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ABSTRACT 

Diagnosis and prognosis methodologies have used dynamic 
Bayesian networks (DBNs) to fuse many types of 
information. These methodologies, however, fuse problem-
specific information and focus only on a subset of 
information types. By using only a subset of information, 
the interactions between or individual behaviors of 
subsystems, components, and faults may not be fully 
realized. In this paper, a general framework for system level 
diagnosis and prognosis of a mechanical system in the 
presence of heterogeneous information using dynamic 
Bayesian network (DBN) is proposed. Due to their ability to 
fuse heterogeneous information — information in a variety 
of formats from various sources — and give a probabilistic 
representation of a system, DBNs provide a platform 
naturally suited for diagnosis and uncertainty quantification. 
In the proposed methodology, a DBN is first constructed via 
an established machine learning algorithm from 
heterogeneous information. The DBN is then used to track 
the system and detect faults by monitoring the Bayes’ factor 
of the system state estimate. When a fault occurs, the 
underlying system model changes, and the Bayes’ factor of 
the DBN system model decreases. The state estimate 
provided by tracking indicates the most likely fault scenario 
and quantifies the diagnosis uncertainty. Estimation of 
remaining useful life and quantification of uncertainty in 
prognosis can then proceed based upon the diagnosis 
results. The proposed methodology is then demonstrated 
using a cantilever beam example with a possible loose bolt 
at the connection or a crack in the middle of the span.  

1. INTRODUCTION 

Diagnosis and prognosis have become increasingly 
important in the quest for safer, more intelligent, more 
efficient, and more cost effective systems. Accurate 

diagnosis and prognosis are integral parts of system 
maintenance, operation, and design. Condition-based 
maintenance using automated diagnosis has gained traction 
in the belief that such a program can improve the safety and 
minimize the maintenance costs of a system. Mission-level 
decision making can also benefit from improved diagnosis 
and prognosis capabilities. Systems designed for prognosis 
and health management (PHM) also stand to benefit from 
improved diagnosis and prognosis.  
 
One important requirement for a PHM methodology is the 
ability to utilize existing information about a system. Such 
information may be found in the form of expert opinion, 
operational and laboratory data, reliability data, and 
mathematical models. This information needs to be 
integrated into a system-level approach to better understand 
interactions between subsystems and components and make 
all of the information available for system-level  diagnosis 
and prognosis procedures.   
 
In previous work, static Bayesian networks (BNs) have 
commonly been used for diagnosis, particularly in medicine 
(e.g. Shwe et al. (Shwe et al., 1991)). Sahin et al. (Sahin, 
Yavuz, Arnavut, & Uluyol, 2007) learned a static BN of an 
aircraft engine using particle swarm optimization and used 
the learned BN for diagnosis. Examples of DBNs in 
diagnosis and prognosis are Jha et al. (Jha, Wenchao Li, & 
Seshia, 2009) who learn a DBN and use it to find transient 
faults, Przytula and Choi (Przytula & Choi, 2008) who use 
DBNs to obtain discrete qualitative measures of prognosis, 
McNaught and Zagorecki (McNaught & Zagorecki, 2009) 
who use a DBN of discrete variables to aid maintenance 
decisions, and Camci and Chinnam (Camci & Chinnam, 
2005) who use hierarchical hidden Markov models for 
diagnosis and prognosis of machine parts. Straub (Straub, 
2009) integrates model parameters into a DBN for modeling 
crack growth  However, existing DBN-based diagnosis and 
prognosis methodologies have focused on problems with a 
limited universe of information. In mechanical applications, 
many diverse sources of information must be integrated into 
the DBN. 

_____________________ 
Bartram and Mahadevan. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited. 
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The primary contribution of this paper is a methodology for 
performing diagnosis and prognosis of a mechanical system 
in the presence of uncertainty and in the presence of 
heterogeneous information. Heterogeneous information 
consists of information from various sources in varying 
formats such as expert opinion, laboratory and operational 
data, existing reliability data, and mathematical models. The 
methodology uses dynamic Bayesian networks (DBNs) for 
system modeling.  

 
The remainder of the paper is organized as follows. First, 
DBNs and the process of building a DBN model from 
heterogeneous information are briefly explained. Model-
based diagnosis using the DBN model and uncertainty 
quantification in diagnosis are then discussed. The proposed 
methodology is demonstrated for a cantilever beam. 

2. PROPOSED METHODOLOGY 

In this paper a methodology for performing diagnosis and 
prognosis of a mechanical system in the presence of 
heterogeneous information is proposed. First, a DBN model 
of the system is constructed. This model is used in 
conjunction with a particle filter to track the system. Binary 
faults are detected based Bayes’ factors and isolated using 
the state estimate of the system. The future trajectory of the 
system is then estimated via particle filtering   

2.1. Bayesian Networks & Dynamic Bayesian Networks 

A static BN, also referred to as a belief network and directed 
acyclic graph (DAG), is a probabilistic graphical 
representation of a set of random variables and their 
conditional dependencies. Variables are represented by 
nodes (vertices) and conditional dependence is represented 
by directed edges. Unconnected nodes are conditionally 
independent of each other. The acyclic requirement means 
that no paths exist in the graph where, starting at node X୧, it 
is possible to return to node X୧. 
 
