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ABSTRACT

Prognostics is centered on predicting the time of and time un-
til adverse events in components, subsystems, and systems.
It typically involves both a state estimation phase, in which
the current health state of a system is identified, and a pre-
diction phase, in which the state is projected forward in time.
Since prognostics is mainly a prediction problem, prognos-
tic approaches cannot avoid uncertainty, which arises due to
several sources. Prognostics algorithms must both character-
ize this uncertainty and incorporate it into the predictions so
that informed decisions can be made about the system. In this
paper, we describe three methods to solve these problems, in-
cluding Monte Carlo-, unscented transform-, and first-order
reliability-based methods. Using a planetary rover as a case
study, we demonstrate and compare the different methods in
simulation for battery end-of-discharge prediction.

1. INTRODUCTION

Prognostics focuses on predicting the time of and time un-
til adverse events in components, subsystems, and systems.
Model-based methods consist of an estimation phase, in
which the current health state of a system is identified, fol-
lowed by a prediction phase, in which the state is simulated
until the adverse event. Because prognostics is mainly a pre-
diction problem, uncertainty, which manifests due to many
sources, cannot be avoided. This uncertainty will determine
how the system evolves in time, i.e., the system evolution is
a random process. To approach this problem in a system-
atic way, there are two problems to solve: (i) characteriz-
ing the sources of uncertainty, and (ii) quantifying the com-
bined effect of the different sources of uncertainty within the
prediction. With proper estimation of the prediction uncer-
tainty, predictions can then be used to make informed deci-
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sions about the system.

In many applications, the largest source of uncertainty is that
associated with the future inputs, and so most work in uncer-
tainty quantification for prognostics has focused in that area.
In the context of fatigue damage prognosis, different types of
methods (Ling et al., 2011) such as rainflow counting tech-
niques, auto-regressive moving-average models, and Markov
processes have been used for constructing future loading tra-
jectories. In (Sankararaman, Ling, Shantz, & Mahadevan,
2011), the authors construct future input trajectories as se-
quential blocks of constant-amplitude loading, and such tra-
jectories are sampled in the prediction algorithm. In (Saha,
Quach, & Goebel, 2012) the authors characterize the future
inputs by determining statistics of the battery loading for typ-
ical unmanned aerial vehicle maneuvers based on past flight
data, and construct future input trajectories as constrained se-
quences of flight maneuvers. Constant loading is assumed
in (Luo, Pattipati, Qiao, & Chigusa, 2008) for a vehicle sus-
pension system, and predictions are made for a weighted set
of three different loading values.

Once each source of uncertainty has been characterized, it
must be accounted for within the prediction, and thereby their
combined effect on the overall prediction must be quanti-
fied. In previous work (Daigle, Saxena, & Goebel, 2012),
we investigated methods for accouting for future input uncer-
tainty in the predictions and introduced the unscented trans-
form (UT) method for efficiently estimating the future input
uncertainty, however, methods for future input characteriza-
tion were not discussed and only constant-amplitude loading
was considered. In other work (Sankararaman, Daigle, Sax-
ena, & Goebel, 2013; Sankararaman & Goebel, 2013), we
investigated the use of analytical methods, namely, first-order
reliability (FORM) based methods for propagating the future
input uncertainty, however it also was limited to constant-
amplitude loading, and the methods were applied only for
offline analysis and not within online prognostic algorithms.
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In this paper, we adopt a model-based prognostics approach
(Orchard & Vachtsevanos, 2009; Daigle & Goebel, 2013;
Luo et al., 2008). We discuss the uncertainty representa-
tion and quantification problem, and develop a novel gen-
eralized framework using the notion of surrogate variables,
allowing the representation of state uncertainty, parame-
ter uncertainty, future input uncertainty, and process noise
in a common framework that allows consideration of both
constant- and variable-amplitude loading situations. We ex-
plore three methods for prediction with uncertainty quantifi-
cation, namely, Monte Carlo sampling, UT sampling, and in-
verse FORM. Using a rover battery system as a case study, we
describe two methods for future input uncertainty characteri-
zation, implement the prediction methods, and compare their
performance for battery end-of-discharge prediction in simu-
lated constant- and variable-amplitude loading scenarios.

The paper is organized as follows. In Section 2, we define the
prognostics problem and develop the uncertainty representa-
tion framework. In Section 3, we describe methods for han-
dling uncertainty within the prediction process. In Section 4,
we introduce the rover case study and present several exam-
ples in simulation demonstrating the methods and comparing
their performance. Section 5 concludes the paper.

2. MODEL-BASED PROGNOSTICS

We first formulate the prognostics problem, and develop the
uncertainty representation framework. We then provide an
architecture for model-based prognostics.

2.1. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1 The unknown parameter vector θ(k)
is used to capture explicit model parameters whose values are
unknown and time-varying stochastically.

In prognostics, we are interested in predicting the occurrence
of some (desirable or undesirable) eventE that is defined with
respect to the states, parameters, and inputs of the system.
We define the event as the earliest instant that some event
threshold TE : Rnx × Rnθ × Rnu → B, where B , {0, 1}
changes from the value 0 to 1. That is, the time of the event

1Here, we use bold typeface to denote vectors, and use na to denote the
length of a vector a.

kE at some time of prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.
(3)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (4)

In the context of systems health management, the event E
corresponds to some undesirable event such as the failure of
a system, some process variable out-of-range, or a similar
type of situation. TE is defined via a set of performance con-
straints that define what the acceptable states of the system
are, based on x(k), θ(k), and u(k) (Daigle & Goebel, 2013).
In this case, kE is then conventionally called end of life, while
∆kE is conventionally called remaining useful life.

The system evolution is a random process due to the pro-
cess noise v(k) and nondeterministic inputs u(k). Since the
system evolution is a random process, at time kP , the sys-
tem takes some trajectory out of many possible trajectories,
therefore, kE and ∆kE are random variables. So, the prog-
nostics problem is to predict the probability distribution of
kE (Daigle, Saxena, & Goebel, 2012; Sankararaman et al.,
2013).
Problem (Prognostics). The prognostics problem is to, at
prediction time kP , compute p(kE(kP )|y(k0:kP )) and/or
p(∆kE(kP )|y(k0:kP )).

