. (9)

And by substituting (6) in (9) we have:

dC

dt
= −2Jωε V

dod2
. (10)

Using (4) and doing some algebraic manipulations we can
write:

dC

dt
= −JωC

d
. (11)

For the enclosed case J can derived from (7) as:

dJ

dt
= −βJ0e−βt. (12)

By substituting (7) in (12) we have:

dJ

dt
= −βJ. (13)

If the can cracks or pops up the evaporation rate is constant
and the capacitance dynamic is:

dC

dt
= −Jopenω

C

d
. (14)
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2.4. Converting to Discrete-Time Model

Since measurements are sampled in discrete times we derive
a discrete time model of the state space representation. Using
a first-order approximation:

dC

dt
(tk) =

C(tk+1)− C(tk)
tk+1 − tk

. (15)

Consequently from (11) for the enclosed case we have:

C(tk+1) = C(tk)− J(tk)ω
C(tk)

d
(tk+1 − tk). (16)

Similarly, using (13) the dynamic equation for J in enclosed
space is derived as:

J(tk+1) = J(tk)− βJ(tk)(tk+1 − tk). (17)

Considering (14) for the capacitor case popped open we have:

C(tk+1) = C(tk)− Jopenω
C(tk)

d
(tk+1 − tk) (18)

2.5. General Model for the Degradation

An accurate model of capacitor degradation would use the
enclosed degradation equation till the capacitor encasing
popped, and at the popping time switch to the open model
where the evaporation rate becomes constant. Since we do
not know the exact time that the switch from the closed to
open situation occurs, we employ a blended model that com-
bines the enclosed and open degradation models, i.e.,

C = α(tk)Cclosed + (1− α(tk))Copen. (19)

α(tk) starts at a value close to 1.0 for tk small, and gradually
decrease as time advances. How the parameter α changes
with time may be unknown, for the sake of simplicity we as-
sume α decreases linearly with slope of c over time as repre-
sented by (20) . The value of c may be determined by empir-
ical studies, or based on expert-supplied knowledge.

α(tk+1) =

{α(tk)− c(tk+1 − tk) tk+1 ≤ 1
c

α(tk) tk+1 >
1
c .
(20)

Therefore, an approximation of the capacitor degradation
model can be expressed as:

C(tk+1) = α(tk) ∗ [C(tk)− J(tk)ω
C(tk)

d
(tk+1 − tk)]+

(1− α(tk)) ∗ [C(tk)− Jopenω
C(tk)

d
(tk+1 − tk)]

J(tk+1) = J(tk)− βJ(tk)(tk+1 − tk)

α(tk+1) =

{α(tk)− c(tk+1 − tk) tk+1 ≤ 1
c

α(tk) tk+1 >
1
c .

(21)

3. PROGNOSTICS ALGORITHM

Using the degradation model we can design a filter to esti-
mate the current state of health of the system. Using this
estimated state of health and degradation model, we can pre-
dict the future behaviour of the capacitor and using end of
life threshold we can estimate the remaining useful life. As
discussed earlier, the degradation model includes three state
variables that change with time, capacitance, C, evaporation
rate, J and combination factor, α. Since we have run ex-
periments and collected degradation data on a set of identi-
cal electrolytic capacitors, we can use our filter model in a
predict-estimate-update loop to refine the degradation model
as new measurements on the system become available. Ap-
plying the predict-estimate-update loop, we hypothesize that
the estimation of RUL becomes more accurate as more data
is obtained on capacitor degradation. Therefore, a combina-
tion of a model- and data-driven approach to prognostics will
likely result in more accurate and general degradation models
than if we employed pure data-driven methods (which don’t
generalize easily) and pure model-based approaches (which
are hard to tune accurately without the availability of data).

