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ABSTRACT

Remaining useful life (RUL) prediction is an important com-

ponent for system health monitoring and prognosis. Ideally,

one expects the prediction algorithm to provide the complete

distribution of the RUL prediction over time taking various

uncertainties into account. However, the dynamic model be-

ing used to characterize state estimation and future loading

uncertainties is often simplified through various approxima-

tions, leading to non-credible predicted distribution. Never-

theless, certain algorithm may only provide a point estimate

of the RUL, making it difficult to quantify the uncertainty of

the prediction. In this paper, we focus on interval prediction

with high probability that guarantees finite sample validity

without the knowledge of statistical distribution of the noise.

The key idea is to leverage the newly proposed conformal pre-

diction framework with non-parametric conditional density

estimation. Under certain regularity conditions, the proposed

interval estimator converges to an oracle band at a minimax

optimal rate. In addition, we apply a data driven method to

automatically select the bandwidth in the kernel density esti-

mator. We discuss practical approximations to speed up the

computation. The proposed method can be used to predict the

RUL interval with physics-based model in a distribution free

manner. It can also be applied to assess the validity of other

prognostic algorithms from experimental data. We demon-

strate the effectiveness of the RUL prediction for Li-Ion bat-

teries using both simulated and experimental data.

1. INTRODUCTION

Remaining useful life (RUL) prediction is an important com-

ponent for prognosis and system health monitoring. Ideally,

one expects the prediction algorithm to provide the complete

distribution of the RUL prediction over time taking various

uncertainties into account. However, the dynamic model

being used to characterize state estimation and future load-

ing uncertainties is often simplified with various approxima-
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tions, resulting in non-credible predicted distribution. Nev-

ertheless, certain algorithms often provide point estimates of

the RUL, making it difficult to quantify the uncertainty of

the prediction. Existing efforts for uncertainty quantification

can be largely classified into two categories: point-based and

density-based credibility tests. In point-based tests, one wants

to find the probability that the RUL is longer than the estimate

so that the critical component can be replaced before its fail-

ure. In many cases, one has to ensure that the probability is

above a certain confidence level, say 0.95, in order to declare

that the point estimate of the RUL is valid. Among all the

valid RUL predictions, it is desirable to find the least con-

servative one, i.e., the largest RUL prediction for decision-

making. However, a prediction point with a desirable confi-

dence level does not fully characterize the uncertainty of the

RUL estimate. The complete description requires the poste-

rior probability density function of the RUL, which is hard

to be fully specified when one has the uncertainty of future

loading that will affect the system dynamics during the pre-

dicted time horizon. Density-based tests address whether the

posterior distribution of the RUL provided by a prognostic al-

gorithm is valid in certain desirable notions. For example, one

can check wether the whole distribution is valid with a desir-

able significance level by Kolmogorov-Smirnov test (Justel,

Pena, & Zamar, 1997). This may require a large number of

samples for any statistically meaningful result. Alternatively,

one may test the statistical significance at some value of the

cumulative distribution function of the RUL estimate using

Fisher’s exact test (Fisher, 1954). However, the method only

ensures validity of a point estimate in the RUL and throws

away other useful information contained in the probability

density function.

It is clear that a point estimate of the RUL seems to be inad-

equate to quantify the uncertainty. However, the whole pos-

terior density of the RUL is hard to come by. Nevertheless,

density-based prognostic methods have been used by people

engaged in various density-based state estimation techniques,

e.g., particle filters (Saha & Goebel, 2011). Note that the pos-

terior density is valid only when the assumed process noise

distribution is true across the entire RUL prediction horizon.
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In practice, the prediction interval of the RUL with high prob-

ability is often useful for monitoring a mission critical com-

ponent. The lower limit serves as the valid point estimate

of the RUL while the upper limit shows the full potential

of the component in account for the future loading uncer-

tainty. For a given confidence level, one seeks the smallest

interval to contain the RUL with a probability no less than

the desired confidence level. This boils down to the prob-

lem of interval prediction with high probability that guaran-

tees finite sample validity without the knowledge of statis-

tical distribution of the noise. The key idea is to leverage

the newly proposed conformal prediction framework (Shafer

& Vovk, 2008) with non-parametric conditional density es-

timation (Rosenblatt, 1956). Under certain regularity con-

ditions, the proposed interval estimator converges to an or-

acle band at a minimax optimal rate. In addition, we apply

a data driven method to automatically select the bandwidth

in the kernel density estimator and discuss practical approx-

imations to speed up the computation. The method can be

used to predict the RUL interval with physics-based model in

a distribution free manner. It can also be applied to assess

the validity of any point-based prognostic algorithm from the

experimental data. We demonstrate the effectiveness of the

RUL prediction for Li-Ion batteries using both simulated and

experimental data.