In practice, obtaining this distribution is difficult because the
state at kP , system model, process noise distribution, and fu-
ture input distribution may not be known precisely.

2.2. Representing Uncertainty

In order to predict kE , four sources of uncertainty must be
dealt with: (i) the initial state at time kP , x(kp); (ii) the pa-
rameter values θ(k) for all k ≥ kP , denoted as ΘkP (the
subscript kP indicates the start time of the trajectory); (iii)
the inputs u(k) for all k ≥ kP , denoted as UkP ; and (iv) the
process noise v(k) for all k ≥ kP , denoted as VkP . In or-
der to make a prediction that accounts for this uncertainty, we
require the probability distributions p(x), p(ΘkP ), p(UkP ),
and p(VkP ).

For describing the probability distribution of a generic trajec-
tory Ak, we introduce a set of surrogate random variables
λa = [λ1aλ

2
a . . .]. We describe a trajectory using λa and in-

stead define p(λa), which in turn defines p(Ak). These sur-
rogate variables can be used to describe trajectories in a vari-
ety of ways. For example, we can associate Ak(k) with λ1a,
Ak(k+ 1) with λ2a, etc. Or, we can describe a trajectory with
a parameterized function, where the parameters are the ran-
dom variables, e.g., Ak(k) = λ1a + λ2a sin k. The use of the
surrogate variables provides flexibility to the user in defining
the distribution of trajectories. So, for the parameter, input,
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Figure 1. Prognostics architecture.

and process noise trajectories we introduce the surrogate vari-
ables λθ, λu, and λv .

In the model-based prognostics paradigm, the probability
distribution for the initial state at the time of prediction
kP , p(x(kP ),θ(kP )), is specified by an estimator, such as
the Kalman filter, unscented Kalman filter (UKF) (Julier &
Uhlmann, 1997), or particle filter (Arulampalam, Maskell,
Gordon, & Clapp, 2002). The distribution may be represented
by a set of statistical moments like a mean vector and covari-
ance matrix (as in the Kalman filter), or a set of weighted
samples (as in the UKF and particle filter). This defines only
the parameter vector at kP and not for future time steps. For
the future values of θ, these are drawn from a distribution
specified by λθ. In the simplest case, λ1θ can define θ(kP ),
λ2θ can define θ(kP + 1), etc, where the distribution of each
λiθ is the same and specified by p(θ(kp)) as determined by the
estimator. Alternatively, it can be assumed that θ(k) is con-
stant, in which case only one surrogate variable is required,
with the distribution specified by the estimator.

For process noise, we define p(Vk) using λv . It is often as-
sumed in practice that, at each time instant, there is a single
probability distribution from which the process noise values
are drawn. The distribution is defined a priori based on the
understanding of the system and its model. In the simplest
case, there is a random variable for every time step, i.e, λ1v
defines v(kP ), λ2v defines v(kP + 1), etc. Since the num-
ber of random variables depends on the number of time steps,
such a treatment potentially leads to dimensionality issues.
Sankararaman and Goebel (Sankararaman & Goebel, 2013)
have demonstrated that it is possible to approximate the effect
of this process noise using an equivalent time-invariant pro-
cess noise, i.e., a single random variable that defines a con-
stant value of process noise for all k. In this case, λv would
contain only that single random variable, whose probability
distribution will be constructed by matching the likelihood of
occurrence of the original time-varying process noise.

For the future input trajectories, the distribution depends on
the particular system being prognosed and the environment
it is operating within. As with the other trajectories, we de-
scribe p(UkP ) using λu. Often, there is some knowledge
about what the future input will be and only a few random
variables are needed in λu. For example, in a constant-

loading scenario, the inputs can be defined with u(k) = λ1u
for k ≥ kP . Any arbitrary function parameterized by a
set of random variables may be used to define u(k), e.g.,
u(k) = λ1u · sin(k), or u(k) = λ1u + λ2u · k. The variables in
λθ may or may not be independent.

To predict kE at time kP , we require the initial state,
x(kP ); the parameter trajectory up to kE , ΘkP =
[θ(kP ), . . . ,θ(kE)]; the process noise trajectory up to kE ,
VkP = [v(kP ), . . . ,v(kE)]; and the input trajectory up to
kE , UkP = [u(kP ), . . . ,u(kE)]. With this information, kE
can be computed simply by simulating the state forward in
time, using the state equation f , until TE evaluates to 1, at
which point the current time is kE . Because we have only
probability distributions, we need to propagate the uncer-
tainty through this procedure in order to obtain the distri-
bution for kE (Sankararaman et al., 2013; Sankararaman &
Goebel, 2013). Methods to do such uncertainty propagation
will be described in Section 3.

2.3. Prognostics Architecture

We adopt a model-based prognostics architecture (Daigle &
Goebel, 2013), in which there are two sequential problems,
(i) the estimation problem, which requires determining a
joint state-parameter estimate p(x(k),θ(k)|y(k0:kP )) based
on the history of observations up to time k, y(k0:kP ), and
(ii) the prediction problem, which determines at kP , using
p(x(k),θ(k)|y(k0:kP )), p(λθ), p(λu), and p(λv), a proba-
bility distribution p(kE(kP )|y(k0:kP )). The distribution for
∆kE can be trivially computed from p(kE(kP )|y(k0:kP )) by
subtracting kP from kE(kP ).