Kalman filters have been proven to be optimal state estima-
tors and predictors for linear time-invariant systems (Arulam-
palam et al., 2002). However, the state equations for capac-
itor degradation are nonlinear, therefore a Kalman filter ap-
proach will have to be approximated by extended Kalman fil-
ters (EKF). (Julier & Uhlmann , 1997) used EKF framework
to develop unscented Kalman filters (UKF) which is another
approximation of Kalman filters for state estimation in non-
linear systems. This method assume Gaussian distribution for
the system states and utilizes a set of carefully chosen sam-
ple points, propagate them through the non-linear dynamic
and uses the result to re-estimate the parameters of the Gaus-
sian distribution in each step. These samples are chosen in a
way to capture the exact mean and covariance of the Gaus-
sian distribution completely and when propagate through the
nonlinear dynamic capture the mean and covariance of the
posterior distribution to the 3rd order Taylor series expansion
approximation accurately. Since EKF uses first order Taylor
series approximation it is expected that UKF exhibits better
performance in the state estimation of nonlinear systems with
Gaussian inputs (Wan & Van Der Merwe, 2000). In previ-
ous work, we have used unscented Kalman filters for state
estimation and obtained fairly accurate degradation models
and RUL estimates for both Electrical and Thermal overstress
test conditions (Kulkarni, 2013). In this paper we adopt a
more powerful approach to modeling and tracking non linear
behavior evolution: the Particle filter that uses a sequential
Monte Carlo approach for state estimation and does not as-
sume Gaussian inputs for the system. Similar to EKF and
UKF, Particle filter provides a suboptimal solution for the
state estimation in nonlinear systems, however it is proved
that by increasing the number of samples (particles) its so-
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lution approaches the optimal Bayesian estimation (Arulam-
palam et al., 2002).

3.1. Particle Filter

In order to estimate the probability density distribution (pdf)
of the state variables of a nonlinear system, the particle filter
approach uses a set of particles (samples) and a set of as-
sociated weights representing the discrete probability masses
of the particles. Particle Filter updates these particles and
weights in each step to follow the evolution of the states of
the dynamic system. In fact, particle filters use Monte Carlo
method to implement a recursive Bayesian filter to estimate
the pdf of the state variables. To implement particle filters,
it is assumed that the dynamic system can be presented as a
first order Markov process:

xk = f(xk−1) + ωk

yk = h(xk) + υk,
(22)

where xk is the system states in step time k, yk is the mea-
surement and ωk and υk represent system and sensor noises
respectively.

Sequential Importance Sampling (SIS): SIS is an al-
gorithm for implementing recursive filtering based on Monte
Carlo method. The main idea is to approximate posterior den-
sity function p(xk|y1:k) by a set of random samples or parti-
cles {xik}Pi=1 and their associated weights {ωik}Pi=1. As men-
tioned earlier as the number of these particles become very
large the Monte Carlo characterization approaches to the pos-
terior density function and SIS algorithm solution approaches
the optimal Bayesian estimation.

p(xk|y1:k) ≈
P∑
i=1

wikδ(xk − xik)

P∑
i=1

wik = 1,

(23)

where xik are the particles and wik are the normalized weights
associated with them. These weights update based on im-
portance distribution function π(xk|x0:k−1, y1:k) in each step
(Arulampalam et al., 2002) as follows :

wik ∝ wik−1

p(yk|xik)p(xik|xik−1)

π(xik|xi0:k−1, y1:k)
. (24)

Degeneracy Problem and Resampling: Degeneracy
problem happens when the variance of importance weights
keep increasing over time and consequently after a certain
number of step times most of the particles will have negligi-
ble importance weights. In this situation a fairly large per-
centage of computational effort would be devoted to update
the weights associated with particles which have no mean-
ingful contribution to the result. The degeneracy problem is

not avoidable in SIS algorithm (Ristic et al., 2004). To over-
come to this problem a resampling process is considered in
each step time to replace the particles with low importance
weight with particles which have higher importance weights.
Resampling is a mapping from {xik, ωik}Pi=1 to {xi∗k , 1

P }
P
i=1

where new particles xi∗k are chosen from the set of previous
particles randomly with the probability equal to the impor-
tance weight of the particle so we have:

P{xi∗k = xjk} = ωjk. (25)

Sampling Importance Resampling (SIR): By choosing
importance distribution function equal to p(xk|xk−1), one
can rewrite equation (24) as:

wik ∝ wik−1p(yk|xik). (26)

Also considering resampling procedure at each step time we
assign wk−1 = 1

P for all the particle weights so we have:

wik ∝ p(yk|xik). (27)

This filter is proposed by (Gordon et al., 1993) and is called
SIR or bootstrap filter. To implement SIR filter we only
need to know states space dynamic, measurements and noise
model (22) and the likelihood function p(yk|xk).

Particle F ilters for Parameter Estimation: State esti-
mation by particle filters is discussed in this section. Particle
filters can be used for parameter estimation in nonlinear sys-
tems as well. The parameters do not change over time sig-
nificantly so its dynamic in state space representation can be
written as:

ρk = ρk−1 + ωk

yk = h(ρk, xk) + υk,
(28)

where ρ represents system parameters and x is system states.
ω and υ represents parameters uncertainty and sensor noise
models respectively and y is the measurements. Based on
our knowledge about the variance and expected value of the
parameters we design ωk and consider proper initial values
for the parameters and the rest of the process is quit similar
with state estimation procedure. Parameter estimation can be
done simultaneously with state estimation or off line. In the
off line scenario, we assume that the system states in different
time steps are already measured and saved and we feed them
as the inputs to equation (28) during the parameter estimation
process. In the cases that states and parameters should be
estimated simultaneously, parameters will be considered as
the new states for the system and to calculate the value of the
new states (which are the combination of original states and
unknown parameters) in each time step we use the estimated
value of them in previous time step as it was done in state
estimation.

3.2. Remaining Useful Life Prediction

The particle filter estimates the current value of the capaci-
tance considering the measurement values and the degrada-
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tion model. It also updates the degradation model by provid-
ing a new value for evaporation rate and combination factor
based on the measurement and the degradation model. To
calculate the remaining useful life we use the current value of
the capacitance as the initial value and the updated degrada-
tion model to predict the future behavior of the capacitor. Re-
maining useful life threshold is value provided by the factory
which determines after a specific percentage of degradation
in the capacitor the capacitor cant perform its normal func-
tion in the circuit. Having this value we can compare it with
predicted capacitance of the electrolytic capacitor in future to
estimate remaining useful life. The procedure is presented in
figure 2.

Particle Filter 

Measurements 

System State Model Parameter 

Future Behavior 

Prediction 
Failure Threshold 

RUL 

Figure 2. Prognostic flowchart.

4. SETUP AND MODEL ESTIMATION

In the first part of this section the experimental setup and
the test conditions are presented. Then the parameters of
the degradation method are estimated. Finally the remaining
useful life prediction results are demonstrated and the perfor-
mance of the algorithm is discussed.

4.1. Experimental Setup and Test Conditions

In order to present the performance of the proposed strategy
for RUL prediction of the electrolytic capacitors 15 identical
capacitors with 2200uF capacitance are utilized. The nom-
inal working condition of the capacitance is 10V and 85oC.
The thermal over stress condition is provided by a tempera-
ture controlled chamber presented in figure 3. The capacitors
were in 105oC with 3.4% humidity factor for 3400 hours.
And the capacitances of the capacitors were measured during
the test regularly [13].

Figure 3. Thermal Chamber.

4.2. Parameters of the Degradation Model

In the derived degradation model for the electrolytic capac-
itor, thickness of electrolyte paper, d, can be measured for
each class of capacitors after removing the cover. Volume of
the electrolyte molecule is also a constant value that need to
be determined based on the material used as the electrolyte.
These parameters for the 15 identical capacitors that used in
our case study are presented in Table 1. Dielectric constant, ε,
was used in the modeling too, however since it did not appear
in the final model for the degradation (21) we don’t need to
use it for RUL predictions.

