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Abstract

This work studies potential ways of integration of two
techniques for fault detection, isolation, and identifica-
tion in dynamic systems: Lydia-NG suite of diagnosis
algorithms and Consistency-based Diagnosis with Pos-
sible Conflicts. By integrating both techniques, Lydia-
NG will benefit from a more efficient fault detection and
isolation task, and Possible Conflicts will benefit from
the identification capabilities of Lydia-NG. In this pa-
per, we define a common framework that integrates both
techniques, and then we apply the proposed integrated
approach to a three-tank system, and draw some conclu-
sions about potential ways of integration.

1. Introduction

The need for safety and reliability in engineering systems
provides the motivation for developing Integrated Sys-
tems Health Management (ISHM) methodologies that
include efficient fault diagnosis mechanisms. In this work
we focus on model-based approaches to on-line fault di-
agnosis of dynamic systems. Online methods for model-
based diagnosis require the use of quick and robust fault
detection methods to establish discrepancies between ob-
served and expected system behavior. Discrepancies due
to faults trigger fault isolation processes that are re-
sponsible for determining the root cause of the fault.
However, accurate and timely online fault diagnosis of
complex dynamic systems is difficult and can be com-
putationally expensive (Pouliezos & Stavrakakis, 1994;
Isermann, 2006; Gertler, 1998).
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In this work we have used the Lydia-NG modeling lan-
guage and the Lydia-NG suite of algorithms (Feldman,
Provan, & Gemund, 2010). The main idea of Lydia-NG
is to perform multiple simulations for various hypoth-
esized health states of the plant. The output of these
multiple simulations is then processed and combined into
single diagnostic output. Lydia-NG implements several
strategies for the generation of fault candidates and a
number of algorithms for active testing. These algo-
rithms are based on AI search and include best-first, and
bottom-up greedy search. Lydia-NG has been success-
fully used for complex applications like space satellites
(Feldman, Castro, Gemund, & Provan, 2013). However,
when applied to online fault diagnosis of large dynamic
systems, running all the hypothesized health states be-
comes a quite difficult and time consuming task.

Several approaches have been proposed in recent years
to deal with the complexity issue. System decomposition
methods, have been proposed to reduce the complexity
in the fault diagnosis task (Bregon, Biswas, & Pulido,
2012) by generating smaller simulation submodels which
can run in parallel and provide independent diagnosis de-
cisions. The Possible Conflict, PC, approach (Pulido &
Alonso-González, 2004), is an off-line dependency compi-
lation technique from the DX community, which decom-
poses the global system model into minimal submodels,
and performs on-line behavior estimation using simula-
tion (Bregon, Alonso, Biswas, Pulido, & Moya, 2012),
state observers (Daigle, Bregon, & Roychoudhury, 2012),
dynamic Bayesian networks (Alonso-González, Moya, &
Biswas, 2011), or state-based neural networks (Pulido,
Zamarreño, Merino, & Bregon, 2012). If a discrepancy
is found, a set of fault candidates is generated by a mini-
mal hitting-set algorithm of the triggered PCs. However,
additional techniques must be used to refine the set of
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fault candidates.

The goal of this work consists of integrating PCs within
the Lydia-NG diagnosis framework. First, PCs will de-
compose the global simulation model into a set of smaller
simulation submodels. Then, PCs will be used for effi-
cient online fault detection and fault localization, pro-
viding a subset of fault candidates from the minimal
hitting-set of the deviated PC residuals. The subset
of fault candidates is then used as input to Lydia-NG,
where simulations are run only for each one of the fault
candidates, and its result is processed and combined to
provide the diagnosis output.

We have tested the proposed diagnosis framework by us-
ing a three-tank system. Theoretical study on the in-
tegration proposal shows that the complexity of Lydia-
NG is highly reduced by the inclusion of PCs in the
framework. The experimental results present a partic-
ular diagnosis scenario where the proposed integration
framework is used.

The rest of the paper is organized as follows. Section 2
presents the basic definitions and running example used
in this work. Section 3.1 briefly introduces Lydia-NG,
and section 3.2 describes basic ideas of system decom-
position using PCs. Section 4 presents our proposal to
integrate PCs within the Lydia-NG diagnosis framework.
Section 5 describes the experimental results obtained for
a three-tank system. Section 6 presents related work.
And, finally, section 7 presents the discussion and con-
clusions.

2. Concepts and Definitions

In this section we present our basic definitions and a
running example that we use to illustrate the significant
concepts of this paper.

Since both Lydia-NG and PCs are model-based diag-
nosis approaches, we provide a set of definitions about
models and faults that will enable us to further explain
both techniques using the same framework.