The prognostics architecture is shown in Fig. 1. In discrete
time k, the system is provided with inputs uk and provides
measured outputs yk. The estimation module uses this in-
formation, along with the system model, to compute an es-
timate p(x(k),θ(k)|y(k0:k)). The prediction module uses
the joint state-parameter distribution and the system model,
along with the distributions for the surrogate variables, p(λθ),
p(λu), and p(λv), to compute the probability distribution
p(kE(kP )|y(k0:kP )) at given prediction times kP .
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Algorithm 1 kE(kP )← P(x(kP ),ΘkP ,UkP ,VkP )

1: k ← kP
2: x(k)← x(kP )
3: while TE(x(k),ΘkP (k),UkP (k)) = 0 do
4: x(k + 1)← f(k,x(k),ΘkP (k),UkP (k),VkP (k))
5: k ← k + 1
6: x(k)← x(k + 1)
7: end while
8: kE(kP )← k

3. PREDICTION

Prediction is initiated at a given time kP using the current
joint state-parameter estimate, p(x(kP ),θ(kP )|y(k0:kP )).
Approaches to determine this estimate are reviewed
in (Daigle, Saha, & Goebel, 2012) and are not described here.
The goal is to compute p(kE(kP )|y(k0:kP )) using the state-
parameter estimates and assumptions about uncertainty re-
garding the future parameter, input, and process noise values.

Consider one realization of each of the uncertain quantities at
prediction time kP : the state x(kP ), the parameter trajectory
ΘkP , the input trajectory UkP , and the process noise trajec-
tory VkP . Then, the corresponding realization of kE can be
computed with the system model as shown in Algorithm 1. In
Algorithm 1, the function P simulates the system model until
the threshold TE evaluates to 1.

This algorithm requires computing first realizations of the
state-parameter distribution, the parameter trajectory, the in-
put trajectory, and the process noise trajectory. As described
in Section 2, the distribution for the state comes from an es-
timator, and the distributions for the parameter, input, and
process noise trajectories are defined indirectly by a set of
surrogate variables. At the higher level, we are interested in
computing the distribution for kE from the distributions for
p(x(kP ),θ(kP )), p(λθ), p(λu), and p(λv).

The function that takes these surrogate variables and com-
putes a distribution for kE , which we refer to as G,
is the real function we are interested in, i.e., p(kE) =
G(p(x(kP )), p(θ(kP )), p(λθ), p(λu), p(λv)). To compute
p(kE), we must propagate the uncertainty through this func-
tion. That is, predicting p(kE(kP )|y(k0:kP )) is an uncer-
tainty propagation problem. In the following subsections,
we describe three different methods with which to solve this
problem. They each compute realizations of the state, param-
eter trajectory, input trajectory, and process noise trajectory,
and call the P function to obtain a realization of kE . They dif-
fer in how they compute these realizations and how they con-
struct p(kE(kP )|y(k0:kP )) from them, and, consequently, in
their computational complexity.

3.1. Monte Carlo Sampling

To account for uncertainty in the prediction step, the simplest
method is Monte Carlo sampling. Several realizations of the

Algorithm 2 {k(i)E }Ni=1 = MC(p(x(kP ),θ(kP )|y(k0:kP )),
p(λθ), p(λu), p(λv),N)

1: for i = 1 to N do
2: (x(i)(kP ),θ(i)(kP )) ∼ p(x(kP ),θ(kP )|y(k0:kP ))

3: λ
(i)
θ ∼ p(λθ)

4: Θ
(i)
kP
← constructΘ(λ

(i)
θ ,θ(i)(kP ))

5: λ
(i)
u ∼ p(λu)

6: U
(i)
kP
← constructU(λ

(i)
u )

7: λ
(i)
v ∼ p(λv)

8: V
(i)
kP
← constructV(λ

(i)
v )

9: k
(i)
E ← P(x(i)(kP ),Θ

(i)
kP
,U

(i)
kP
,V

(i)
kP

)
10: end for

state, parameter trajectory, input trajectory, and process noise
trajectory are sampled from their corresponding distributions.
For each realization, kE is computed. The resulting set of kE
values characterizes its distribution.

Algorithm 2 shows the Monte Carlo prediction algorithm.
The algorithm is given as input the joint state-parameter
distribution, and the distributions of the λθ, λu, and λv
variables, along with the number of samples to take, N .
For N times, the algorithm samples from the distributions,
constructs the parameter, input, and process noise trajecto-
ries, and calls the P function to compute kE . To construct
the trajectories from the λ variables, the constructΘ
constructU and constructV functions must be pro-
vided by the user, as they depend on the chosen surro-
gate variables and how they are to be interpreted. Note
that the constructΘ function requires an additional in-
put, θ(i)(kP ), which is a sample from the estimator-computed
joint parameter estimate at time kP .

In any prediction algorithm, computational complexity is
driven by two factors: the number of evaluations of P, and the
length of time each sample takes to simulate to kE (Daigle &
Goebel, 2010). Assuming a fair comparison for the second
factor, we can compare algorithms mainly by the first factor.
In the case of Monte Carlo sampling, the number of samples
N is arbitrary and determines the efficiency. In most cases, a
very large value of N is required in order to reproduce accu-
rately the important characteristics of the kE distribution.

3.2. Unscented Transform Sampling

A more complex method that can improve the efficiency
of prediction over the Monte Carlo method is to use the
unscented transform (UT) to sample from the distribu-
tions (Daigle, Saxena, & Goebel, 2012). We present here
an extended and generalized version of the method originally
presented in (Daigle, Saxena, & Goebel, 2012) in order to
accommodate the λ variable formulation.

The UT takes a random variable a ∈ Rna , with mean ā and
covariance Paa, that is related to a second random variable
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b ∈ Rnb by some function b = g(a), and computes the
mean b̄ and covariance Pbb with high accuracy using a mini-
mal set of deterministically selected weighted samples, called
sigma points (Julier & Uhlmann, 1997). The number of sigma
points is linear in the dimension of the random variable, and
so the statistics (mean and covariance) of the transformed ran-
dom variable can be computed more efficiently than Monte
Carlo sampling.