There are also some other parameters in the degradation
model which need to be determined in the prognostic de-
sign procedure. These unknown parameters as one can see
in equation (21) are Jopen , β and c. Also three initial condi-
tions C0 , J0 and α0 need to be determined. C0 is considered
equal to the nominal capacitance of each capacitor and J0 is
assumed equal to Jopen. This approximation is not far away
from reality because the internal pressure due to the evapora-
tion is the main reason for decreasing J in the closed space
and in the beginning there should not be significant evapora-
tion. Finally α0 is considered 1 because we assumed in the
beginning of the thermal overstress test all the capacitors are
healthy and non of the cans is not popped up. To estimate
Jopen , β and c for each capacitor the data associated with
other 14 capacitors is considered and since the model is not
linear, the particle filter scheme is applied for the estimation.
The derived value for each capacitor is presented in Table
2. Figure 4 represents real degradation process and its corre-
sponding degradation model for the first capacitor. It can be
seen that the degradation model tracks real degradation pro-
cess within an acceptable range of error. Mean square error
between each capacitor’s model derived by the parameters of
Table 2 and its real degradation process is calculated by (29)
and is presented in Table 3.

MSE =
1

n

n∑
k=1

(Ctk − C
′

tk)
2, (29)

where Ctk is the capacitance of the capacitor measured at
time sample tk and C

′

tk is the value of capacitor obtained
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Table 1. Parameter values of the degradation model

Parameter Description Value
d Thickness of the electrolyte paper 2.22 ∗ 10−5cm
ω Volume of ethyl glycol molecule 5.66 ∗ 10−9cm3

Table 2. Parameter values of the degradation models

Capacitor Jopen β c
C1 0.2167hr−1cm−2 0.0041 0.0003
C2 0.2213 hr−1cm−2 0.0039 0.0003
C3 0.2183 hr−1cm−2 0.0029 0.0003
C4 0.1936 hr−1cm−2 0.0020 0.0003
C5 0.2232 hr−1cm−2 0.0029 0.0003
C6 0.2242 hr−1cm−2 0.0020 0.0003
C7 0.2177 hr−1cm−2 0.0042 0.0003
C8 0.2101 hr−1cm−2 0.0029 0.0003
C9 0.2076 hr−1cm−2 0.0033 0.0003
C10 0.2226 hr−1cm−2 0.0024 0.0003
C11 0.2186 hr−1cm−2 0.0028 0.0003
C12 0.2199 hr−1cm−2 0.0037 0.0003
C13 0.2211 hr−1cm−2 0.0038 0.0003
C14 0.2034 hr−1cm−2 0.0027 0.0003
C15 0.2180 hr−1cm−2 0.0026 0.0003

from its degradation model at the same time. It should be
mentioned here that in the prognostic procedure system states
like J and α update during the process as the system measure
the capacitance of the capacitor in each step. So it is expected
that in the prognostic simulation the model demonstrates even
better tracking performance.
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Figure 4. Degradation models.

5. EXPERIMENTAL RESULTS

Using the proposed degradation model and the estimated vari-
ables, the remained useful life prediction for the capacitors
are done according to the proposed methodology in section 3.
The remaining useful life is considered when the capacitance

Table 3. Mean square errors for the capacitors models

Capacitor mse
C1 1.0e-08 * 0.0637
C2 1.0e-08 *0.1069
C3 1.0e-08 *0.0149
C4 1.0e-08 *0.0379
C5 1.0e-08 *0.0732
C6 1.0e-08 *0.0482
C7 1.0e-08 *0.0968
C8 1.0e-08 *0.2286
C9 1.0e-08 *0.0476
C10 1.0e-08 * 0.0649
C11 1.0e-08 *0.1447
C12 1.0e-08 * 0.0258
C13 1.0e-08 *0.1237
C14 1.0e-08 *0.0204
C15 1.0e-08 * 0.1958