2.1. Definitions

For the purpose of this work we will focus our descrip-
tion on continuous systems diagnosis, with only one
nominal state, and whose behavior can be described as
a set Σ of Ordinary Differential Equations (ODEs). The
model of our system will be the basic system description
to perform diagnosis:

Definition 1 (Model). The system model can be defined
as M(Σ, U, Y,X,Θ), where: Σ is a set of ODEs, defined
over a collection of known and unknown variables: U is
a set of inputs, Y a set of outputs, X a set of state and

intermediate i.e., unknown) variables, and Θ is the set
of Model Parameters.

Definition 2 (System Description). SD is made up of
(M,H, σ,Π), where,

• H is the health-vector defined by means of
(h1, . . . , hk), health variables, that allow us to char-
acterize the set of states in the system, i.e. each
hi ∈ H is a potential mode for the system. either
nominal or faulty.

• σ is a mapping function: σ(M,Hc) →
MHc(ΣHc, UHc, YHc, XHc,ΘHc), that given the
system description, M , and the current health sta-
tus, Hc, provides the model for behavior estimation
for the current mode (or current system description
MHc): ΣHc ⊆ Σ, UHc ⊆ U , YHc ⊆ Y , XHc ⊆ X,
and ΘHc ⊆ Θ).

• Π is a mapping function Π(θcc) → {Hc | Hc ⊆ H}
that, given a set of parameters, provides the set of
health statuses that relate to the set of model pa-
rameters: θcc ⊆ Θcc.

For consistency-based diagnosis using PCs, we only use
σ(M,Hn) with Hn corresponding to a nominal mode.
Since we are dealing with a continuous system working
in one nominal mode, we can compute offline the set
of PCs for MHn(ΣHn, UHn, YHn, XHn,ΘHn), as will be
described later.

An implicit assumption in our modeling approach is that
we can use the same set of equations for both the nominal
behavior estimation and the faulty behavior estimation,
just changing the value of θi in equation ci ∈ Θ.

Consistency Based Diagnosis (CBD) performs fault
detection and fault isolation using only models of cor-
rect behavior in a two stage process. First, we identify
if there exists a discrepancy between the observed
behavior (obtained via sensor outputs yi) and the
expected behavior (estimated by the Possible Conflict,
ŷipc). We define a discrepancy in terms of a residual.

Definition 3 (Residual). A residual is a real-valued
measure R(yi, ŷipc) of the difference between real and
simulated system output at time t.

Corresponding to each residual is a conflict (Reiter,
1987). Hence, fault detection consists of computing ev-
ery conflict.

The second step is fault isolation. Fault isolation con-
sists of computing the minimal hitting sets of the con-
flicts. Conflicts are important since the set of minimal
diagnoses of a system is given by the minimal hitting
set of the set of minimal conflicts (Reiter, 1987). Intu-
itively, a conflict is a set of components that cannot be-
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have properly simultaneously, given the system descrip-
tion and current observations of abnormal behavior. In
other words, given a system description and some current
observations, they entail that at least one component of
the conflict must be faulty, in the sense that it departs
from the behavior described by its model of correct be-
havior.

There is no general framework for CBD of dynamic sys-
tems. Nevertheless, most existing approaches rely upon
an iterative process of behavior estimation, conflict de-
tection, and fault candidate generation (i.e. fault isola-
tion). In this work we use the Possible Conflicts (PCs)
approach to avoid the on-line computation of conflicts
and speed up overall fault isolation. PCs are designed to
compute off-line those subsystems capable of becoming
conflicts online.

The output of the consistency-based diagnosis using PCs
is a set of fault candidates C defined in the lattice pro-
vided by Θ∗.

2.2. Running Example

In this paper, we use the three-tank system shown in
figure 1 as the running example. The three tanks are
denoted as T1, T2, and T3. They all have the same area
A1 = A2 = A3 = 3 [m2]. The experiments are performed
assuming the gravity g = 10 and the liquid with density
ρ = 1.

T1 T2 T3
R1 R2 R3

p2

q0

p3
p1

q1 q2 q3

h1 h2 h3

Figure 1. Diagram of the three-tank system.

Tank T1 gets filled from a pipe q0 with a constant flow
of 1.5 [m3/s]. It drains into T2 via a pipe q1. The liquid
level is denoted as h1. There is a pressure sensor p1 con-
nected to T1 that measures the pressure in Pascals [Pa].
Starting from the Newton’s (and Bernoulli’s) equations
and manipulating them (the actual derivation is trivial
and irrelevant in this paper) we derive the following Or-
dinary Differential Equation (ODE) that gives the level
of the liquid in T1:

dh1

dt
=
q0 − k1

√
h1 − h2

A1
(1)

