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ABSTRACT

Localized bearing faults exhibit specific repetitive vibrational
patterns. Due to the constant angular distance between the
roller elements, the vibrational patterns occur on regular an-
gular intervals. Under constant operating conditions such pat-
terns become easily detectable as “periodic” events. Slippage
or small variation in rotational speed are commonly modeled
by introducing normally distributed time variations, which al-
lows for occurrence of “negative” time intervals. In this paper
we present an approach which models the occurrences of lo-
calized bearing fault patterns as a realization of random point
process whose inter-event time intervals are governed by in-
verse Gaussian mixture. Having support on (0,∞), the ran-
dom impact times can acquire strictly positive values. The ap-
plicability of the model was evaluated on vibrational signals
generated by bearing models with localized surface fault.

1. INTRODUCTION

Bearing faults are one of the most common causes for me-
chanical failures (MRWG, 1985; Albrecht, Appiarius, &
Shrama, 1986). Consequently, the majority of the proposed
fault detection methods address the issue of bearing fault de-
tection. Commonly, the well adopted methods focus on ex-
tracting and analyzing the behavior of a set of features that
describe bearing surface faults, so-called bearing fault fre-
quencies (Tandon & Choudhury, 1999). Inferring about bear-
ing condition using such a feature set is possible if the mon-
itored bearing is operating under constant rotational speed.
However, rotational speed fluctuations, which are quite com-
mon in real world, reduce the effectiveness of these features.
In this paper we model the vibrational patterns generated by
bearings with localized surface fault modeling as a point pro-
cess with inverse Gaussian mixture inter-event distribution.

From a practical point of view, condition monitoring of bear-
ings operating under variable regimes is the most plausible
real world scenario. As a result, recently many authors pro-
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posed new approaches for condition monitoring of machinery
operating under non-stationary regimes (Zhan, Makis, & Jar-
dine, 2006; Combet & Zimroz, 2009; Wang, Makis, & Yang,
2010; Boškoski & Juričić, 2012a; Cocconcelli, Bassi, Sec-
chi, Fantuzzi, & Rubini, 2012; Boškoski & Juričić, 2012b;
Heyns, Godsill, Villiers, & Heyns, 2012). Despite the non-
stationarity of the generated vibrations, these approaches
manage to exploit the statistical properties of some specific
vibrational patterns, hence performing sufficiently accurate
condition monitoring. Focusing on bearing fault detection,
the main source of information are the time occurrences of
particular vibrational patterns. Based on the statistical prop-
erties of these time occurrences several effective fault detec-
tion methods have been developed (Antoni & Randall, 2003;
Borghesani, Ricci, Chatterton, & Pennacchi, 2013). In the
same manner we propose an approach that describes the im-
pacts generated by localized bearing surface damage as a re-
alization of a point process whose inter-event times are gov-
erned by pure or inverse Gaussian mixture.

Initially, inverse Gaussian distribution was developed by
Schrödinger (1915) as the distribution of the first passage
time of a Wiener process with positive drift and fixed thresh-
old. The first detailed in-depth analysis of the statistical prop-
erties of inverse Gaussian distribution was derived much later
by Tweedie (1957) and afterwards by Folks and Chhikara
(1978). Since then inverse Gaussian distribution has been ap-
plied in many different areas for instance: production mod-
eling (Desmond & Chapman, 1993), reliability (Lemeshko,
Lemeshko, Akushkina, Nikulin, & Saaidia, 2010), neural
spike train modeling (Vreeswijk, 2010), condition monitor-
ing (Boškoski & Juričić, 2011) etc. Although in many cases
the application of pure inverse Gaussian model suffices, in
this paper we show that under variable rotational speed in-
verse Gaussian mixture is more suitable model for describing
localized bearing faults.

The paper is organized as following. Section 2 contains the
definition and the basic statistical properties of the inverse
Gaussian distribution. The selection between models describ-
ing pure or mixture of inverse Gaussian distributions is pre-
sented in Section 3. The actual modeling of localized bearing
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faults with in the proposed framework is presented in Sec-
tion 4. Finally, the experimental validation of the models is
given in Section 5.