Here, Ai denotes the ith sigma point from a and wi denotes
its weight. The sigma points are always chosen such that the
mean and covariance match those of the original distribution,
ā and Paa. Each sigma point is passed through g to obtain
new sigma points B, i.e.,

Bi = g(Ai)

with mean and covariance calculated as

b̄ =
∑
i

wiBi

Pbb =
∑
i

wi(Bi − b̄)(Bi − b̄)T .

In this paper, we use the symmetric unscented transform
(SUT), in which 2na + 1 sigma points are symmetrically se-
lected about the mean according to (Julier & Uhlmann, 2004):

wi =


κ

(na + κ)
, i = 0

1

2(na + κ)
, i = 1, . . . , 2na

Ai =


ā, i = 0

ā+
(√

(na+κ)Paa

)i
,i = 1, . . . , na

ā−
(√

(na+κ)Paa

)i
,i = na+1, . . . , 2na,

where
(√

(na + κ)Paa

)i
refers to the ith column of the ma-

trix square root of (na + κ)Paa, and κ is a free parameter
that can be used to tune higher order moments of the distribu-
tion. When a is assumed to be Gaussian, (Julier & Uhlmann,
1997) recommends setting κ = 3 − na. Note that with the
UT, weights may be negative, and are not to be directly inter-
preted as probabilities.

For prediction, the G function serves as g in the above for-
mulation, where a corresponds to the joint distribution of the
state and λ variables, and b corresponds to kE . The pre-
diction algorithm in this case is shown as Algorithm 3. The
algorithm first uses the symmetric unscented transform to
compute sigma points for the given probability distributions
(treated together as a joint distribution), where each sigma
point consists of a sample for the state-parameter vector and
the λ variables. For each sigma point, the parameter, input,
and process noise trajectories are constructed and the P func-

Algorithm 3 {k(i)E , w(i)}Ni=1 = UT(p(x(kP ), θ(kP )
|y(k0:kP )), p(λθ), p(λu), p(λv))

1: N ← 2(nx + nθ + nλθ + nλu + nλv ) + 1

2: {x(i)(kP ),θ(i)(kP ),λθ,λu,λv, w
(i)}Ni=1 ←

SUT((p(x(kP ),θ(kP )|y(k0:kP )), p(λθ), p(λu), p(λv)))
3: for i = 1 to N do
4: Θ

(i)
kP
← constructΘ(λ

(i)
θ ,θ(i)(kP ))

5: U
(i)
kP
← constructU(λ

(i)
u )

6: V
(i)
kP
← constructV(λ

(i)
v )

7: k
(i)
E ← P(x(i)(kP ),Θ

(i)
kP
,U

(i)
kP
,V

(i)
kP

)
8: end for

tion is called to compute the corresponding kE . The mean
and variance for kE can be computed from its sigma points.

This prediction method will often require a smaller number of
samples than with Monte Carlo sampling, since the number
of sigma points grows only linearly with the problem dimen-
sion. This is partly due to the fact that the UT method pro-
vides only mean and covariance information, whereas addi-
tional higher-order moments can be computed with the Monte
Carlo method. Extended versions of the UT are also available
that compute higher-order statistical moments (Julier, 1998).

3.3. Inverse First-Order Reliability Method

The Monte Carlo and UT approaches are sampling-based
techniques to predict the uncertainty in the kE . Here we
briefly explain an optimization-based method, the inverse
first-order reliability method, for this purpose. The First-
order Reliability Method (FORM) and the Inverse First-Order
Reliability Method (inverse FORM) were originally devel-
oped by structural engineers to evaluate the probability of
failure of a given structure (Haldar & Mahadevan, 2000). In
an earlier publication (Sankararaman et al., 2013), we have
extended these two approaches for uncertainty quantification
in the context of remaining useful life estimation, i.e., prop-
agate the uncertainty in present estimates of states and pa-
rameters, future loading, future process noise, and future pa-
rameter values through P (defined earlier in Algorithm 1) to
calculate the uncertainty in kE . In the present paper, we use
the inverse FORM methodology to calculate the entire prob-
ability distribution of kE in terms of the cumulative distribu-
tion function. Calculating the cumulative distribution func-
tion (CDF) is equivalent to calculating the probability density
function p(kE(kP )|y(k0:kP )), since the density function can
easily be obtained by differentiating the cumulative distribu-
tion function.

For a generic random variable Z, the cumulative distribution
function is a mapping from a realization z of the random vari-
able to the set [0, 1], and is denoted by FZ(z). If FZ(z) = η,
then the probability that the random variable Z is less than
a given value z is equal to η. In the context of prognostics,
the goal is to compute the uncertainty in kE . Typically, the
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Algorithm 4 kE(kP )← Pλ(ω)

1: [x(kP ), θ(kP ), λθ , λu, λv]← ω
2: ΘkP ← constructΘ(λθ,θ(kP ))
3: UkP ← constructU(λu)
4: VkP ← constructV(λv)
5: kE(kP )← P(x(kP ),ΘkP ,UkP ,VkP )

quantities x(kP ), θ(kP ), λθ, λu, and λv are vectors, and
now, consider a new vector which is the concatenation of all
these vectors as ω = [x(kP ), θ(kP ), λθ, λu, λv]. Based on
the probability distributions of x(kP ), θ(kP ) λθ, λu, λv , the
joint probability density of ω, denoted as fΩ(ω), can be easily
calculated. Note that ω is a realization of the random variable
that is denoted by Ω.

In order to implement the inverse FORM, it is necessary to
construct a function whose inputs are ω = [x(kP ), θ(kP ), λθ,
λu, λv] and the output is kE . This function similar to P, with
one difference; while P takes realizations of entire trajecto-
ries, i.e., ΘkP ,UkP , and VkP as input arguments, the new
function needs to consider realizations of the corresponding
surrogate variables as input arguments. This new function,
denoted by Pλ, is indicated in Algorithm 4.

The inverse FORM approach is now explained using the func-
tion kE = Pλ(ω). The reason for such vectorized represen-
tation using ω is not only to facilitate easy explanation of the
FORM and inverse FORM algorithms but also demonstrate
that these algorithms do not differentiate amongst state es-
timate values, parameter values, future loading trajectories,
and process noise trajectories but treat them similarly.