In eq. 1, the coefficient k1 is used to model the area of the
drainage hole and its friction factor. We emphasize the
use of k1 because, later, we will be “diagnosing” our sys-
tem in term of changes in k1. Consider a physical valve
R1 between T1 and T2 that constraints the flow between
the two tanks. We can say that the valve changes pro-
portionally the cross-sectional drainage area of q1 and
hence k1. The diagnostic task will be to compute the
true value of k1, given p1, and from k1 we can compute
the actual position of the valve R1. The water levels of
T2 and T3, denoted as h2 and h3 respectively, are given
by:

dh2

dt
=
k1

√
h1 − h2 − k2

√
h2 − h3

A2
, (2)

dh3

dt
=
k2

√
h2 − h3 − k3

√
h3

A3
. (3)

Values k1, k2, and k3, are constant values with no phys-
ical meaning, and we have set them with a value of 0.75.
Finally, we turn the water level into pressure:

pi =
g hiAi

Ai
= g hi (4)

where i is the tank index (i ∈ {1, 2, 3}). Hence, there are
three equations relating the pressure in the tank with
the level in the tank. To observe the behavior of the
system we have an observational model, that allows us
to know or read each value pi. We use p∗i to distinguish
the measured variable from the model output pi:

p∗i = pi (5)

It is assumed that the initial water level in the three
tanks is zero. Additionally, we make explicit the relation
between the state variables, hi in our example, and their
derivatives, dhi:

hi =
∫
dhi · dt (6)

These equations allow us to select an integral or differen-
tial approach for behavior simulation, depending on the
selected causality. These equations make no influence in
the diagnosis results, because they will have no θi, and
consequently no health status.

3. Algorithms

This section presents the fundamental ideas of the
Lydia-NG diagnosis framework and the structural
model decomposition approach with PCs.
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3.1. Lydia-NG

We next show an algorithmic framework for computing
diagnoses. The basic idea of the Lydia-NG diagnostic
library (shown in Fig. 2) is to perform multiple simula-
tions for various hypothesized health states of the plant.
The output of these multiple simulations is then pro-
cessed and combined into single diagnostic output.

Figure 2. Overview of the Lydia-NG diagnostic method

The Lydia-NG diagnostic library consists of the follow-
ing building blocks:

Generator of Diagnostic Assumptions: A di-
agnostic assumption is a set of hypothetical
assignments for the health or fault state of each
component in the system. The “all nominal” diag-
nostic assumption assigns healthy status to each
component. Lydia-NG allows one nominal and one
or more faulty states per component.

Simulation Engine: Given a diagnostic assumption,
Lydia-NG can construct a simulation model of the
system. This simulation model consists of equations.
By solving this system of equations Lydia-NG com-
putes values for one or more observable variables.
The values of these observable variables is also re-
ferred to as a prediction.

Residual Analysis Engine: A prediction is com-
pared to the sensor data by a residual analysis en-
gine. This engine combines the individual discrep-
ancies in each sensor data/predicted variable pair
to produce a single real value that indicates how
close is the prediction of the simulation engine to the
sensor data obtained from the plant. A simulation

that results in all predicted values coincide with the
measured ones will result in the residual being close
to zero. The data structure containing predictions,
their corresponding sensor data and the computed
residual is called a diagnostic candidate or simply
candidate.

Candidate Selection Algorithm: Not all candi-
dates generated by the residual analysis engine
are used for computing the final system health.
The candidate selection algorithm discards each
candidate whose residual is larger than the residual
of the “all nominal” candidate.

System State Estimation Algorithm: Lydia-NG
uses the set of candidates that is computed by
the candidate selection algorithm to compute an
estimate for the health of each component. This is
done by the system state estimation algorithm.

Algorithm 1 shows the top-level diagnostic process. The
inputs to Alg. 1 are a model and a scenario, and the
result is a diagnosis.

Algorithm 1 supports a large variety of simulation meth-
ods that may or may not use time as an independent
variable. The only requirement toward the simulation
engine is to predict a number of variables whose types
can be mapped to Lydia-NG and to be relatively fast.

Algorithm 1 Diagnosis framework
1: function Diagnose(SCN) returns a diagnosis

inputs: SCN, diagnostic scenario
local variables: h, FDI vector, health assignment

p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: while h← NextHealthAssignment() do
3: p← Simulate(M , γ,h)
4: r ← ComputeResidual(p, α)
5: Ω← Ω ∪ 〈h, r〉
6: end while
7: DIAG← CombineCandidates(Ω)
8: return DIAG
9: end function

The basic idea of Alg. 1 is to simulate for various health
assignments and to compare the predictions with the ob-
served sensor data (i.e., telemetry). There are several im-
portant aspects of this algorithms that ultimately affect
the diagnostic accuracy as measured by various perfor-
mance metrics.

The first algorithmic property that determines many of
the diagnostic performances is the order in which health-
assignments are generated. In Alg. 1 this is implemented
in the NextHealthAssignment function. The latter
subroutine also determines when to stop the search and
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should be properly parametrized depending on the model
and the user requirements. In the standard Lydia-NG
diagnostic library we provide the following diagnostic
search policies:

Breadth-First Search (BFS): This policy first gen-
erates the nominal health assignment, then single-
faults, double-faults, etc.