of the capacitor decreases below 90% of its nominal value
(Kulkarni et al., Sep 2012). Also in designing the particle fil-
ter 300000 sample points were considered. Figure 5 shows
the actual remaining useful life and the estimated remaining
useful life of the first capacitor from the beginning of the ther-
mal overstress test to the end of its useful life. One can see
from the this figure that by getting closer to the end of life of
the capacitor the error of the prediction decreases and the pre-
dicted value converges to the real value of RUL. To explain
this observation we can say as the system gets more data and
the particle filter updates the degradation model, the degrada-
tion model becomes closer to the real degradation procedure
and the predicted RUL based on the degradation model be-
comes more exact.

The RUL prediction relative accuracy (RA) is defined as:

RA = 100(1− | RUL−RULe |
RUL

) (30)

where RUL is the remained useful life and RULe is the esti-
mated remaining useful life. relative accuracy of the predic-
tion of remaining useful life for each capacitor in each step
time is presented in Table 3. The results show the predic-
tion method is completely reliable and relative accuracy is
improved in comparison with the previous works.
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Table 4. Relative Accuracy

time(hr) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

87.7 91.14 79.98 98.72 98.1 90.89 86.46 93.15 78.9 98.1 82.41 85.99 86.17 98.45 95.25 67.41
181.7 87.14 84.49 96.51 95.15 91.2 79.88 92.48 74.61 96.88 81.4 84.32 87.58 96.13 94.36 70.96
295.4 78.56 90.57 95.76 94.58 94.51 81.62 99.23 85.42 93.33 82.68 86.34 86.55 97.88 92.7 74.9
384.5 89.59 90.58 94.44 96.03 95.56 79.59 96.76 85.42 91.19 83.45 91.34 88.02 92.54 95.92 73.55
450.9 89.46 87.17 95.35 95.70 95.15 82.4 99.42 88.12 94.31 85.11 91.92 87.69 94.2 99.63 75.82
540.8 91.79 83.73 92.48 98.22 95.36 84.57 99.61 84.95 93.29 84.72 88.54 87.04 96.84 99.8 76.97
607.1 94.94 88.82 95.37 95.82 93.65 85.16 97.69 84.12 94.46 83.56 87.36 89.41 94.58 99.7 77.12
701.6 96.5 86.47 94.29 92.43 97.66 87.59 99.34 82.25 93.08 85.29 90.63 86.59 93.78 97.73 74.4
766.8 97.76 81.34 93.27 96.55 93.27 85.19 95.1 81.34 98.65 79.03 88.56 89.11 96.21 98.35 72.66
860.4 94.93 79.47 96.22 91.42 99.06 92.53 94.66 85.86 90.66 87.55 94.66 83.86 92.75 93.11 77.81
950.1 99.22 89.18 97.09 90.73 98.94 93.07 92.98 83.44 87.02 93.3 92.98 84.68 92.57 91.01 76.84
1019 94.49 95.01 97.1 87.82 96.38 94.11 91.37 85.04 86.83 94.16 91.28 83.24 92.64 91.56 71.56

