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ABSTRACT

The research activity in the PHM community is in full bloom
and many efforts are being made to develop more realistic
and reliable methodologies. However, there still exist very
few real-world applications due to the complexity of the sys-
tems of interest. Nonlinear dynamical systems identification
and behavior prediction are difficult problems encountered in
prognosis. The difficulty in switching from theory to practice
can partially be explained by the existence of different kinds
of uncertainty at each step of the implementation that must
be taken into account with the appropriate tools. In this pa-
per, we propose an evolving multi-modeling approach for the
detection, the adaptation and the combination of local mod-
els in order to analyze complex systems behavior. It relies on
belief functions in order to take into consideration the uncer-
tainty related to the available data describing the system as
well as the uncertainty generated by the nonlinearity of the
system. The information of doubt explicitly represented in
the belief functions framework is exploited to properly seg-
ment the data and take into account the uncertainty related to
the transitions between the operating regions. The proposed
algorithm is validated on a data provided by PRONOSTIA
platform.

1. INTRODUCTION

Although prognosis is acknowledged as a key element in in-
dustrial maintenance strategies, there still exist very few real-
world applications due to the complexity of the systems of
interest. The implementation of a data-driven PHM tool in
real conditions requires a learning phase for the estimation
of the different parameters, that represents one of the main
barriers to its applicability, as it is very costly to collect data,
in particular for the failure modes. Modeling the behavior
of nonlinear systems from observed data is a difficult task to
perform widely encountered in prediction and fault diagno-
sis (Angelov, Filev, & Kasabov, 2010). One way to overcome
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the complexity related to nonlinearity is to adopt multi-model
approaches (Madani, Rybnik, & Chebira, 2003; Boukhris,
Mourot, & Ragot, 2000; Murray-Smith, 1997; Nelles, 1995)
by considering that the system’s behavior gradually evolves
along the operating range. Thus, the system could locally be
described by simple functions corresponding to some operat-
ing regions. The description of the global system’s behavior
is then made by the combination of the local models, each of
which being weighted by an activation degree. The identifi-
cation consists in two main steps: the structural identification
to determine the number of models, and a parametric identi-
fication to evaluate the parameters of the local models.

Understanding the response of nonlinear systems is a very
challenging task leading to significant uncertainty. Uncer-
tainty sources are numerous and may take the form of system
variability, environmental and operational conditions, data
acquisition errors, among other sources that vary depending
on the application at hand. The quantity as well as the qual-
ity of the data are also very important aspects to take into
account. Moreover, the segmentation of the data into mean-
ingful modes is often required to help the methods of param-
eters’ estimation to converge towards reasonable solutions.
These constraints on the data are not clearly considered in the
literature and we believe that the uncertainty related to the
lack of data for the detection and prediction of failure modes
must be quantified to understand the capabilities and limita-
tions of the modeling process. While probability theory is
well suited to deal with aleatory uncertainties (intrinsic vari-
ability), other formalisms exist that are more appropriate to
manage epistemic (imprecision and incompleteness) uncer-
tainty (G. J.Klir, 2006), among which, fuzzy sets or possibil-
ity theory and evidence theory, also known as belief functions
theory (Shafer, 1976) which are the most prominent ones.

Fuzzy set theory has been used to deal with imprecision
within data in multi-modeling approaches (Chandrashekhar
& Ganguli, 2009; Haag, Herrmann, & Hanss, 2010), among
which the fuzzy rule-based models of Takagi-Sugeno (TSK)
type (Takagi & Sugeno, 1985), widely used in modeling ap-
plications of complex systems, due to their flexibility and
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computational efficiency. Their main advantage dwells in the
fact that since the local regions are fuzzily defined, the re-
sulting global model can be nonlinear, while the local mod-
els can be very simple (linear) (Takagi & Sugeno, 1985; An-
gelov, Lughofer, & Zhou, 2008). This kind of approach has
been applied to build a neuro-fuzzy predictor in the context
of prognosis application in (El-Koujok, Gouriveau, & Zer-
houni, 2011). It was based on the evolving extended Takagi-
Sugeno system (exTS) proposed by Angelov (Angelov &
Filev, 2004).