Depth-First Search (DFS): This search policy
starts with the nominal health assignment, then
adds a single-fault, continues with a double fault in-
cluding the first, and so on, until all components are
failed. After the all-faulty assignment is generated,
the algorithm backtracks one step and generates a
sibling assignment and continues traversing down
and backtracking in the same manner until no more
backtracking is possible.

Backwards Greedy Stochastic Search (BGSS):
In this mode, the search start from the all-faulty
assignment. A random health variable is then
flipped and the flip is retained iff the flip leads to
a decrease in the residual. The order of health
variables is arbitrary. As the whole search process is
stochastic, it needs to be run multiple iterations in
order to achieve the desired completeness. A formal
description of this method for Boolean circuit
models can be found in (Feldman et al., 2010).

Each simulation produces what we call a candidate: a set
of predicted values for a given health-assignment. The
second important property of Alg. 1 is the comparison
and ordering of the diagnostic candidates. This is done
by mapping the predicted and observed variables into a
single real-number, called a residual.

Residual generation functions in Lydia-NG bear resem-
blance to loss functions in decision theory. For example,
residuals may be squared or absolute residuals (Feldman
et al., 2013). A disadvantage of the squared residuals
function Rsq is that it adds a lot weight to outliers. In
decision theory, the absolute loss function that corre-
sponds to the Rabs function is discontinuous. The latter,
however, is not a problem for the algorithms described
in this paper and we prefer Rabs over Rsq.

3.2. Consistency-based diagnosis with PCs

3.2.1. Model decomposition with PCs

The Possible Conflicts (PCs) approach (Pulido &
Alonso-González, 2004) is a model decomposition
method that finds (off-line) every subset of equations ca-
pable of generating conflicts. PCs provide the structural
and causal model of a subsystem with minimal redun-
dancy. The set of equations in a PC can be used to
simulate the correct behavior of the subsystem. Hence,

PCs can be used in CBD of dynamic systems (PULI01,
2001). For the sake of self-containment, we summarize
here the proposal for PCs computation given in (Pulido
& Alonso-González, 2004).

To compute PCs, we need the structural model of the
system under study, which can be obtained from the set
of equations in the system description, once we select a
given working mode, tailored for our new problem formu-
lation, instead of the original process which was suitable
for system descriptions provided as hypergraphs (Pulido
& Alonso-González, 2004).

We will illustrate the process using the three-tank sys-
tem in Fig. 1, and the set of equations in its model as
described in Section 2.2.

We need an abstraction of our model description
SD = (M,H, σ,Π). Let’s assume we compute
the set of PC for a given nominal mode character-
ized by Hn. Using σ(M,Hn), we obtain MHn

=
(ΣHn

, UHn
, YHn

, XHn
,ΘHn

). For the structural model,
we only need the information about the measured and
unknown variables in each model equation. Thus each
equation in ΣHni

will provide one structural constraint
(ci, Si, Xi), where Si accounts for the measured vari-
ables from UHn

, YHn
in ci, and Xi accounts for the un-

known (state or intermediate variables in ci).

For the three tank system the structural model is made
up of the following constraints:

Constraint Sensors Unknowns
c1 {q0} {dh1, h1, h2}
c2 {} {dh2, h1, h2, h3}
c3 {} {dh3, h2, h3}
c4 {} {p1, h1}
c5 {} {p2, h2}
c6 {} {p3, h3}
c7 {p∗1} {p1}
c8 {p∗2} {p2}
c9 {p∗3} {p3}
c10 {} {h1, dh1}
c11 {} {h2, dh2}
c12 {} {h3, dh3}

where constraints c1 to c3 are related to equations (1) to
(3); constraints c4 to c6 are related to the equation (4) for
each one of the tanks; constraints c7 to c9 make explicit
the diagnosis observational model, relating the output
variable pi and its associated sensor p∗i ; and constraints
c10 to c12 make explicit the dynamic in the system: re-
lation between the derivative of the state variables and
the state variable itself.

The first step in PC computation is to look for the
complete set of minimally redundant subsets of equa-
tions. The redundancy is related to the set of unknown
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variables in the equations.

Definition 4 (Minimal Evaluation Chain (MEC)). A
subset of equations that represents a potential source
of discrepancy if the set of equations could be actually
solved1.

A MEC represents a strictly overdetermined2 set of equa-
tions that can potentially be solved using local propaga-
tion (elimination method): each MEC will have n con-
straints and n − 1 unknowns. MECs are computed to
guarantee that there is a complete matching in its asso-
ciated bipartite graph (made up of unknowns as nodes
and equations as edges). This is a necessary condition
to obtain a causal assignment and potentially provide a
computational model.