The rest of the paper is organized as follows. Section 2 for-

mulates the RUL prediction problem. Section 3 presents the

distribution free interval estimation of the component’s end-

of-life and discusses its asymptotic properties. Section 4 pro-

vides the experimental study on the state-of-charge estima-

tion of Li-Ion battery using the predicted RUL intervals of

a desired confidence level. Concluding summary is in Sec-

tion 5.

2. THE FORMULATION OF RUL PREDICTION PROB-

LEM

State space model has been commonly used to describe the

dynamics of a component such as the aging process during

repeated usage (Luo et al., 2003). In general, one can apply

the principle of physics to model the dynamics of a compo-

nent by

ẋ(t) = f(t,x(t),p(t),u(t),v(t)) (1)

where x(t) is the state vector, p(t) is the parameter vector

that may change over time but not governed by the differential

equation as the state x(t), u(t) is the input vector, and v(t)
is the process noise vector. The state and parameter can be

observed through a generic continuous time model

y(t) = h(t,x(t),p(t),u(t),w(t)) (2)

where w(t) is the measurement noise vector. In practice,

measurements are made at discrete time time instants t1, ...,

tk, ... and the measurement model becomes

yk = h(xk,pk,uk,wk) (3)

where the subscript k indicates that the measurement yk is

obtained at time tk. Denote by Yk the measurement se-

quence y1, ...., yk. The state estimation problem is to ob-

tain the posterior distribution p(xk|Yk) at any time tk us-

ing the prior knowledge p(x0) and the measurements Yk.

The desired performance of the component can be char-

acterized by a set of constraints from the state, parameter

and input space to some set that fully characterizes the nor-

mal condition (Sankararaman & Goebel, 2013). Specifi-

cally, we let ci(T ) = 1 if the constraint is satisfied, i.e.,

gi(x(t),p(t),u(t)) ∈ Bi for t ∈ [0, T ], where gi is a known

mapping and Bi is the set of acceptable values. Otherwise,

ci(T ) = 0. The end-of-life (EOL) of a component is defined

as the earliest time that one of the n-constraints is violated.

Denote by tEOL the end-of-life of the component given the

state, parameter and input vectors, i.e.,

tEOL = inf
t

{

t

∣

∣

∣

∣

∣

n
∏

i=1

ci(t) = 0

}

(4)

The remaining useful life (RUL) of the component at time

tP is given by tEOL − tP . Owing to the uncertainty in the

state dynamics, the state x(t) is a random process. Thus the

constraints have to be assessed in a probabilistic sense. Let

α ∈ [0, 1] be the significance level and we define the EOL as

a function of α by

tEOL(α) = inf
t

{

t

∣

∣

∣

∣

∣

P

(

n
∏

i=1

ci(t) = 0

)

≤ α

}

(5)

where the constraint ci is evaluated by gi(x̂(t), p̂(t),u(t))
using the state and parameter estimates with the measure-

ments up to time tP . Note that one can propagate the state,

parameter and input uncertainties into the future and assess

the constraint satisfaction ci probabilistically. For small α,

tEOL(α) may be conservative especially when the uncertainty

of the state dynamics is large initially with limited number of

measurements. The RUL prediction becomes a density es-

timation problem if one wants to fully characterize tEOL(α)
at any time tP . It is computationally demanding and does

not have a closed form expression for a problem with either

nonlinear dynamics or nonlinear constraint.