Let the CDF of kE be denoted as FKe(kE) = η. Using
kE = Pλ(ω), the FORM approach can be used to calculate
the value of η corresponding to a given value of kE . Con-
versely, the inverse FORM approach can be used to calculate
the value of kE corresponding to a given value of η. By re-
peating the FORM procedure for multiple values of kE , or by
repeating the inverse FORM procedure for multiple values of
η, the entire CDF FKe(kE) can be calculated. In a practical
scenario, it is not reasonable to know what values of kE need
to be selected to implement the FORM procedure, since the
goal is actually to compute the uncertainty in kE . However,
it is easier to select values of η (say, 0.1, 0.2, 0.3 and so on
until 0.9) which span the entire probability range and imple-
ment the inverse FORM procedure for each of these η values.
Therefore, we use the inverse FORM approach to quantify
the uncertainty in kE . The authors have explained the inverse
FORM algorithm in detail in previous work (Sankararaman
et al., 2013); in this section, the overall approach is briefly
summarized and the algorithm is provided.

Both FORM and inverse FORM approaches linearize the
curve represented by the equation kE = Pλ(ω) and transform
all the variables in Ω to standard normal variables (Gaussian
distribution with zero mean and unit variance) using well-

Algorithm 5 {k(i)E , η(i)}Ni=1 ← InverseFORM(fΩ(ω),Pλ)
1: N ← Number of η values to consider.
2: M ← Number of elements in ω
3: {Example: N = 9, η(i) = 0.1× i, i = 1 to N . }
4: for i = 1 to N (For every η value) do
5: β(i) ← −Φ−1(η(i))
6: ω0 ← Select initial guess for optimization
7: Convergence = 0
8: j = 0 {Iteration number}
9: while Convergence← 0 do

10: φj ← T (ωj) {Transformation to Std. Normal Space}
11: φj ← [φjk; k = 1 to M ]

12: αj ← [αjk; k = 1 to M ] where αjk = ∂Pλ
∂φjk

13: φj+1 ← − αj
|αj |
× β(i)

14: ωj+1 ← T−1(φj+1) {Transformation to Original Space}
15: if ωj+1 ≈ ωj then
16: Convergence← 1
17: end if
18: j ← j + 1
19: end while
20: k

(i)
E ← Pλ(ωj)

21: end for

defined, popular transformation functions. Thus, kE can be
expressed as a linear sum of Gaussian variables, and therefore
the probability distribution of kE can be computed easily. The
key point in these algorithms is that the point of linearization
is chosen to be the Most Probable Point (MPP), i.e., the point
of maximum likelihood value. For example, in a Gaussian
distribution, the MPP is at the mean. Since each uncertain
quantity in Ω may have its own distribution, the MPP is com-
puted in the standard normal space, where the origin has the
highest likelihood of occurrence. However, the origin may
not satisfy the equation kE = Pλ(ω), and the point of liner-
ization needs to lie on the curve represented by the equation
kE = Pλ(ω). Therefore, the problem reduces to estimat-
ing the minimum distance (measured from the origin, in the
standard normal space) point on the curve represented by the
equation kE = Pλ(ω). This is posed as a constrained min-
imization problem, and solved using a well-known gradient-
based optimization technique, as described in Algorithm 5.
Once the minimum distance (denoted by β) has been evalu-
ated, then it can be proved that FKE (kE) = Φ(−β), where
Φ(.) represents the standard normal distribution function. Al-
gorithm 5 explains the numerical implementation of the in-
verse FORM approach.

In the above algorithm, note that the user needs to specify
functions T and T−1 for transforming original space to stan-
dard normal space and from standard normal space to origi-
nal space respectively. There are several types of transforma-
tion available in the literature (Haldar & Mahadevan, 2000)
and any valid transformation may be used. Further, note that
the gradient α needs to be calculated in the standard normal
space. This depends on (i) the gradient in the original space;
and (ii) the chosen transformation T .

Using the algorithm, the values of kE corresponding to the
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chosen values of η are first obtained, and then an interpolation
technique can be used to obtain the entire CDF. Also, if the
goal is to quickly obtain bounds on kE , then we may consider
two η values in either tail of the probability distribution (say,
for example, η values of 0.1 and 0.9), and the corresponding
probability bounds of kE can be obtained.

4. CASE STUDY

As a case study, we perform battery prognostics on a plan-
etary rover and present simulation-based results. The rover
and its simulation are described in detail in (Balaban et al.,
2011). The rover battery system consists of two parallel sets
of 12 batteries in series to provide around 48 V. We are inter-
ested in predicting end-of-discharge (EOD), which is defined
as the point when the voltage of a single battery drops below
2.5 V.

We consider two different scenarios for the rover. In both
scenarios, the rover is provided a sequence of waypoints that
must be visited. The rover travels through the waypoints in
order until the batteries discharge. In the first scenario, the
desired forward speed of the rover is the same when moving
to each waypoint. In the second scenario, the desired forward
speed is different depending on which waypoint is being ap-
proached. Since the needed power draw from the batteries
depends on speed, the first scenario resembles a constant-
amplitude loading situation, and the second scenario resem-
bles a variable-amplitide loading scenario.

The battery prognostics architecture works as follows. The
rover provides voltage measurements on all batteries, and the
current going into the batteries. Because there are two sets of
batteries in parallel, each battery sees only half the measured
current. The measured current and voltage are fed into the
battery prognoser. The battery prognoser uses an unscented
Kalman filter (UKF) to perform state estimation (see (Julier
& Uhlmann, 1997, 2004; Daigle, Saha, & Goebel, 2012) for
details on the UKF). The state estimate is then fed into the
predictor, which makes EOD predictions every 100 seconds.