A summary of the algorithms used to compute MECs in
a system can be found in Appendix A. The set of MECs
in the system in Fig. 1 is:

• mec1 = {c7, c4, c10, c1, c5, c8}
• mec2 = {c8, c5, c11, c2, c4, c6, c7, c9}
• mec3 = {c9, c6, c12, c3, c5, c8}

We need to know the different ways an equation can
be solved, because we can deal with non-linear models.
These ways are usually called the set of possible causal
assignments for the variables in an equation. Using this
set of causal assignments, we can define the set of pos-
sible causal assignments for every unknown variable in
the bipartite graph. We assume that the set of possible
causal assignments is known for the system model, and
we build the complete set of valid causal assignments
for the set of MECs, using exhaustive search (Pulido
& Alonso-González, 2004). We call each valid causal
assignment Minimal Evaluation Model (MEM), because
each MEM represent the precise order to solve or to
evaluate the overdetermined set of equations in a MEC.
Given the equations and the evaluation order provided
by a MEM, they can be used to build simulation models3.

Definition 5 (Minimal Evaluation Model (MEM)). A
MEM is a MEC with a valid global causal assignment
for every unknown in the MEC.

For the three tank system, we assume that the causality
is given by the expression in equations (1) to (6), except

1A MEC is equivalent to the structure of an Analytical Redun-
dancy Relation, ARR, or a Minimally Structurally Overdeter-
mined set, MSO, in works by Staroswiecki and co-workers and
Nyberg and co-workers, respectively.

2A redundant set of equations would be an Evaluation Chain.
Since we are interested only on minimal conflicts, we just focus on
the set of MECs that are by definition minimally overdetermined.

3A MEM is equivalent to the analytical expression of an ARR, an
R-Conflict in the work by Cordier and the HIMALAYA group,
and also is the set of formulas used to compute a conflict in GDE.

for the observational model (in this case we allow solv-
ing constraints ec7 to ec9 in both directions because we
need to convert some system measurements Y in MEM
inputs). The set of MEMs for the three-tank system and
their discrepancy nodes are shown in Table 1.

3.2.2. Fault detection and isolation using PCs

In the MEM there is a special node called discrepancy
node (representing the only variable that is estimated by
two different ways). Therefore, that node is the potential
source of a discrepancy using only the values of measured
variables as inputs, and the past value of state-variables.

In CBD (Reiter, 1987; Kleer & Williams, 1987) a
conflict arises given a discrepancy between observed and
predicted values for a variable. Under fault conditions,
conflicts are observed when the model described by
a MEM is evaluated with available observations and
produce a discrepancy, because the model equations
and the input/measured values are inconsistent (Reiter,
1987; Kleer & Williams, 1987). This notion of possible
discrepancy generation leads to the definition of Possible
Conflict:

Definition 6 (Possible Conflict). The set of constraints
in a MEC that give rise to at least one MEM.

Every MEC in the three-tank system has one MEM.
Then, there are three PCs in the system, one for each
MEC.

Each MEM is the computational model for a PC, and
each equation in a MEM contains zero or more param-
eters that can be the source of potential faults (θcc in
our model description). The set of parameters related
to each PC is also shown in the fourth column in Ta-
ble 1. Given a non-zero residual, we then isolate the
fault parameters involved in the pc structural model:
Θpc. This information is the basis for the integration
of Consistency-based diagnosis of dynamic systems with
Possible Conflicts and Lydia-NG.

4. On-line Fault diagnosis with Lydia-NG and
PCs

In CBD, diagnosis must discriminate among 2N behav-
ioral mode assignments when just correct, ok(·), and in-
correct modes, ¬ok(·), are present for N components.
When B behavioral models are allowed, diagnosis must
discriminate among BN mode assignments. This is the
problem faced by any model-based diagnosis proposal
which attempts fault identification (DRES96, 1996), and
it is also present in Lydia-NG. In this section, we present
an integration proposal, where the system model is parti-
tioned using PCs. As explained in Section 2, the output
of the consistency-based diagnosis using PCs is a set of
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Table 1. MEMs for the three-tank system and their discrepancy nodes.
MEM Associated MEC Discrepancy node Fault Parameters

{c7, c4, c10, c1, c5, c8} mec1 p∗1 k1, A1

{c8, c5, c11, c2, c4, c6, c7, c9} mec2 p∗2 k1, k2, A2

{c9, c6, c12, c3, c5, c8} mec3 p∗3 k2, k3, A3

fault candidates C defined in the lattice provided by Θ∗.
Then, this set of diagnosis candidates is used as input
to Lydia-NG, thus reducing the number of health state
simulations that needs to be considered by Lydia-NG.
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Figure 3. Lydia-NG and PCs integration framework.