3. DISTRIBUTION FREE PREDICTION INTERVAL

Consider a generic RUL prediction problem where one ob-

serves Yk and Uk up to time tk and applies state estima-

tion algorithm to obtain x̂k with the associated error covari-

ance Pk. In order to estimate tEOL, one has to propagate

the dynamic model (1) from tk with either known (deter-

ministic) future input or random future input with the antic-
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ipated uncertainty given by a probabilistic model. Clearly,

exact characterization of (5) is computationally challenging

and one may only have a point estimate of the component’s

EOL, namely, t̂kEOL at time tk. In principle, the estimate of

tEOL can be based on the maximum a posteriori (MAP) cri-

terion, which does not necessarily need the complete knowl-

edge of the posterior distribution. However, a prediction in-

terval [tkmin, tkmax] of the tEOL conditioned on Yk and Uk

with a guaranteed confidence level α is often desirable. Ex-

isting criterion to evaluate an RUL prediction algorithm us-

ing the prediction interval such as the α-λ metric (Saxena,

Celaya, Saha, Saha, & Goebel, 2009) requires the complete

distribution from the prediction algorithm, which is often un-

available from the point-based estimators. Nevertheless, the

performance assessment can be misleading when the predic-

tive distribution is not credible. To circumvent the above chal-

lenge, we take an alternative route to generate distribution

free prediction interval using only the point estimate t̂kEOL.

The main idea is to generate conformal prediction interval so

that

P (tEOL ∈ [tkmin, tkmax]) ≥ α

for any distribution of the state and future input. The usual

way to obtain a non-parametric prediction interval leads to

the form
[

t̂kEOL − Zα/2

√

σ̂2
k + s2, t̂kEOL + Zα/2

√

σ̂2
k + s2

]

where t̂kEOL is the point estimate from the prediction algo-

rithm, Zα/2 is the normal quantile, σ̂2
k is the estimated con-

ditional variance, and s2 is the estimated error of the pre-

diction algorithm using bootstrapping (Efron & Tibshirani,

1993). However, such a prediction interval does not have dis-

tribution free finite sample validity.

3.1. Constructing Valid Prediction Interval

We apply the recently proposed conformal prediction method

(Shafer & Vovk, 2008) to ensure the finite sample validity.

Specifically, let t̂1EOL, ..., t̂kEOL be a random sequence fol-

lowing an unknown distribution. We can estimate the density

of the prediction sequence and denote the estimated density

by p̂k(tEOL). The p-value from k samples is given by

πk(t) =
1

k + 1

k+1
∑

i=1

1 (p̂i(t) ≤ p̂k(t)) (6)

where 1(·) is the indicator function. The prediction interval

for the (k + 1)-th sample with confidence level α can be ob-

tained by

Ck+1(α) = {t : πk(t) ≥ 1− α} (7)

Intuitively, we want to test the hypothesis H0 : t̂k+1EOL = t

for arbitrary value t and use the height of the density estimate

as a test statistic. Since the vector (p̂1, ..., p̂k) is exchange-

able, πk(t) is uniformly distributed in [0, 1] and is a valid p-

value for the significance test of H0. The set Ck(α) contains

all values t that are not rejected by the test, thus

P (t̂k+1EOL ∈ Ck+1) ≥ α

for any distribution.

Computing Ck+1(α) is expensive since one has to find the p-

value πk(t) for every t. An approximation is made assuming

that p̂k(t) can be well estimated by a kernel density estimator

as the number of samples increases. With the exchangeability

assumption, we can order the predictions t̂1EOL, ..., t̂kEOL

increasingly such that p̂k(t̂1EOL) ≤ ... ≤ p̂k(t̂kEOL). Let

j = ⌊kα⌋ and define

C+
k+1(α) =

{

t : p̂k(t) ≥ p̂k(tkEOL)−
K(0)

kh

}

(8)

where K(·) is the kernel function used to estimate p̂k and h is

the bandwidth of the kernel density estimator. It can be shown

that C+
k+1(α) also has finite sample validity and it has the

same efficiency as Ck+1(α) asymptotically if the bandwidth

h is chosen appropriately (Lei, Robins, & Wasserman, 2011).