2. PURE AND MIXED INVERSE GAUSSIAN DISTRIBU-
TIONS

2.1. Pure inverse Gaussian distribution

Let a stochastic process α(t) be

α(t) = νt+ σ2W (t), ν > 0, (1)

where ν is the positive drift, σ2 is the variance and W (t) is
Wiener process (Matthews, Ellsworth, & Reasenberg, 2002).
Schrödinger (1915) showed that the first passage time of the
process (1) over a fixed threshold a follows the Inverse Gaus-
sian distribution (Folks & Chhikara, 1978):

f(t;µ, λ) =

√
λ

2πt3
exp

(
−λ(t− µ)2

2µ2t

)
,

t > 0, µ = a/ν > 0, λ = a2/σ2.

(2)

Since the parameters µ and λ in (2) are time invariant, the
resulting stochastic process is stationary. A simple realization
of such a process is shown in Figure 1.
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Figure 1. Simulated realization of the stochastic process (1).
The time intervals ti are distributed by inverse Gaussian dis-
tribution (2)

2.2. Mixed inverse Gaussian distribution

When modeling data generated by Wiener process (1) there
are many situations in which parameters µ and λ in (2)
should be considered as random variables. Under such cir-
cumstances, the distribution of the first passage time can be
described by inverse Gaussian mixtures (Whitmore, 1986).
Physically more sound is to allow the positive drift ν in (1)
to vary randomly according with some pre-defined distribu-
tion. In order to keep the relation with the positive drift
ν more clearly visible, Desmond and Chapman (1993) re-
parametrized (2) by setting δ = 1/µ:

f(t; δ, λ) =

√
λ

2πt3
exp

(
−λ(δt− 1)2

2t

)
, (3)

where t > 0, δ > 0, λ = a2/σ2.

In such a form the parameter δ is linearly related to the posi-
tive drift ν in (1). By allowing δ to be random variable with
distribution pδ(δ), the marginal distribution reads:

h(t; θ) =

∫
∆

f(t;λ|δ)pδ(δ) dδ, (4)

where θ is the vector comprising of λ and all hyper parame-
ters of pδ(δ).

3. MODEL SELECTION

The likelihood functions (2) and (4) specify two different
models M1 and M2 respectively that can be used for describ-
ing the time occurrences t. The selection of which model is
more appropriate can be performed by using Bayes’ factor.

The application of the Bayes’ factor incorporates the concepts
of parsimony, unlike the standard likelihood which suffers
from the problems of overfitting (MacKay, 2005; Berkes &
Fiser, 2011). For the observed data t the Bayes’ factor be-
tween two models M1 and M2 reads:

P (M1|t)
P (M2|t)

=
P (t|M1)

P (t|M2)︸ ︷︷ ︸
Bayesfactor

×P (M1)

P (M2)
, (5)

where P (M1) and P (M2) are prior distributions associated
with each model.

The two likelihoods entering the Bayes’ factor can be calcu-
lated by integrating over the complete set of parameters as:

P (t|M1) =

∫
f(t|θ1,M1)p(θ1|M1) dθ1

P (t|M2) =

∫
h(t|θ2,M2)p(θ2|M2) dθ2,

(6)

where f(t|θ1) is defined by (2), h(t|θ2) is defined by (4) and
θ1 and θ2 are their corresponding parameter sets.

3.1. Specification of the prior pδ(δ)

In order to complete the calculation of the Bayes’ factor (5),
one has to specify the distribution of the random positive drift
δ in (4). One possible model of the drift fluctuations, similar
to the one specified by Desmond and Yang (2011), reads:

δ = d+ ε, where ε ∼ N (0, σ2
δ ), d ≥ 0, δ > 0. (7)

For cases when the parameter σδ = 0, the drift parameter δ
becomes deterministic, thus the mixture inverse Gaussian (4)
reduces into its standard form (2).