1084.5 89.63 98.09 94.7 87.89 95.91 93.34 92.1 85.02 87.3 93.68 89.03 80.07 92.69 90.76 71.41
1179.5 86.15 89.25 95.8 87.05 98.76 92.28 92.52 81.8 86.69 93.87 88.7 79.27 94.67 93.54 73.36
1244.8 96.77 94.21 98.08 85.77 96.62 91.39 92.65 82.21 87.92 92.9 90.8 76.86 92.06 92 72.16
1338.2 94.96 97.24 97.22 82.98 93 90.33 92.45 82.48 87.16 91.78 87.94 74.74 92.73 92.39 73.24
1404.5 83.71 98.63 92.53 84.53 95.56 86.48 93.62 81.84 92.1 85.95 84.89 78.55 95.44 93.68 75.86
1495.4 75.2 92.83 92.79 76.24 88.31 93.07 86.67 91 82.64 93.81 94.78 68.98 84.53 82.58 86.43
1560.5 93.04 97.17 99.08 71.81 85.98 95.19 84.65 93.48 77.15 95.77 95.26 65.9 85.09 81.28 91.19
1626.5 86.49 91 90.16 79.74 89.58 93.01 90.39 93.69 79.81 93.28 90.52 67.07 87.83 83.72 89.1
1716.6 96.27 92 94.62 71.14 84.71 97.12 87.07 90.8 75.95 97.34 97.19 65.61 84.49 78.32 90.37
1807.0 86.95 96 93.79 76.18 86.19 89.94 88.83 93.47 77.61 98.29 95.43 67.3 86.79 82.88 87.98
1871.6 91.48 83.05 99.78 72.04 84.6 93.04 89.32 98.89 76.17 95.28 94.24 64.3 85.37 81.41 80.92
2036.9 78.98 82.07 99.89 79.16 89.64 87.98 94.79 93.13 82.81 95.75 91.07 68.31 92.82 82.06 82.56
2131.3 86.56 84.77 97.01 77.79 88.35 91.02 90.04 93.71 79.98 98.39 93.51 64.94 87.35 75 82.55
2196.1 87.15 95.84 92.53 77.04 92.21 97.15 95.39 87.45 87.59 92.4 84.38 67.92 96.49 81.98 73.49
2290.1 97.75 85.9 96.9 72.62 94.42 92.17 98.69 90.64 82.22 91.35 85.31 69.42 93 81.63 81.63
2356 88.42 79.3 79 74.92 90.73 80.19 98.96 93.56 82.51 95.87 99.21 65.41 88.42 65.28 87.28

2421.9 95 63 89.81 72.42 88.42 77.28 98.28 86.71 78.28 88.42 87.14 51.57 80.28 60.28 92.57
2500 94.55 61 84.75 75.27 90.72 74.72 96.54 83.81 78.36 91.09 82.72 44.9 81.63 59.81 99.09
2650 97.5 69.25 59.5 81.5 83.5 67.75 93.5 85 68.5 88.75 78.25 60.5 82.5 48.75 96.75
2800 100 97 100 64.5 86 74.5 84 80 87.5 88 76.5 86 84 54 93
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Figure 5. RUL Estimation.

6. CONCLUSION

In this paper a general model with three state variables is
considered to represent the degradation process of the elec-
trolytic capacitors. There is no doubt that degradation process
is a nonlinear complex phenomenon. To perform prognostics
with high performance and acceptable range of error we had
to take in to account these nonlinearities in the degradation
model. The results of experimental study shows acceptable
performance in relative accuracy of RUL predictions. How-
ever, by adding these complexities to the model the number
of parameters we have to estimate for the model increased
as well. This can be a potential problem in designing a re-
maining useful life predictor model. In the estimation of each
capacitor’s model parameters we did not use that capacitor’s
data. In fact we considered 14 other capacitors to estimate
its parameters. So we can claim that derived values for the
system parameters can be used for any similar capacitor and
we expect to get acceptable results as well. One of the advan-

8



Annual Conference of the Prognostics and Health Management Society 2013

tages of this work is as the system comes close to the failure,
the performance of RUL prediction improves. The reason of
this observation is discussed in the paper but it has an im-
portant practical value. In fact from the safety and mission
critical point of view it is much more important for the oper-
ators to have an exact estimation of RUL when we are close
to the end of life or failure.

In this paper degradation of the electrolytic capacitors under
thermal over stress condition is studied. However, the sug-
gested degradation model and prognostic algorithm can be
applied for RUL prediction of a capacitor under electrical
overstress condition as well. In fact, in electrical overstress
condition because of additional chemical reactions in the ca-
pacitors (Gmez-Aleixandre et al., 1986), capacitor popping is
more likely, making this model more relevant. In future work,
we will apply the suggested degradation model and prognos-
tic method for RUL prediction of electrolytic capacitors under
electrical overstress condition.
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