Fig. 3 shows the basic idea of our integration proposal.
The simulation model for each PC uses some of the sys-
tem measurements as input, and provides an estima-
tion for exactly one variable (the potential discrepancy).
Then, an executable model, SDpci for each pci, is built.
This executable model can be a simulation model, a state
observer, or even a neural network (Bregon, Biswas, &
Pulido, 2012; Pulido et al., 2012). Summarizing, the in-

tegration of Lydia-NG and CBD with PCs is possible
given the set of candidates, C: each candidate Ci is a
subset of Θpc. Then invoking Π(Ci), Lydia-NG can ob-
tain the set of health statuses, Hc related to Ci, and
use them as input for its search. Given the current im-
plementation of Lydia-NG, we can obtain the system
description (system model) imposed by Hc : σ(M,Hc),
which is enough to characterize the current model and
perform simulation of the Hc health status.

Algorithm 2 shows the algorithm for our integrated di-
agnosis framework. Ypci

denotes the set of input ob-
servations available for the executable model of a PC,
SDpci

; and Ŷpci
represents the set of predictions ob-

tained from SDpci
. The function ObtainObservations

obtains from the diagnostic scenario the observations
which have to be used as input for each PC. Function
EstimateBehavior provides an estimation of a mea-
sured variable by using the executable model of each PC
(either a simulation model, a state observer model, or a
neural network).

For the detection part, to determine significant devia-
tions from the PC residuals (PC residuals are computed
by using an absolute residual function). We use the Z-
test for robust fault detection using a set of sliding win-
dows as detailed in (Daigle et al., 2010). A small win-
dow, N2, is used to estimate the current mean of the
residual signal, µr. The variance of the nominal residual
signal is computed using a large window N1 preceding
N2, by a buffer Ndelay, which ensures that N1 does not
contain any samples after fault occurrence. The vari-
ance and the confidence level determined by the user are
then used to dynamically compute the detection thresh-
olds ε−r and ε+r . Other approaches can be used to deter-
mine significant deviations from the residuals, such as
the Dynamic Time Warping distance, DTW (Keogh &
Ratanamahatana, 2005).

Once the initial set of fault candidates has been iso-
lated, the Lydia-NG part of the algorithm is run
(as shown in algorithm 2). The algorithm takes the
set of isolated fault candidates as input, and the
NextHealthAssignment function only considers the
health assignments related to the fault candidates. In
this version of the integrated framework, the global sys-
tem model is used as the simulation model, instead of
the PC submodels, thus providing a more direct way
to integrate both approaches. In future versions of the
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Algorithm 2 Integrated PCs and Lydia-NG diagnosis approach.
1: function PCs-Lydia-diagnosis(SCN) returns a diagnosis

inputs: SCN, diagnostic scenario
local variables: Ypci

, set of input observations
Ŷpci , estimation from the PC
Θpci

, fault parameters involved in the PC
h, FDI vector, health assignment
p, real vector, prediction
Ω, a set of diagnostic candidates
DIAG, diagnosis, result

2: repeat
3: Ypci ← ObtainObservations(SCN)
4: Ŷpci

← EstimateBehavior(SDpci
, Ypci

)
5: rpci ← ComputeResidual(Ŷpci , Ypci)
6: if rpci < ε−r or rpci > ε+r then
7: Θpci

= confirm pci as a real conflict
8: C ←MHS(C,Θpci

)
9: end if

10: until Every pci is activated or time elapsed or a unique fault candidate has been isolated
11: while h← NextHealthAssignment(Π, C) do
12: p← Simulate(M,γ,h)
13: r ← ComputeResidual(p, α)
14: Ω← Ω ∪ 〈h, r〉
15: end while
16: DIAG← CombineCandidates(Ω)
17: return DIAG
18: end function

framework, the PC submodels will also be used as the
simulation model in Lydia-NG, thus providing faster
simulation results.

5. Results

In this section we show some diagnosis results for our
integrated framework. We present an on-line fault di-
agnosis scenario for a particular fault in the three-tank
system and discuss the results obtained with and with-
out our integrated framework.

5.1. Fault Diagnosis Scenarios

This section describes the scenario of nominal conditions
for the system, and the fault scenario of partial blockage
of valve R1 at time 100 s.

Nominal Scenario: Figure 4 shows a simulation exper-
iment for the three-tank model. It is intuitive from the
tanks equations that the pressure in Tank 1, p1, is larger
than the pressure in Tank 2, p2, which is larger than the
pressure in Tank 3, p3. This is confirmed by the plot
in fig. 4. For this nominal scenario, none of the three
PCs found for the system is triggered. The advantage
of including PCs within the Lydia-NG framework is ev-
ident for this case. Since none of the PCs is triggered,
Lydia-NG is not run, thus avoiding the time-consuming
simulations for the different health states when no actual

fault has occurred in the system. Fault Scenario: Now
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Figure 4. Simulation results for the three-tank model.

consider we introduce a 40% blockage fault in valve R1

occurring at time 100 s. Figure 5 shows the plots of the
three-tank system simulation for this fault, and Figure 6
shows the plots for the PCs for such a fault. The left
column in Figure 6 shows the measured and estimated
pressure for each one of the PCs, while the right column
shows the residual signal computed for each PC.
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Figure 6. Simulation results for a 40% blockage fault at time 100 s in valve R1.