In the remainder of the section, we describe the details of the
underlying battery model used by the rover simulation and the
battery prognoser, and provide simulation-based experimen-
tal results for different scenarios and comparing the different
methods presented in Section 3.

4.1. Battery Model

The battery model is extended from that presented in (Daigle,
Saxena, & Goebel, 2012). The model is based on an electrical
circuit equivalent as shown in Fig. 2, following similar mod-
eling approaches to (Chen & Rincon-Mora, 2006; Ceraolo,
2000). The large capacitance Cb holds the charge qb of the
battery. The nonlinear Cb captures the open-circuit poten-
tial and concentration overpotential. The Rsp-Csp pair cap-

Figure 2. Battery equivalent circuit.

tures the major nonlinear voltage drop due to surface overpo-
tential, Rs captures the so-called Ohmic drop, and Rp mod-
els the parasitic resistance that accounts for self-discharge.
This empirical battery model is sufficient to capture the ma-
jor dynamics of the battery while ignoring temperature effects
and additional minor processes. The governing equations for
the battery model are presented in continuous time below.
The implementation of the proposed methodology considers
a discrete-time version with a discrete time-step of 1 s.

The state-of-charge, SOC, is computed as

SOC = 1− qmax − qb
Cmax

, (5)

where qb is the current charge in the battery (related to Cb),
qmax is the maximum possible charge, and Cmax is the max-
imum possible capacity. The resistance related to surface
overpotential is a nonlinear function of SOC:

Rsp = Rsp0 +Rsp1 exp (Rsp2(1− SOC)), (6)

where Rsp0 , Rsp1 , and Rsp2 are empirical parameters. The
resistance, and, hence, the voltage drop, increases exponen-
tially as SOC decreases.

Voltage drops across the individual circuit elements are given
by

Vb =
qb
Cb
, (7)

Vsp =
qsp
Csp

, (8)

Vs =
qs
Cs
, (9)

Vp = Vb − Vsp − Vs, (10)

where qsp is the charge associated with the capacitance Csp,
and qs is the charge associated with Cs. The voltage Vb is
also the open-circuit voltage of the battery, which is a nonlin-
ear function of SOC (Chen & Rincon-Mora, 2006). This is
captured by expressing Cb as a third-order polynomial func-
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Table 1. Battery Model Parameters

Parameter Value
Cb0 19.80 F
Cb1 1745.00 F
Cb2 −1.50 F
Cb3 −200.20 F
Rs 0.0067 Ω
Cs 115.28 F
Rp 1× 104 Ω
Csp 316.69 F
Rsp0 0.0272 Ω
Rsp1 1.087× 10−16 Ω
Rsp2 34.64
qmax 3.11× 104 C
Cmax 30807 C

tion of SOC:

Cb = Cb0 + Cb1SOC + Cb2SOC
2 + Cb3SOC

3 (11)

The terminal voltage of the battery is

V = Vb − Vsp − Vs. (12)

Currents associated with the individual circuit elements are
given by

ip =
Vp
Rp

, (13)

ib = ip + i, (14)

isp = ib −
Vsp
Rsp

, (15)

is = ib −
Vs
Rs

. (16)

The charges are then governed by

q̇b = −ib, (17)
q̇sp = isp, (18)
q̇s = is. (19)

In the case of the battery, the event E we are interested in
predicting is EOD. TE is specified as V < VEOD, where
VEOD = 2.5 V.

The parameter values of the battery model are given in Ta-
ble 1. All voltages are measured in Volts, resistances are
measured in Ohms, charges are measured in Coulombs, and
capacitances are measured in Coulombs per Volt (or Farads).
Note thatCb0 ,Cb1 ,Cb2 , andCb3 are simply fitting parameters
in Eq. 11 and do not have physical meaning.

For the battery model, x = [qb qsp qs], θ = ∅ (i.e., all pa-
rameters are assumed constant and no parameters will be es-
timated online), and y = [V ]. We consider power P to be
the input to the battery, so i = P/V , i.e, u = [P ]. Here, we
choose power as the input, rather than current as in previous
battery prognostics works, because it is simpler to describe

battery load in terms of power. For the same power demands
from the rover onto the battery, current will increase as bat-
tery voltage decreases; it is necessary to capture this current-
voltage relationship in order to use current as input. There-
fore, it is much easier to predict future power usage than to
predict future current draw, and hence, power is used as input.

4.2. Future Input Characterization

In the experiments presented in this section, we will consider
only uncertainty in the state and in the future inputs (meth-
ods for dealing with process noise are described in (Daigle,
Saxena, & Goebel, 2012; Sankararaman & Goebel, 2013)).
Therefore we need to define p(λu) and the constructU
function. We explore three methods that differ in complexity
and the amount of system knowledge used.

The future input trajectory to a battery model depends on how
the rover will be used. When moving from one waypoint to
the next, the rover must turn towards the next waypoint while
maintaining its foward speed (that is how the locomotion con-
troller is designed to work). For the same forward speed,
turning actually requires more power than going straight, be-
cause the rover must also move against the ground torques
produced while turning in addition to the opposing forces pro-
duced when moving forwards. Further, because of the turn-
ing, the actual distance traveled between two waypoints is
greater than the straight-line distance between them because
the rover actually takes a curved path.

To correctly account for all these details, a system-level ap-
proach is required (Daigle, Bregon, & Roychoudhury, 2012).
In this case, the whole rover and its locomotion controller
would be considered as the system under prognosis. Thus, the
whole rover would be simulated moving through the different
waypoints, and this would define very precisely (depending
on model fidelity) the power drawn from the batteries as a
function of time. However, such an approach is more com-
putationally expensive than considering only a single battery
model.

A simpler approach is to assume that, in the current opera-
tion of the system, the future inputs to the system will look
like the past inputs. That is, we can assume that the future
power requirements will be constant with the mean and vari-
ance defined by the past power requirements over some time
window. If the window size is large enough, then the differ-
ences in power that arise may be represented well enough in
the statistics of the past behavior. Although simple, such an
approach may work well in some circumstances.