Ramdani et al. (Ramdani, Mourot, & Ragot, 2005) exploited
the theoretical framework of belief functions to deal with un-
certainties in multi-modeling founded on a TSK fuzzy model.
The main advantage of this approach remains in the use of be-
lief functions theory to determine the activation degrees of the
local models. However, Their proposed methodology is an of-
fline approach and requires the entire dataset to be available in
advance for the modeling process. Belief functions are partic-
ularly interesting because they obviate the need to introduce
unjustified a priori thanks to the relaxation of the additivity
constraint, which makes possible the explicit representation
of doubt. The work of Smets (Smets & Kennes, 1994) has
shown that the information brought by the empty set could
enable to take into account ”open world” situations. Although
many publications using belief functions theory have recently
increased, very few are related to PHM applications.

One of the constraints to address in PHM applications is re-
lated to the fact that the data concerning the failure modes
are generally rare compared to the data of normal functioning
modes. This can be seen as a problem of unbalanced data (He
& Garci, 2009). A solution is to construct an evolving algo-
rithm that can adapt to the lack of data. This kind of approach
enables the consideration of applications for which historical
data cannot be stored. Then, for more coherence and to facil-
itate the implementation of the prognostic approach, the de-
tection and the prediction must be performed within the same
algorithm.

In this paper, we propose to adapt the offline approach devel-
oped in (Ramdani et al., 2005) to the online case, where the
data arrive gradually. In the sequel, We qualify the proposed
approach as ”evolving”, as it is able to adapt its parameters
online. The proposed algorithm is called E2GKpro and re-
lies on the Evidential Evolving Gustafson-Kessel algorithm
(E2GK) initially developed in (Serir, Ramasso, & Zerhouni,
2012) to sequentially perform the clustering phase using the
formalism of belief functions. The clustering is then followed
by the online identification of local linear models. The activa-
tion degrees of each local model are directly provided by the
E2GK algorithm in the form of belief masses, and the global
model is a combination of all the local models. This work
is presented as an improved version of a previous contribu-
tion (Serir, Ramasso, & Zerhouni, 2011).

The paper is organized as follows. First, the basics of belief
functions theory are given and illustrated on a simple hypo-
thetical example (Section 2). Then, the proposed E2GKpro
algorithm is detailed (Section 3). And finally, the algorithm
is applied on the data of PRONOSTIA platform (Section 4).

2. BACKGROUND MATERIALS ON BELIEF FUNCTIONS
THEORY

The theory of belief functions, also called theory of evidence
or Dempster-Shafer theory, is a formal framework for reason-
ing with partial (imprecise and uncertain) information. It was
introduced by Dempster (1968) and Shafer (1976) and later
developed by Smets and others. The theory of belief func-
tions extends both the set-membership (intersection, union,
inclusion, etc.) and probabilistic (conditioning, marginaliza-
tion) approaches to uncertain reasoning, and a belief function
may be viewed as both a generalized set and a non additive
measure. Smets has developed the Transferable Belief Model
(TBM) (Smets & Kennes, 1994) as a general framework for
uncertainty representation and combination of various pieces
of information without additional prior. In particular, TBM
offers the possibility to explicitly emphasize doubt, represent-
ing ignorance, and conflict, emphasizing the contradiction in
a fusion process. We give in this section some of the basic no-
tions of the theory and refer the reader to (Smets & Kennes,
1994) for a more complete description.