5.2. On-line fault diagnosis

This section briefly describes how Lydia-NG runs with
and without the use of PCs. The first phase is resid-
ual analysis, where Lydia-NG runs a set of simulations
such that a residual is computed for each simulation:
see Figure 2. Because Lydia-NG uses real-value health
variables, the space of potential diagnostic assumptions,
and the corresponding set of simulations, is enormous,
and infinite in the worst case. The heuristics used for
generation of diagnostic assumptions are critical to the
success and efficiency of Lydia-NG.

Lydia-NG ranks the residual outputs, discarding those
candidates whose residual value is larger than the resid-
ual of the “all nominal” candidate. The remaining can-
didates are assigned probabilities of occurrence, using a

method described in (Feldman et al., 2013). The fault
isolation process assigns probabilities of failure to system
components, and these are reported as ranked diagnoses.

In the following we compare the results for running
Lydia-NG with and without PCs. Without PCs,
Lydia-NG uses the global system model described ear-
lier; with PCs (i.e., using Algorithm 2), the generation
of diagnostic assumptions is governed by the PC-based
algorithm.

For the diagnosis scenario with a 40% blockage fault in
valve R1 occurring at time 100 s, our results are as fol-
lows.

Non-PC-based Approach: Lydia-NG computes
residuals based on the difference between the pressures
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Figure 5. Simulation results for a 40% blockage fault at
time 100 s in valve R1.

shown in Figures 4 and 5. The non-zero residual at time
104 s creates a set of simulations in which Lydia-NG
analyzes several valve %-blockage cases for R1, R2 and
R3. Lydia-NG estimates the valve positions by “guess-
ing” the true valve positions and computes the health
probability by subtracting the commanded valve posi-
tion from the estimated one. Lydia-NG is able to isolate
the most-likely fault as (R1, 40%).

PC-based Approach: When computing diagnoses for
this fault, at time 104 s, an increase in the residual of
PC2 is detected, and consequently k1, k2, and A2 are
selected as the initial set of fault candidates. At the
next time step, at time 105 s, PC1 is triggered, thus
selecting k1 and A1 as possible fault candidates. A min-
imal hitting set algorithm is run, determining that the
only single fault candidate in the system is k1. At this
point, the fault identification for k1 is triggered by using
Lydia-NG.

Running this diagnosis scenario with a (trivial) input of
R1 (as derived from the candidate k1), as opposed to R1,
R2 and R3, results in an 80× speedup of Lydia-NG as
compared to the non-PC approach. This is a result of
reducing the diagnosis assumption space.

6. Related work

LYDIA-NG belongs to a class of MBD methods that
use continuous-valued models and sensor data, and use
entropy based methods for test selection to disambiguate
diagnoses. It is a generalization of LYDIA, which used
discrete-value models.

In terms of diagnostics solvers, LYDIA-NG is re-
lated to the HyDE (Hybrid Diagnosis Engine) solver

(Narasimhan & Brownston, 2007). The HyDE-S vari-
ant accepts as input interval-valued hybrid models and
continuous-valued sensor data. Another solver, FACT
(Daigle et al., 2010), can also use continuous-valued
models and sensor data, but requires that the model be
represented as a hybrid bond graph. Given an anomaly,
FACT first uses an observer-based approach (adopted
from the FDI community) with statistical techniques for
robust fault detection. Fault isolation is performed using
qualitative inference, i.e., by matching qualitative devi-
ations caused by fault transients to those predicted by
the model.

Recent works have demonstrated the similarities between
model-based diagnosis approaches from the DX and the
FDI communities (Cordier et al., 2004). In such frame-
work, it has been demonstrated the equivalence of several
structural model decomposition techniques such as PCs,
minimal ARRs and Minimally Structurally Overdeter-
mined sets (Armengol et al., 2009). As a consequence,
the proposal in this work can be easily extended to other
structural methods.

Using CBD we need to generate the set of candidates C
and wait for every pc to be confirmed. An FDI approach
would use exoneration using the structural information
in the set of PCs. In CBD we wait for additional obser-
vations in order to reject modes that are not consistent
with available information. Combining our results with
Lydia-NG provides an additional boost for candidate
discrimination by including fault models through health
statuses.

The approach can be further refined using qualitative in-
formation (for instance residual qualitative signatures),
or add a quantitative parameter estimation (Bregon,
Biswas, & Pulido, 2012). Additionally, different method-
ologies can be coupled to estimate correct and/or faulty
behavior (Alonso-González et al., 2011).