As a middle ground, we can incorporate some system-level
knowledge into predicting the future power requirements
without resorting to a system-level simulation. We can do this
by computing the mean and variance of the power draw and
distance traveled between waypoint pairs for each forward
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speed setting. Then, knowing the current rover location and
the remaining waypoints, given a realization of each distance
and power variable for the remaining waypoints and the de-
sired forward speed when heading to each waypoint, we can
compute the future power as a function of time based on the
expected path the rover is going to take. This approach uses
system knowledge, i.e., knowledge beyond the battery model,
in order to compute useful predictions of the future inputs to
the battery, and therefore makes useful EOD predictions for
the battery, but without resorting to a system-level simulation.

4.3. Results

In the simulation experiments considered in this section, all
parameters are considered known exactly and no process
noise is added. The two potential sources of uncertainty are
related to the state estimate obtained by the UKF and the fu-
ture input assumptions. Predictions are made every 100 s un-
til EOD, and the accuracy and precision metrics are averaged
over all these predictions. We use the relative accuracy (RA)
metric as defined in (Saxena, Celaya, Saha, Saha, & Goebel,
2010) as a measure of accuracy and relative standard devia-
tion (RSD) as a measure of spread. In the following plots, the
∗ superscript indicates the ground truth values.

4.3.1. Constant-Loading Scenario

We consider first the scenario where the rover must move be-
tween equidistant waypoints at the same forward speed, re-
sembling a constant-loading situation. Let us first assume that
the future inputs (the battery power) are known exactly. There
are 3 states in the battery model, so 7 sigma points are used
by the UKF, and these are directly simulated forward to com-
pute the kE distribution using the sigma point weights. In
this case, since uncertainty is limited only to that in the state
estimate, predictions are both very accurate and precise, with
RA averaging to 99.65% and RSD to 0.64%.

Now assume that the past power requirements are statistically
representative of the future power requirements. Here, we
consider Monte Carlo sampling with 3500 samples. We con-
sider window sizes of 100 s, 500 s, and unlimited size. The
results are shown in Fig. 3. In all three cases, the uncertainty
starts initially very large, because the window is not large
enough to accurately capture the statistics of the power usage.
With a small window size (Fig. 3a), the statistics of the power
usage averaged over the window fluctuate. The variance is
larger when both turns and forward movements appear in the
same window, and smaller when only forward movements are
in the window. With a larger window size the variance will
average to a larger value that accounts for both turns and for-
ward movements, as seen in Figs. 3b and 3c. Since the past
power usage turns out to be a good indicator of future power
usage in this scenario, the results are fairly accurate, with RAs
of 98.14%, 98.47%, and 97.53% for 100 s, 500 s, and un-
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(a) Window size of 100 s.
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(b) Window size of 500 s.
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(c) Unlimited window size.

Figure 3. ∆kE predictions using Monte Carlo sampling.

limited window sizes, respectively. Corresponding RSDs are
3.83%, 5.57%, and 7.61%. The spread increases as window
size increases since more variation is accounted for in larger
windows.

Using a window size of 500 s, the results using the UT are
shown in Fig. 4. Here, the results are comparable to using
Monte Carlo sampling with the same window size, with an
average RA of 98.69% and RSD of 5.24%. The UT method,
however, needs only 9 total samples, with there being only
3 states and one surrogate input variable to consider. This
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Figure 4. ∆kE predictions with a window size of 500 seconds
using UT sampling.
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Figure 5. ∆kE predictions with a window size of 500 seconds
using inverse FORM.

results in a substantial decrease in computational cost com-
pared to the Monte Carlo approach. Fig. 5 shows the results
using inverse FORM. The results are similar to using both
Monte Carlo and UT sampling, and RA averages to 98.46%
and RSD to 3.43%.

Using knowledge about the future waypoints to be visited, we
can improve over using a window of past data to determine
future inputs to the system. Fig. 6 shows the improved future
input characterization method using Monte Carlo sampling
with 3500 samples. The plots look the same for UT sam-
pling and inverse FORM. The accuracy is comparable to the
previous approach, with an average RA of 98.29% for Monte
Carlo sampling, 98.32% for UT sampling, and 98.30% for in-
verse FORM. RSDs, however, are lower now since the future
inputs are known with more precision than could be derived
from a window of past samples. RSD averages to 1.61% for
both Monte Carlo and UT sampling and 4.67% for inverse
FORM.

4.3.2. Variable-Loading Scenario

We now consider the second scenario that uses the same way-
points as the previous scenario, but the rover is commanded
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Figure 6. ∆kE predictions with improved future input char-
acterization using Monte Carlo sampling.

to go different speeds depending on which waypoint is being
headed towards, resembling a variable-loading situation. As-
suming the future inputs are known exactly, the average RA is
99.50% and the average RSD is 0.70%. The only uncertainty
is in the state estimate.

Because the speed of the rover will change with each new
waypoint, it is no longer correct to assume that past power re-
quirements are representative of future power requirements.
Fig. 7a shows the results when we incorrectly make this as-
sumption for Monte Carlo sampling with 3500 samples, us-
ing a window size of 500 s. Clearly, the predictions are very
inaccurate. RA averages to 90.53% and RSD to 13.74%. Us-
ing UT sampling we find similar results, with RA averaging
to 90.12% and RSD to 13.54%. Using inverse FORM, RA
averages to 90.59% and RSD to 9.24%. When the average
speed of the rover in the future is greater than what is as-
sumed based on the window of past samples, then ∆kE is
overestimated. When the average speed is less than what is
assumed, ∆kE is underestimated. Because the average speed
over the window changes based on the previous waypoints
within that window, the predictions fluctuate above and be-
low ground truth. If the window size is increased, such that
it accounts for all possible speed settings, then accuracy can
be improved because the assumed average speed based on
past samples will match the future average speed, however,
spread will also increase since multiple speeds are consid-
ered in the window. Predictions with an unlimited window
size are shown in Fig. 7b. The predictions initially fluctuate
as the window begins to fill up, but by 2000 s the predictions
have smoothed out. The spread is clearly larger than with the
smaller window size, but predictions are more accurate once
the window contains all potential future speeds. In this case,
RA improves to 96.62% but RSD increases to 17.47%.