Let ω be a variable taking values in a finite set Ω, called frame
of discernment, and let 2Ω be its power set. A belief function
on Ω is mathematically defined by introducing a set function
m, called the basic belief assignment (BBA) defined by:

m : 2Ω → [0, 1]
A 7→ m(A) ,

(1)

and satisfies:
∑
A⊆Ωm(A) = 1. Each subset A ⊆ Ω such as

m (A) > 0 is called a focal elements of m.

We collect a piece of evidence (information) about ω, which
can have different interpretations weighted by subjective
probabilities. One of these interpretations can mean that we
only know that ω ∈ A, for some A ⊆ Ω, and nothing more.
The probability that the evidence means exactly that ω ∈ A is
m (A). A BBA is assigned not only to singletons (|A| = 1),
but also to subsets of Ω (|A| > 1), without assumption con-
cerning additivity of the measure m (G. J.Klir, 2006). This
property permits the explicit modeling of doubt and conflict
which constitutes a fundamental difference with probability
theory:

• Perfect knowledge of the value of ω ∈ Ω is represented
by the allocation of the unit of belief to ω: m (ω) = 1.
In this case, m is said to be certain.

• Complete ignorance corresponds to m(Ω) = 1.
• In the case of all focal elements being singletons,m boils

down to a probability function and is said to be Bayesian.
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• The value of m(∅) is called conflict and can be posi-
tive, meaning that one accepts the open-world assump-
tion stating that the set Ω might not be complete, and
thus ω might take its value outside Ω.

• In the case of all focal elements being singletons,m boils
down to a probability function and is said to be Bayesian.

A BBA m is said to be normal if m(∅) = 0. A normalized
BBA m∗ can be computed from a BBA m by applying the
Dempster normalization:

m∗(A) =


m(A)

1−m(∅)
if A 6= ∅

0 otherwise
(2)

Given a BBA m, a belief function bel and a plausibility func-
tion pl can be defined, respectively, as

bel(A) =
∑
∅6=B⊆Ω

m(B), ∀A ⊆ Ω , (3)

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω , (4)

bel (A) can be interpreted as a measure of our total belief
committed to A after receiving the item of evidence, and
pl(A) represents the maximal degree of belief supporting the
subset A (Cobb & Shenoy, 2006). If m is Bayesian, pl = bel
boils down to a probability measure. Note that a possibility
measure is known to be formally equivalent to a consonant
belief function, i.e., a belief function with nested focal ele-
ments (Dubois, Prade, & Smets, 2001). The functions bel, pl
and m are in one-to-one correspondence and represent three
facets of the same piece of information.

The TBM distinguishes the credal level where beliefs are for-
malized, revised and combined, and the pignistic level used
for decision making, which consists in the choice of the best
hypothesis using the pignistic probability distribution (Smets
& Kennes, 1994) defined as:

BetP(ω) =
∑
A3ω

m(A)

|A|
1

1−m (∅)
, ∀ω ∈ Ω . (5)

where each mass of beliefm(A) is equally distributed among
the elements ofA and BetP(A) =

∑
ω∈A

BetP(ω), ∀A ⊆ Ω.

Example 1 Let us consider the example described in Fig.
1. Suppose that the figure results from a monitoring of a
bearing system, and that it represents the evolution along
time of a feature provided by a sensor (the available piece
of evidence). There are 4 possible operating modes: Nor-
mal (N ), Degrading 1 (D1), Degrading 2 (D2) and Faulty
(F ) (Ω = {N,D1, D2, F}). One can notice that the fea-
ture evolution curve can be segmented into 4 clear operating
regions (arrows in magenta color). However, in the transi-
tions (magenta ellipses) from one operating region to another
(N → D1, D1 → D2, D2 → F ), one can express doubt
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Figure 1. An example of basic belief assignments.

regarding whether the bearing is still in the same operating
mode or if it had evolved to a new one. One’s belief re-
garding the operating mode of the bearing along time can
”consecutively” be expressed by: m(N) = 1, m({N,D1}),
m(D1) = 1, m({D1, D2}), m(D2) = 1, m({D2, F}) and
m(F ) = 1.