This work is clearly a first step to combine both tech-
niques for hybrid non-linear systems. PCs has been ex-
tended to work with hybrid systems (Bregon, Alonso,
et al., 2012), and can greatly benefit from Lydia-NG
state estimation capabilities. The approach then would
be similar to coupling different techniques for continu-
ous/discrete state estimation as in (Hofbaur & Williams,
2004; Bayoudh, Travé-Massuyès, & Olivé, 2008).

7. Conclusions

This work has presented an integrated framework for on
line fault detection, isolation and identification of dy-
namic systems.

Two different approaches have been integrated: The
Lydia-NG suite of diagnosis algorithms and the Pos-
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sible Conflicts framework for on-line consistency based
diagnosis. Lydia-NG is a simulation based diagnosis
system that filters out diagnosis candidates discarding
those of them that generates residuals larger than the
all-nominal assumption, i.e., fault free and nominal sys-
tem configuration. Although the system incorporates
important facilities, such as diagnostic test generation
based on entropy measure, its main drawback is the lack
of focus for the initial set of candidates, which may be
large, and the cost of simulating the complete system for
every considered candidate. On the contrary, the set of
Possible Conflicts identifies minimal computational sub-
systems that decompose the complete system and that
can be simulated independently. PCs are based on Re-
iter’s theory of diagnosis from first principles and are able
to generate fault isolation candidates from model of cor-
rect behavior without hypothesizing an initial set of can-
didates. Hence, using consistency-based diagnosis with
PCs candidate generation is rather efficient, although
additional techniques are required to further refine fault
candidates for fault isolation and identification. They
also lack some of the facilities incorporated in Lydia-
NG like generation of diagnostic tests.

In this paper we have combined both approaches, com-
plementing each other, looking to preserve the best of
each approximation. This integration can be tackled in
different ways. We have opted for a simple integration
approach that still is able to improve any of them. PCs
are used to generate the initial set of isolation candidates
a la Reiter. These candidates are later refined by Lydia-
NG, which simulates the complete system in the modes
–potential health statuses– defined by the candidates.
In this way, we exploit PCs ability to generate isolation
candidates with Lydia-NG ability to reject fault candi-
dates that do not comply with current observations and
diagnosis assumptions.

Our three tank system running example shows the po-
tential of this approach. First, when the system is fault
free, no PC becomes a real conflict and no candidate is
generated. This avoids running Lydia-NG for fault de-
tection, which is performed by the PCs approach, thus
potentially providing a significant saving on computing
time, depending on the size of the complete system and
on the number and overlapping degree of the PCs. Sec-
ond, when a fault is detected, PCs may generate a low
number of fault candidates, depending on the number
of PCs and its overlapping degree but also on the real
faulty parameter, thus providing an automatic focus for
Lydia-NG fault candidate search.
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A. Possible Conflicts Computation algorithms

Each PC is a set of overdetermined set of equations, de-
rived from the model, that can be solved. The algorithm
to compute PCs finds recursively every combination of
model equations that are strictly overdetermined using
depth first search (i.e. we find any possible overdeter-
mined system of equations for every equation). The al-
gorithm proceeds finding one new equation potentially
solving one of the remaining unknowns.

Algorithm 3 Step 1: Find every strictly overdetermined
sub-system, PC, in MH for each equation c in ΣH

1: function find every pc(MH) returns SPCs
2: for all equation c in ΣH do
3: find pc (MH\ {c}, {c}, cunknowns, SPCs)
4: end for
5: end function

A similar algorithm should analyze the set of equations
and unknown variables in each pc, and find out if its asso-
ciated set of equations have a globally consistent causal
assignment, i.e. we can obtain a solution for the model
and generate a simulation model, for instance. This is
the basic algorithm that pays no attention to potential
cyclical configurations – algebraic loops or loops contain-
ing differential equations–. These checks can be done
later, and depend on the kind of equations in the model,
the simulation language used, and the presence of appro-
priate equation solvers for loops (Pulido & Alonso, 2001;
Pulido, Bregon, & Alonso-González, 2010).
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Algorithm 4 Step 1.2: Find possible conflict, pc, from
available equations in the model, RM : find a new equa-
tion for each remaining unknown variable, unknowns, in
the pc

1: function find pc(RM , pc, unknowns, SPCs)
2: if unknowns == {} then
3: if pc is minimal w.r.t. SPCs then
4: remove every superset of pc in SPCs
5: insert pc in SPCs
6: end if
7: else
8: for all equation c′ ∈ RM do
9: for all y ∈ (c′unknowns ∩ unknowns) do

10: find pc(RM \ {c′}, pc ∪ {c′},
unknowns ∪ {c′unknowns} \ {y}, SPCs)

11: end for
12: end for
13: end if
14: end function
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