Predictions can be improved by using system knowledge to
help characterize the future inputs. In this case, the future
power as a function of time is computed based on the rover’s
current location, the remaining waypoints, and the desired
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(a) Window size of 500 s.
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(b) Unlimited window size.

Figure 7. ∆kE predictions using Monte Carlo sampling.

speeds when heading to each waypoint, and measured statis-
tics on average power between waypoints and average dis-
tance traveled (to account for turns). Fig. 8 shows the results
using Monte Carlo sampling. The plots for UT sampling and
inverse FORM look the same. All three methods are now
clearly very accurate and precise. RA averages to 98.85%
and RSD to 1.95% for Monte Carlo sampling, 98.82% and
1.91% for UT sampling, and 97.77% and 2.72% for inverse
FORM. Unlike when using a window, here knowledge of the
future waypoints and desired speeds allows accurate predic-
tions to be made from the start of the scenario, and with very
little spread. That is, the future inputs are well-known and so
predictions are very close to the optimal.

In the case above, for UT sampling, there are 3 states to con-
sider and at most 100 surrogate input variables. For the in-
put variables, there are two variables associated with each re-
maining waypoint, one for the power that will be consumed
heading towards the waypoint and one for the distance to
travel to a waypoint from the previous waypoint (due to turn-
ing while moving forward, the distance is more than the linear
distance between the waypoints). Since there are 50 way-
points, there are 100 random variables needed. This yields
2(103) + 1 = 207 samples, which is relatively small com-
pared to what Monte Carlo sampling would require to achieve
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Figure 8. ∆kE predictions with improved future input char-
acterization using Monte Carlo sampling.

the same performance. As the rover visits waypoints, the
number is reduced, so 207 samples is only the maximum.
When only a single waypoint is left, only 2(5) + 1 = 11
sigma points are needed.

4.4. Discussion

The two scenarios demonstrate the importance of the future
input characterization problem. Even though the rover is a
complex system, in the first scenario, the simple assumption
that the future inputs will look like the past inputs was suf-
ficient for accurate and precise predictions. The additional
power required by turns was captured using the statistics
of a window of past samples, so that they did not have to
be explicitly accounted for and assuming constant future in-
puts was sufficient. Using system-level information about the
waypoints the rover would visit improved significantly on the
uncertainty associated with the future inputs but did not sig-
nificantly impact accuracy.

In the second scenario, the assumption that the future inputs
look like the past inputs did not provide as accurate or pre-
cise results as with the first scenario. Performance could
have been potentially worse if the rover did not cycle through
different speed settings and instead, for example, always in-
creased the speed for the next waypoint. In this scenario, truly
accurate predictions could be made only when system-level
knowledge was utilized to predict the battery inputs. This ap-
proach still made some simplifying assumptions allowing a
component-level prognostics approach to still be used.

Given a particular method for future input characterization,
Monte Carlo sampling, UT sampling, and inverse FORM all
had comparable accuracy and precision. With Monte Carlo
sampling, a large number of samples were used and with
smaller numbers of samples, performance decreases, so the
number of samples required depends on the prognostics per-
formance requirements. In this sense Monte Carlo sampling
has an advantage because its computational complexity can
be tuned. In addition it is the relatively simplest approach
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to implement of the three methods. A disadvantage is that
it is a stochastic algorithm, which can be problematic for
verification and certification procedures (Daigle, Saxena, &
Goebel, 2012). UT sampling, in contrast, is a determinstic
algorithm, and it selects only the minimal number of sam-
ples and this number grows only linearly with the number
of random variables. A disavdvantage though is that it com-
putes only mean and variance of the predictions, which may
not be enough information in some cases. Inverse FORM,
on the other hand, is not only deterministic but also allows
control of both computational complexity and accuracy by
selecting desired CDF values and computing the correspond-
ing percentile values of kE . The probability distribution of
kE can be reconstructed from that information and any de-
sired statistical moments may be calculated. For each inverse
CDF calculation, three to four iterations are usually required
for optimization convergence. If the number of random vari-
ables is denoted by n (length of vector ω), each iteration of
Inverse-FORM requires n+1 sample evaluations of G, where
one evaluation is required for computing kE and n evalua-
tions for computing the gradient vector of kE . Therefore, if it
is desired to repeat inverse FORM for k different CDF values,
then k× 4× (n+ 1) evaluations of P are required. Thus, the
computational complexity linearly increases with the number
of random variables and results in increased information re-
garding uncertainty.

5. CONCLUSIONS

In this paper, we provided a general formulation of the prog-
nostics problem and its uncertainty. Given descriptions of
the sources of uncertainty, i.e., state uncertainty, parameter
uncertainty, future input uncertainty, and process noise, we
provided an algorithmic framework for incorporating this un-
certainty into the predictions. With the novel concept of sur-
rogate variables, we presented three methods for propagating
the uncertainty: Monte Carlo sampling, unscented transform
sampling, and the inverse first-order reliability method. Using
battery prognostics on a planetary rover as a case study, we
proposed two future input characterization methods and com-
pared the performance of the different prediction algorithms
for these methods for different scenarios in simulation. All
approaches had similar performance, yet each offer different
advantages and disadvantages that suggest when one would
be preferred over another.

In future work, we will further investigate these ideas on other
systems, and further develop the uncertainty quantification
framework. While the proposed methods are promising for
estimating uncertainty in prognostics, their applicability to
multi-modal probability distributions, particular in the con-
text of remaining useful life estimation, needs to be investi-
gated. Further, we will also focus on model uncertainty quan-
tification and develop methods for estimating model errors
and model parameter uncertainty separately, instead of sim-

ply using lumped process noise terms.
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