3. AN EVIDENTIAL EVOLVING PREDICTION METHOD-
OLOGY

The proposed methodology, called E2GKpro, follows a three-
phase scheme, commonly used in the evolving systems mod-
eling approaches (Angelov et al., 2010). The novelty of
E2GKpro dwells in the use of belief functions for the de-
termination of the local models and the estimation of their
activation degrees.

The system under study is supposed to gradually evolve
through different operating modes (Fig. 1), each of which
corresponding to unknown local linear models to be identified
online. At the current time-instant k, a n-dimensional input
feature vector xk = [x1 . . . xn]

T ∈ Rn and an output yk ∈ R
are observed. After an initialization phase, given (xk, yk),
E2GKpro starts with a clustering phase to detect the current
operating regions of the system. Then, a regression phase is
performed to update the local linear models corresponding to
each cluster. Finally, the prediction phase estimates the value
of the output ŷk given the input xk.

3.1. Initialization

To explain the belief functions generation process, let con-
sider the existence of an initial set of available data so that
two operating regions can be identified by applying a stan-
dard clustering algorithm on the input-output space. Given
an initial observed datum zk = (xk, yk), the Gustafson-
Kessel algorithm is used, with c = 2, to find the coordinates
vi,k, i = 1, 2 of the two first clusters and to initialize their
covariance matrices Σi,k, i = 1, 2.
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3.1.1. Computing the evidential partition

Let Ω be the set of the so far existing clusters. Given the
centers and the covariance matrices, the degree of belief re-
garding the membership of the k-th data point to each possi-
ble subset of clusters Ai ∈ 2Ω\∅, can be computed as in the
evidential evolving clustering algorithm (E2GK) (Serir et al.,
2012):

mik =
|Ai|−1 · d−2

ik∑
Al 6=∅

|Al|−1 · d−2
lk + δ−2

, (6)

and the mass assigned to the emptyset is equal to:

m∅k = 1−
∑
Ai 6=∅

mik , (7)

where dik denotes the Mahalanobis-like distance between
data point zk and subset Ai, and δ ∈ R+ controls the amount
of data considered as outliers. the distance dik is computed
by first defining the center ofAi as the barycenter vi,k of clus-
ters’ centers composing Ai 2. The corresponding covariance
matrix Σi,k can then be computed as:

Σi,k =
1

N − 1
·
N∑
k=1

∑
Aj3ωi

(zk − vi,k) · (zk − vi,k)T , (8)

and the distance di,k is given by:

d2
ik = ‖zk − vi,k‖2Si

= (zk − vi,k) · Si · (zk − vi,k)T ,

(9a)

Si,k = [det(Σi,k)]
1/n · Σ−1

i,k , (9b)
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Figure 2. Centers of subsets of clusters in Ω.

Remark 1 Only singleton focal elements (clusters ωk ∈ Ω)
are associated with centroids but the particularity of the BBA
computation holds in the consideration of virtual centroids

located at the barycenters of subsets of clusters (Masson &
Denoeux, 2008). This makes the proposed approach differ-
ent from usual possibilistic and probabilistic clustering ap-
proaches.

3.1.2. Initializing the local models

Let Xi be the set of input points belonging to the i-th cluster,
Yi the corresponding outputs, and θi the parameters of the
local linear model for the i-th cluster that can be optimized
by a standard least squared approach:

θi =
(
XT
i ·Xi

)−1 ·XT
i · Yi (10)

After completing the initialization, E2GKpro can be run on-
line: if the observed data is an input-output couple zk then
the clustering and the local models can be updated, whereas
if only the input data xk is observed, a prediction ŷk of the
output can be estimated.