3.2. Asymptotic Properties

Let p̂k(t) be the kernel density estimate conditioned on

t̂1EOL, ..., t̂kEOL. We can recursively update the estimate by

p̂k+1(t) =
k

k + 1
p̂k(t) +

1

(k + 1)h
K

(

t̂k+1EOL − t

h

)

with some smooth kernel K(·). The p-value at an arbitrary

time is estimated by

πi =
1

k + 1

k+1
∑

j=1

1 (p̂j ≤ p̂k) , 1 ≤ i ≤ n+ 1

where we dropped the time argument for simplicity. We have

the distribution free prediction interval satisfying

P (tEOL ∈ C+
k+1) ≥ α

for any chosen α ∈ (0, 1). However, such a prediction in-

terval is not unique and we would hope to shrink the interval

without losing the validity conditioned on the input and ob-

servation.

Consider a partition A = {Aj , j ≥ 1} of length sk. Let

nj =
∑k

i=1 1(t̂iEOL ∈ Aj) be the histogram counts. A local

marginal kernel density estimate is

p̂(t|Aj) =
1

njhk

k
∑

i=1

1(t̂iEOL ∈ Aj)K

(

t̂iEOL − t

hk

)

where hk is the kernel bandwidth. The local conditional den-
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sity rank can be defined as

πk,j =
1

nj + 1

k+1
∑

i=1

1(t̂iEOL ∈ Aj) ·

1(p̂(t̂iEOL|Aj) ≤ p̂(t̂k+1EOL|Aj))

and the prediction interval with confidence α is

Ck,j(α) = {t : πk,j(t) ≤ 1− α}.

We can see that the density estimate changes very little when

t varies inside Aj . When Aj has a small diameter and the

kernel function is smooth enough, the local sample approx-

imates independent observations drawn inside the partition

Aj . Thus we can optimize the kernel bandwidth hk adap-

tively to achieve the smallest valid prediction interval asymp-

totically. The tuning of the partition size sk and kernel band-

width hk depends on the smoothness of the conditional den-

sity. It can be trained by using a subset of the samples to

construct a local conformal prediction interval and then in-

creasing the bandwidth until Ck+1 can not be further reduced.

Next, we argue that the convergence rate of the optimized lo-

cal conformal prediction interval is asymptotically minimax

optimal compared with the oracle prediction interval. As-

sume that the density of tEOL satisfies 0 < c0 ≤ ptEOL
(t) ≤

c1 ≤ +∞ for any input and observation sequences. In ad-

dition, we assume that ptEOL
(t) is β times differentiable and

uniformly bounded by L. In particular, the conditional den-

sity is Lipschitz in t, i.e.,

||ptEOL
(·|t1)− ptEOL

(·|t2)||∞ ≤ L|t1 − t2|

to ensure that the kernel function K(·) is a smooth approxi-

mation of ptEOL
(t) of order β. Let C∗(α) be the oracle pre-

diction interval given by

C∗(α) = {t : ptEOL
(t|Y∞,U∞) ≥ t(α)}

where t(α) is the appropriately chosen threshold to achieve

P (tEOL ∈ C∗(α)) = α. If we choose sk ∼ rk and hk ∼

r
1/β
k , then the prediction interval C+

k (α)) satisfies

P

(

sup
t

µ
(

C+
k (α)

⋂

¬C∗(α)
)

≥ cλrk

)

∼ O(k−λ)

for any α ∈ (0, 1), λ > 0 and some constant cλ being inde-

pendent of k. The measure µ shows the difference between

the kernel density estimate and the oracle prediction intervals

while the critical rate rk is

rk =

(

log k

k

)

β
2β+1

.

As the sample size increases, the prediction interval by kernel

density estimate converges to the oracle prediction interval

and the rate can not be improved in the minimax sense, i.e.,

inf
C+

k
(α)

sup
ptEOL

EptEOL

[

µ
(

C+
k (α)

⋂

¬C∗(α)
)]

≥ crk

for some constant c > 0. The proof invokes generalized

Fano’s lemma (Tsybakov, 2009) where the supremum is over

all distribution ptEOL
such that ptEOL

(·|x) is Lipschitz in x

in the sup-norm sense and ptEOL
(t) is smooth enough, i.e., β

times differentiable. The kernel bandwidth h = crk with a

small enough constant c will converge to the oracle predic-

tion interval and guarantee the finite sample validity simulta-

neously.