The limitation δ > 0 imposes additional limitation on the
distribution of ε in (7). Consequently, one has to use Gaussian
distribution of ε truncated so that ε > −d.
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Using the model (7) with truncated Gaussian distribution as
a prior for the speed fluctuations, the marginal likelihood (4)
becomes:

ĥ(t;λ, σδ, d) =

√
λ

2πt3(1 + λσ2
δ t)

× exp

(
− λ(dt− 1)2

2t(1 + λσ2
δ t)

)

×
Φ

(
d+λσ2

δ

|σδ|
√

1+λσ2
δt

)
Φ
(
d
σδ

) ,

(8)

where Φ(·) is the cumulative function of the standard normal
distribution.

The proposed speed model (7) defines random and station-
ary speed profile. When necessary, an arbitrary speed profile
can be used instead. The only problem would be to spec-
ify a proper definition of the prior pδ(δ) and calculate new
marginal likelihood (8).

Finally, it has to be emphasized that the modeled parameter
in (7) is the standard deviation σδ instead of the variance. By
modeling through the variance an additional limitation will
be imposed i.e. σ2

δ ≥ 0. Such a parametrization introduces a
limitation since the parameter under null hypothesis σ2

δ = 0
lies on the limit of the acceptable region. Therefore standard
likelihood tests become inapplicable (Lehmann & Casella,
1998, Chapter 5).

4. BEARING FAULT DETECTION BY MEANS OF INVERSE
GAUSSIAN MODELS

Bearing faults are surface damages that occur on the bearing
elements. Each time when a rolling element passes over the
damaged surface, a specific vibrational pattern is generated
directly connected to one of the bearings eigenmodes. Usu-
ally, under constant operating conditions the generated vibra-
tions are modeled as (Randall, Antoni, & Chobsaard, 2001):

x(t) =
∑
i

Ais(t− iT − τi), (9)

where Ai is the amplitude of the ith impact, s(t) is the im-
pulse response of the excited eigenmode, T is the period of
rotation and τi is random fluctuation due to slippage. Gen-
erally, τi is modeled as zero mean normally distributed with
sufficiently small variance σ2

τ . Regardless of the variance σ2
τ ,

model (9) allows for τi to acquire sufficiently low negative
values. Consequently, the occurrence of the i + 1th impact
might be modeled as if it occurs before the ith one.

4.1. Using inverse Gaussian distribution

Avoiding the issues of negative time delays, present in model
(9), we propose the following model of generated vibrations:

x(t) =
∑
i

Ais(t− ti), (10)

where Ai is the amplitude of the ith impact, s(t) is the im-
pulse response of the excited eigenmode and ti is the time of
the occurrence modeled as inverse Gaussian random variable.
A typical vibrational pattern is shown in Figure 2.
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Figure 2. Simulated conceptual vibrational pattern generated
by damaged bearing

Due to the mechanical characteristics of the bearings, the an-
gular distance between the adjacent rolling elements is con-
stant. Therefore, the angular distance between two consec-
utive impacts can be regarded as constant too. So, one can
easily apply the stochastic process (1) to model the angular
distance traveled by a rolling element towards the damaged
surface. The threshold a in (1) is the actual angular distance
between the roller elements and ν is directly related to the
rotational speed. Consequently, the time intervals ti between
two adjacent excitations of s(t) can be modeled as a realiza-
tion of either pure or mixture inverse Gaussian, depending on
the statistical characteristics of the rotational speed.

Pure inverse Gaussian model (2) for the inter-impact times
ti should be regarded as a special case, valid when the bear-
ing rotational speed is “constant” i.e. there are no significant
speed fluctuations. Under such circumstances pure inverse
Gaussian model (2) is applicable for localized bearing sur-
face faults (Boškoski & Juričić, 2011).