3.2. Online clustering phase

This phase aims at detecting the current operating regions of
the system. The number of clusters c can evolve, in partic-
ular when a new operating region is detected. At the cur-
rent instant k, each cluster i = 1 . . . c is identified by two
parameters: a center vi,k ∈ Rn and a covariance matrix
Σi,k ∈ Rn × Rn, both adapted according to (xk, yk). This
phase relies on the evidential evolving clustering algorithm
called E2GK (Serir et al., 2012).

When a new input-output datum zk is observed, the data
structure can be updated. The boundary of each cluster i is
first estimated by computing its radius: The radius ri of the
i-th cluster is computed by:

ri = median
∀zk∈ i-th cluster and λik>c−1

‖zk − vi,k‖Si
, (11)

where λik is the confidence degree that point xk belongs to a
singleton cluster (ωi ∈ Ω) estimated by the pignistic transfor-
mation (Eq. 5) (Serir et al., 2012):

λi,k =
∑

Aj ,ωi∈Aj

mj,k

|Aj |
(12)

The closest cluster to zk is then found by:

p =
c

argmin
i=1

d2
ik (13)

Once cluster p is found, two cases are possible:

• Case 1: d2
pk ≤ rp, i.e. zk belongs to an existing cluster,

inducing an update of the p-th cluster:

vp,k+1 = vp,k + θ ·∆ , (14)

where ∆ = zk−vp,k and θ ∈ [0, 1] is the updating rate.
The inverse of the covariance matrix and its determinant
can be recursively adapted by (Georgieva & Filev, 2009):

Σ−1
p,k+1 =

(
I −

θ · Σ−1
p,k ·∆T ·∆
ξ

)
·Σ−1

p,k ·
1

1− θ
, (15)
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where I is the identity matrix and

ξ = 1− θ + θ ·∆ · Σ−1
p,k ·∆

T (16)

and

det (Σp,k+1) = (1− θ)n−1 · det (Σp,k) · ξ. (17)

The partition matrix can then be computed (Eq. 9b, 6
and 7).

• Case 2: d2
pk > rp, i.e. zk is too far from any exist-

ing cluster, involving the creation and the validation of a
new cluster: the number of clusters is incremented and
the incoming data zk is chosen as the center of the new
cluster, whose parameters are initialized as those of the
closest cluster p:

c← c+ 1 , (18a)
vc,k+1 = zk , (18b)

Σc,k+1 = Σp,k . (18c)

In (Serir et al., 2012), a constraint of validity of the par-
tition was added by imposing that each cluster in the
new partition has a minimum of points denoted Ptol and
is simply removed otherwise. Doing so, the number of
clusters can increase or decrease explains a better mod-
eling of the data structure (Serir et al., 2012). This flexi-
bility guarantees the validity of both the covariance ma-
trices and the local models.

3.3. Online Regression phase

In this phase, the local linear models corresponding to each
cluster are updated. A local model relates xk to yk such that,
given only the input xk, the predicted output ŷk is as close
as possible to the true value yk. Therefore, in this phase, the
goal is to optimize the vector of parameters of the i-th local
model.

The estimates of the parameters of the local linear models at
a given instant k, πi,k = [ai0,k ai1,k ai2,k . . . ain,k]T are
computed by a recursive least squared approach, given their
previous estimates πi,k−1 and the new input-output vector zk:

Ci,k = Ci,k−1 −
λi(xk−1) · Ci,k−1 · xT

e,k−1 · xe,k−1 · Ci,k−1

1 + λi(xk−1) · xT
e,k−1 · Ci,k−1 · xe,k−1

(19a)

π̂i,k = π̂i,k−1 + Ci,k · xe,k−1 · λi(xk−1) ·
(
yk − xT

e,k−1 · π̂i,k−1

)
(19b)

with k > 2 (time-step), i = [1, c] (c is the number of clusters
= the number of local models), xe,k = [1;xk] is the extended
input data vector, and Ci,k ∈ R(n+1)×(n+1) is the covariance
matrix of the i-th local model at time k, which is updated
by the Ricatti equation as in the Kalman filter. The initial
conditions (k = 1) are set to π̂1 = 0 and ci,1 = α · I , where I
is the identity matrix and α a large value (for example 100).