4. BATTERY STATE-OF-CHARGE ESTIMATION

Lithium-ion battery is the core of new plug-in hybrid-

electrical vehicles as well as considered in many 2nd gen-

eration hybrid electric vehicles. The lithium-ion battery per-

formance plays an important role for the energy management

of these vehicles as high-rate transient power source cycling

around a relatively fixed state of charge (SOC). The estima-

tion of state-of-charge and state-of-health of the battery cell

has drawn significant attention in battery health management

(Charkhgard & Farrokhi, 2010; Chiasson & Vairamohan,

2005; Kim & Cho, 2011; Klein et al., 2013; Saha, Goebel,

& Christophersen, 2009).

4.1. Battery Dynamic and Measurement Models

We adopt the enhanced self-correcting cell model (Plett,

2004a) which contains both state and unknown parameters.

The model is simplified from the detailed electro-chemical

model (Klein et al., 2013) and it includes open-circuit volt-

age, internal resistance, voltage time constant, and hysteresis.

Assume the sampling interval is Ts. At time k, the current ik
is nearly a constant. The state-of-charge (SoC) ck is governed

by

ck+1 = ck −

(

ηTs

C

)

ik

where η is the Coulombic efficiency factor at current level

ik and C is the cell capacity in Ampere-seconds. The time

constants of the cell voltage response are captured by several

internal states. Let zk be the internal state vector at time k. A

linear model was suggested in (Plett, 2004a) given by

zk+1 = Azzk +Bzik

where Az is a diagonal matrix with real valued entries and Bz

is chosen to have all 1s. The hysteresis level is modeled by

hk+1 = e
−

∣

∣

∣

ηikγTs
C

∣

∣

∣

hk +

[

1− e
−

∣

∣

∣

ηikγTs
C

∣

∣

∣

]

sgn(ik)

where γ is the hysteresis rate constant. The voltage is

vk = OCV(ck) +Gzk −Rik +Mhk

4
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Figure 1. Empirical function of open circuit voltage vs. state-
of-charge of Li-Ion battery sets

where OCV(·) is an empirical function found by battery cell

testing; G is a vector of unknown parameters related to the

battery aging status; R is the internal resistance; and M is

the maximum hysteresis level. Thus the overall state vector

is xk = [ck zk hk]
T . The dynamic model contains unknown

parameters η, γ, and G. The measurements are voltage vk
and current ik. The primary goal is to accurately estimate the

state-of-charge ck during the battery usage with variable load.

4.2. Experimental Results

The Li-Ion battery cells used for experimental study were di-

vided into three sets. Set 1 of two batteries was used to tune

the cell model parameters (e.g., OCV(·) function). Set 2 and

Set 3 of four batteries were used in evaluating the joint state

and parameter estimation to see how well the filters perform

under different dynamics. The sampling interval Ts=1s. The

voltage measurement accuracy is ±5mV and the current mea-

surement accuracy is ±100mA.

The open-circuit voltage as a function of the state-of-charge

(SoC) for three sets of the Li-Ion battery cells is plotted in

Fig. 1. First, the cell was fully charged to 4.2 V with a con-

stant current. Then, the cell was discharged at at a constant

rate until 3.0V. The cell voltage as a function of the SoC un-

der discharge and under charge were averaged to compute the

OCV. This has the effect of eliminating, to the greatest extent,

the presence of hysteresis and Ohmic resistance in the OCV

function. In Set 1, the batteries were put in a chamber with

controlled temperature of 25◦C. In Set 2, the batteries were

put on an open table with an electronic fan turned on. In Set 3,

the batteries were put on an open table with the fan turned off.

We can see that Set 2 has a closer empirical OCV function to

Set 1 than Set 3 to Set 1.