A more realistic scenario is the one where the rotational speed
of a bearing varies randomly. Under such circumstances the
angle covered by a rolling element can be modeled as a real-
ization of the stochastic process (1) by allowing the positive
drift ν ∝ δ to vary randomly according to the random speed
fluctuations. Consequently, the observed time intervals ti be-
tween two consecutive impacts can be modeled as a realiza-
tion of an inverse Gaussian mixture (8).
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4.2. Multiple localized faults

The case of multiple localized surface faults can be also de-
scribed in the framework of point processes with inverse
Gaussian inter-event distribution. For that purpose one can
consider a Wiener process, similar to (1), with two barriers a
and b. Starting from an initial point the time required to reach
the barrier a is T1, and time to reach the barrier b from a is
T2. Chhikara and Folks (1989) showed that T1 and T2 are
independent inverse Gaussian random variables defined as:

T1 ∼ IG
(
a

ν
,
a2

σ2

)
T2 ∼ IG

(
b− a
ν

,
(b− a)2

σ2

) (11)

Measuring from the initial starting point reaching the thresh-
old b can be specified as time T3 = T1 + T2. Since the ratio

λi
µ2
i

=
ν2

σ2
= const., (12)

the time T3 is also inverse Gaussian random variable dis-
tributed as (Chhikara & Folks, 1989):

T3 ∼ IG
(
µ1 + µ2,

ν2(µ1 + µ2)2

σ2

)
. (13)

In the context of bearings, the threshold a is the angular dis-
tance of the first fault in the direction of rotation measured
from some initial point. The threshold b, on the other hand,
is the angular distance measured from the first fault in the
direction of rotation.

By extending the concept of two thresholds (13) to multiple
thresholds, one can model multiple localized bearing faults
by employing the generalized distribution of inter-event times
(Chhikara & Folks, 1989, Chapter 11).

5. EXPERIMENTS

The proposed model based on mixture of inverse Gaussian
distribution of the inter-event times was evaluated on sim-
ulated vibration signals. The signals were generated us-
ing the dynamic bearing model developed by Sawalhi, Ran-
dall, and Endo (2007) enhanced with the EHL (Elastohy-
drodynamic Lubrication) model developed by Sopanen and
Mikkola (2003a, 2003b). The simulated bearing had local-
ized surface fault on the outer ring. The fault was simulated
to be 2◦ wide and has average surface depth of 30µm.

Simulations were performed using several different speed
profiles according to the model (7) with mean value d =
38 Hz. The standard deviation σδ changed from 0% up to
10% of the mean speed d.

5.1. Detection of impacts times

The main information required for the application of pro-
posed inverse Gaussian based models are the time intervals
between two consecutive impacts. Therefore, the first step
in the analysis is the detection of impact times. In our ap-
proach, the detection of impact times was performed using
wavelet transform thresholding. The main parameter that has
to be selected is the mother wavelet. Schukin, Zamaraev, and
Schukin (2004) suggested that for signals containing repet-
itive impulse responses, an optimal detection of impacts can
be performed by using mother wavelet that will closely match
the underlying vibrational patterns. However, Unser and Tafti
(2010) provided thorough analysis that the crucial parameter
for sparse wavelet representation of signals containing repet-
itive impulse responses, is the number of vanishing moments
of the mother wavelet rather then the selection of the “op-
timal” mother wavelet that will closely match the underly-
ing signal. Therefore, by selecting a wavelet with sufficiently
high number of vanishing moments one can sufficiently accu-
rately analyze vibrational patterns containing the impulse re-
sponses from the excited eignemodes regardless of their vari-
able form due to the changes of the transmission path. The
schematic representation of the impact detection process is
shown in Figure 3.

System

Wf(u.s)

Input impulses Impulse responses

Wavelet transform

Wavelet coefficients

Figure 3. Detection of impact times using wavelet as differ-
ential operator

In our approach, the generated vibrations were analyzed using
Daubechies 10 mother wavelet (Daubechies, 1992). For our
particular system such a number of vanishing moments has
shown to be sufficient for accurate impulse detection.