3.4. Prediction phase

Given an input datum xk, the goal of the prediction phase
is to which estimate the value ŷk taken by the output. The
prediction is computed by a simple weighted sum of the local
linear models, where the weights are provided directly by the
clustering phase:

ŷk = ΨT · θ (20)

where Ψ = [λ1,k · xek; . . . ;λi,k · xek; . . . ;λi,c · xek] is the
vector of the inputs weighted by the normalized activation
degrees of the local models, and θ = [π1,k; . . . ;πi,k;πc,k] is
the vector of the parameters of the linear local models.

Remark 2 When the observed datum at instant k is an
input-output couple zk, then the clustering and the local mod-
els can be updated, whereas the prediction of the output ŷk
can be estimated when only the input datum xk is observed.

4. APPLICATION ON A REAL-WORLD DATASET

To demonstrate the performance of the proposed method, a
real-world multi-dimensional case is considered. E2GKpro
is implemented on a dataset provided by the PRONOSTIA
platform described in the sequel.

4.1. Description of PRONOSTIA

PRONOSTIA is an experimentation platform (Figure 3) ded-
icated to the test and validation of the machinery prognosis
approaches, focusing on bearing prognostics. It was devel-
oped in the Department of Automatic Control and Micro-
Mechatronic Systems (AS2M) of FEMTO-ST1 institute. The
main objective of PRONOSTIA is to provide real experimen-
tal data (Serir, Ramasso, Nectoux, Bauer, & Zerhouni, 2011)
that characterize the degradation of a ball bearing along its
whole operational life (until fault/failure). The collected data
are vibration and temperature measurements of the rolling
bearing during its functioning mode.

The internal bearing ring is put in rotation, while the exter-
nal bearing ring is maintained fixed. A radial load is applied
on the external bearing ring in order to simulate its function-
ing. To speed up the degradation, the load exceeds the max-
imal load recommended by the supplier. The originality of
this experimental platform lies not only in the conjunction of
the characterization of both the bearing functioning (speed,
torque and radial force) and its degradation (vibrations and
temperature), but also in the possibilities, offered by the plat-
form, to make the operating conditions of the bearing vary
during its useful life. Figure 3(c) depicts a bearing before and
after the experiment.

The bearing operating conditions are determined by instan-
taneous measures of the radial force applied on the bearing,

1Franche-Comte, Electronics, Mechanics, Thermal Processing, Optics - Sci-
ence and Technology
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(a) (b)

(c) (d)

Figure 3. 3(a) The PRONOSTIA platform, 3(b) close-up
view on sensors for degradation measurement, 3(c) example
of degraded bearings and 3(d) the software for degradation
analysis.

the rotation speed of the shaft handling the bearing, and of
the torque inflicted on the bearing. During a test, the rolling
bearing starts from its nominal mode until the fault state. The
bearing behavior is measured using different types of sensors
(Figure 3(b)) such as miniaturized acceleration sensors and
temperature probe.

The raw signals provided by the sensors are processed in
order to extract relevant information concerning bearings
states. Several techniques have been implemented and gath-
ered in a signal processing toolbox with Matlab (Fig. 3(d)):
time-domain methods (RMS, skewness and kurtosis, crest
factor, K-factor, Peak-to-Peak), frequency-domain meth-
ods (spectral and cepstrum analysis, envelope detection),
time-frequency domain (short-time Fourier transform) and
wavelets (discrete transform).