The real test comprised a sequence of 40 charge and discharge

cycles for each battery in three sets. The battery was con-

Table 1. Comparison of SoC Estimation Accuracy

Method Test Set RMS error (%) Maximum error (%)
dual EKF 1 0.32 1.33

adaptive CKF 1 0.29 1.34
dual EKF 2 2.14 9.8

adaptive CKF 2 1.33 3.2
dual EKF 3 7.42 13.3

adaptive CKF 3 2.53 5.2

nected to a potentiometer load, separated by 2A discharge

pulses and 10-min rests, and spread over the 20%-90% SoC

range. Set 1 was used to estimate the OCV function and cal-

ibrate the 4th order model of Az. Sets 2 and 3 were used

to evaluate the SoC estimation accuracy with the model state

and parameters initialized from the same conditions as in Set

1. We compare the adaptive cubature Kalman filter (CKF)

(Chen, 2012) with the dual extended Kalman filter (EKF)

(Plett, 2004b) in terms of the root mean square (RMS) er-

ror and maximum error over the whole duration with approx-

imately 5000s for each cycle. The adaptive CKF and dual

EKF have the same initial condition. In adaptive CKF, the

forgetting factor sequence was chosen by

λk = 1− 0.05 · 0.95k.

The SoC estimation results are listed in Tab. 1. The dual EKF

has similar SoC estimation accuracy to the adaptive CKF on

Set 1 batteries since the model parameters have been well

calibrated. The slight increase of the error by the dual EKF

is mainly due to linearization of the dynamic model. It is in-

teresting to note that the adaptive CKF performs much better

in Set 2 and Set 3 where the OCV functions and unknown

parameters are different from those in Set 1. In Set 3, η has

more than 20% of variation from the nominal value in Set 1.

The dual EKF yields more than twice of the SoC estimation

error made by the adaptive CKF.

Next, we apply the SoC estimation to estimate the end-of-life

(EOL) and remaining useful life (RUL) of the battery during a

discharge cycle based on the proposed conformal interval es-

timation using a Gaussian kernel. For convenience, we chose

α = 0.99 and calculated the true tEOF when the cell voltage

dropped below 3.0V. The adaptive CKF was used to jointly

estimate the state and parameter and the resulting prediction

interval of the EOL is shown in Fig. 2. We can see that more

than 99% of the predicted intervals cover the true EOL, indi-

cating the validity of the prediction. Note that the predicted

EOL interval does not always decrease over time owing to

the future loading uncertainty as well as the evolvement of

the dynamic state. Note also that the lower and upper limit

of the prediction EOL may not be symmetric around the best

point estimate, indicating possibly an asymmetric posterior

distribution. Nevertheless, the predicted interval reduces to

less than 20s fairly quickly. Fig. 3 shows the RUL prediction

interval from 100s to 700s with α = 0.99. We can see that

the prediction interval covers the true RUL nearly all the time

with the upper limit being close to the true RUL. Thus the

5



Annual Conference of the Prognostics and Health Management Society 2013

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
4820

4825

4830

4835

4840

4845

4850

time (sec)

pr
ed

ic
tio

n 
in

te
rv

al
 o

f  
t E

O
L (

se
c)

Figure 2. The end-of-life (EOL) prediction interval with α =
0.99 using CKF for one discharge cycle of Set 2.
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Figure 3. The remaining useful life (RUL) prediction interval
with α = 0.99 using CKF for one discharge cycle of Set 2.

algorithm seems to be practical for monitoring the battery’s

SoC and fully utilizing its capacity.

5. CONCLUSION

We presented a generic framework for distribution free inter-

val estimation to quantify the uncertainty of the end-of-life or

the remaining useful life (RUL) prediction of a system com-

ponent. The method combines the conformal prediction and

non-parametric density estimation to ensure the finite sam-

ple validity with arbitrarily chosen confidence level. Under

certain regularity conditions, the proposed interval estimator

converges to an oracle band at a minimax optimal rate. In ad-

dition, we used a data driven method to automatically select

the bandwidth in the kernel density estimation and worked

out a practical approximation to speed up the computation.

The proposed method was used to predict the RUL interval

for Li-Ion batteries with the joint state and parameter esti-

mation using nonlinear filtering methods. The results reveal

that the 99% confidence interval shrinks quickly when the dy-

namic model captures the discharge cycle fairly accurately. In

addition, the lower and upper limit of the RUL prediction in-

terval is often non-symmetric of the true RUL indicating the

asymmetric nature of the posterior distribution.
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