5.2. Numerical calculation of the Bayes’ factor

Having the impact times ti the next step is to calculate the
Bayes’ factor by calculating the marginal distributions (6).
The marginal likelihoods were calculated using Monte Carlo
integration. Since the model selection depends on the stan-
dard deviation σδ (not the variance σ2

δ ), the selected prior was
so-called folded non-central t distribution (Gelman, 2006)
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which reads:

p(σδ) ∝
(

1 +
1

γ

(σδ
A

)2
)−(γ+1)/2

, (14)

where A is scale parameter and γ represents the degrees of
freedom. The prior for the mean value d in (7) was chosen
to be uniform in sufficiently wide interval. The prior for the
remaining parameter λ = 1/σ2 in (1) was also chosen to
be uniform in the interval that contains 2% of initial speed
fluctuations due to slippage (Randall et al., 2001).

5.3. Experimental results

One realization of the speed fluctuations, modeled according
to (7) with d = 38 Hz, is shown in Figure 4. The speed
fluctuations are smooth but sufficiently fast. Consequently
even during a single bearing revolution the rotational speed
varies.
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Figure 4. A typical speed fluctuation profile

For small speed deviations σδ < 0.5% of the mean speed
value d, the Bayes’ factors (6) overwhelmingly favor sim-
pler model (2) i.e. pure inverse Gaussian distribution of the
inter-event times. For speed fluctuations with σδ > 0.5% the
Bayes’ factors favor mixture inverse Gaussian model for the
inter-event times. Changes of the Bayes’ factor with respect
to the changes in the speed fluctuations σδ are shown in Fig-
ure 5.

Such results are somewhat expected since under small speed
fluctuations pure inverse Gaussian distribution of the inter-
event times sufficiently well describes the observed impact
times. At the same time, due to the principle of parsimony,
the simpler model is preferred. The cost of more complex
model becomes justified when the speed fluctuations become
more intense.

5.4. Comments on results

The effectiveness of the proposed approach becomes appar-
ent if one compares it with other methods. Due to the random
speed fluctuations, the standard spectral methods are inappli-
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Figure 5. Changes of the Bayes’ factors for different σδ

cable and the only choice is time-frequency analysis of the
signal. Therefore, we calculated the wavelet transform of the
envelope of the generated vibrations, which is shown in Fig-
ure 6. One can easily notice that the envelope contains some
patterns in the vicinity of 90 Hz. However, the patterns ex-
hibit no particular structure and it is quite difficult to draw
any conclusions from such a time-frequency plot.
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Figure 6. Wavelet transform of the envelope of the generated
vibrations

The analysis of the impacts as a realization of a point process
with pure or inverse Gaussian mixture offers a framework
for proper statistical testing about the origin of the observed
events. Testing whether the observed impacts are related to
a specific angular position is fairly straightforward. Further-
more, the same analysis offers an insight about the possible
mixing distribution, i.e. the distribution of the variable rota-
tional speed.

6. CONCLUSION

The experimental results show that the specific vibrational
patterns generated by bearings with surface faults can be
treated as a realization of a point process whose inter-event
times are distributed according to either pure or inverse Gaus-
sian mixture. The pure inverse Gaussian distribution is appli-
cable for the special case when fault bearings operate under
constant rotational speed. The inverse Gaussian mixture, on
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the other hand, is a general solution applicable also for mod-
eling the inter-impact times of faulty bearings operating un-
der variable rotational speed. Finally, unlike the commonly
adopted models for bearing vibrations, the proposed model is
inline with the physical limitations by modeling random time
fluctuations with distribution with support on interval (0,∞).

The application of the proposed approach on acquired vibra-
tions starts by calculating the time intervals between adjacent
impacts through the wavelet coefficients calculated from the
generated vibration signals. When the observed impacts are
generated by a phenomenon that occurs on regular angular
intervals, the corresponding inverse Gaussian model can be
employed. Determining the validity of such a claim can be
performed by a straightforward calculation of the Bayes’ fac-
tors. This approach is applicable to both constant and variable
operating conditions.
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Boškoski, P., & Juričić, Ð. (2012a). Fault detection of
mechanical drives under variable operating conditions
based on wavelet packet Rényi entropy signatures. Me-
chanical Systems and Signal Processing, 31, 369—
381.
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