4.2. Prognostic on PRONOSTIA

The experiments are conducted on data used for the
IEEE PHM 2012 Prognostic Data Challenge provided by
PRONOSTIA and available on its dedicated website2. More
precisely, the data related to the first functioning condition
are used. From the horizontal accelerometer data, two fea-
tures are generated and used for testing (Fig. 4):

• The RMS which is computed at a given time k in a win-
dow of size 50. Let S be the signal of the accelerometer
and µ(SW ) its average value, then:

RMS(k) =

√√√√ 1

W

k∑
i=k−W+1

(S(i)− µ(SW ))
2 (21)

2http://www.femto-st.fr/ieee-PHM2012-data
-challenge.
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Figure 4. A set of data obtained from the PRONOSTIA plat-
form.

• The mean value of the power spectral density in the same
window as the RMS, denoted PSD(k).

The data depict a typical behavior of wear with a small
amount of data with high variance close to the end of the ex-
periment (top, right-hand side), while the normal behavior is
represented by a larger amount of data points gathered in a
smaller space (bottom, left-hand side). The variance is partly
due to the high level of noise generated by the vibrations dur-
ing the experiment.

Let x(k) = [RMS(k) PSD(k)]T the feature vector at in-
stant k. The goal is to predict xRMS(k+100) and xPSD(k+
100) given xin = [x(k−18) x(k−12) x(k−6) x(k)]T. For
each data point, xin is a vector with 4 × 2 elements and the
output vector is xout = [xRMS(k+ 100) xPSD(k+ 100)]T.
The clustering is performed in the input-output space com-
posed of 10 elements. Given an input data vector (with 8 el-
ements), the prediction is estimated by projecting the centers
and the covariance matrix onto the input space, then comput-
ing the degree of membership to each cluster, followed by the
regression.

The engine is launched and the bearing is gradually degraded.
The data are processed along time by E2GKpro, so that clus-
ters representing operating regions are created and the lo-
cal models estimated. Only one experiment is used to tune
the parameters of E2GKpro. The data related to the training
dataset is given in Figure 4. The local models are updated as
displayed in Figure 5 for the four first rules. The local model
being initialized, the predictions 100 steps ahead can be es-
timated. The result of the prediction on the training data is
depicted on Figure 6 (NDEI = 0.4986).

The second experiment is then used as a testing dataset. An
interesting characteristic of the PRONOSTIA’s data holds
in the fact that all experiments depict different degradation
trends, although bearings with similar mechanical properties
were used. An illustration of this variability is represented
in Figure 7. In this kind of application, the use of online
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Figure 5. Evolution of the parameters for rules 1 to 4.
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Figure 7. Illustration of high variability: training and testing
data.

methods is thus well justified. This figure also shows the po-
sition of the clusters found during both training and testing.
In the latter case, E2GKpro starts with the local models esti-
mated during the former but E2GKpro still adapts the models
accounting for new clusters in the new operating regions en-
countered in the testing dataset.

The result of the prediction on the second experiment (with
features depicted in Figure 4 and on the left-hand side of Fig-
ure 7) is shown in Figure 6. In this example, E2GKpro gen-
erates smooth predictions, which appear useful in this real-
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world application because it gives the global trend of the
functioning behavior. Another interesting aspect is the up-
dated set of operating regions found during testing (Figure 7),
which can then be used for another experiment.

5. CONCLUSION

An evidential approach to analyze complex systems behav-
ior was proposed in the context of sequential data. The pro-
posed approach is in line with evolving systems modeling
approaches and consists in three main phases performed on-
line: 1) the on-line clustering of the data describing the sys-
tem to determine the different operating regions, 2) the cre-
ation, adaptation or removing of models locally estimated
for each cluster, and 3) the prediction of the future evolu-
tion. E2GKpro was implemented on a real-world dataset pro-
vided by PRONOSTIA platform. The results demonstrated
the ability of the proposed method for an online segmenta-
tion of multi-dimensional time-series and reliable predictions.
Further comparative studies have shown the great interest of
using belief functions. In particular, the number of rules is
decreased compared to usual approaches, while ensuring lim-
ited error by using the concept of virtual centroids to repre-
sent transitions between operating regions.
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