A BN is a representation of the joint probability space U 
containing variables Xଵ, … , X୬ . The joint probability 
distribution is represented in factored form as  

 

 pሺXଵ, … , X୬ሻ ൌෑpሺX୧|Π୧ሻ
୬

୧ୀଵ

 (1) 

 
where Π୧  is the set of nodes on which X୧  is conditionally 
dependent, so pሺX୧|Xଵ, … , X୧ିଵሻ ൌ pሺX୧|Π୧ሻ. The nodes in 
Π୧ are commonly referred to as the parents of node i. Note 
that this definition of a BN depends on the variable 
ordering.  
 
The factored formulation in Eq. (1) is readily extended to 
handle different types of multivariate continuous 

distributions such as the Gaussian as well as distributions 
consisting of Gaussian and discrete variables.  
 
In a DBN, the variable ܆ሾݐሿ is the value of X at time t. The 
probability distribution describing X on the interval [0, ∞) 
is very complex, as it is over ⋃ ሿ୲ୀஶݐሾ܆

୲ୀ଴ . Using the Markov 
assumption simplifies this distribution by assuming that 
only the present state of the variable ܆ሾݐሿ is necessary to 
estimate ܆ሾݐ ൅ 1ሿ  and thus ݌ሺ܆ሾݐ ൅ 1ሿ|܆ሾ0ሿ…܆ሾݐሿሻ ൌ
ݐሾ܆ሺ݌ ൅ 1ሿ|܆ሾݐሿሻ. Additionally, the process is assumed to be 
stationary, meaning that ݌ሺ܆ሾݐ ൅ 1ሿ|܆ሾݐሿሻ is independent of 
t. This approach to modeling DBNs is developed by 
Friedman et al. (Friedman, Murphy, & Russell, 1998). 
 
A DBN may be composed of all discrete variables, all 
continuous variables, or hybrid set of discrete and 
continuous variables. For modeling systems with faults, it is 
advantageous to consider a hybrid system, typically with the 
continuous variables being modeled as Gaussian and the 
faults being discrete. Theory for such networks is developed 
in Heckerman and Geiger (Heckerman & Geiger, 1995) and 
Lauritzen (Lauritzen, 1992). 

2.2. Heterogeneous Information 

An important feature of Bayesian analysis is the ability to 
encode mixed information types. The graphical and 
probabilistic nature of BNs provides many opportunities to 
integrate information into the model.  This allows them to 
benefit from heterogeneous information, i.e. information 
entrained in a variety of sources and formats. These sources 
include observational and experimental data, published 
reliability data, mathematical behavior models of 
components or subsystems, or expert opinion. Existing 
research has not fully exploited heterogeneous information, 
especially with respect to building DBN models for 
diagnosis and prognosis. The following sections summarize 
heterogeneous information and its integration into a DBN 
model.  

2.2.1. Expert Opinion 

The first information type used in BN and DBN learning is 
expert opinion. This information is typically elicited from a 
domain expert who can provide assumptions about the 
system variables, such as what variables to be modeled and 
what distributions to model them with. An expert may even 
be able to provide a network structure and/or distribution 
parameters. 

2.2.2. Operational Data 

Operational (observational) data is data collected through 
passive observation of a system during its operation. The 
system is allowed to operate naturally without external 
intervention. Each case of operational data is a set of values 
for each variable. A set of cases forms a database. This data 
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is included in the network via Bayesian network structure 
and parameter learning algorithms. 

2.2.3. Laboratory Data 

Laboratory (experimental, interventional) data is obtained 
while observing the system under outside intervention. 
Outside intervention comes in the form of fixing the value 
of one or more of the system variables. An intervention 
shows how a particular variable assuming a particular value 
affects the behavior of the system but does not provide any 
insight as to how likely that variable is to naturally assume a 
particular value. This data is included in the network via 
Bayesian network structure and parameter learning 
algorithms. 

2.2.4. Published Reliability Data 

In some instances, reliability data may be available for 
certain system components. Reliability data is used to 
establish prior distributions for specific system faults or 
update distribution parameters of faults in a DBN as time 
passes. Reliability data may take on several forms including 
mean time between unscheduled removal (MTBUR) and 
mean time between unscheduled failures (MTBUF) or more 
simple measures such as failure rate and failure mode 
distribution.  

2.2.5. Mathematical Behavior Models 

Mathematical models may contain useful information for 
improving the system model. Mathematical models may 
either be physics-based (e.g. finite element or bond graph) 
or data-based/empirical (neural network, BN/DBN). They 
can be used to obtain reliability data, calculate values for 
immeasurable system variables (e.g. stress intensity factor 
or structural damping), or otherwise make modifications to 
the network.  
 
An example mathematical model is the two-term 
exponential model,  
 

 
ሻݔሺݕ ൌ ஻௫݁ܣ ൅  ஽௫ (2)݁ܥ

where A, B, C, D are model parameters to be estimated from 
data. To integrate this model into a DBN, the parameters for 
this model must be included as variables in the DBN. 
Through simulation, it has been determined that this model 
provides a suitable fit for modeling the length of a fatigue 
crack as it grows with the number of load cycles or the 
deflection of a cantilever beam with a growing crack.  

2.2.6. Summary of Heterogeneous Information 
Integration 

The information types discussed are used in concert with a 
DBN learning procedure to create a system model. Prior 

domain knowledge is the starting point for determining 
basic assumptions about the network, such as whether to use 
all discrete variables, all Gaussian variables, or a hybrid 
network. Any structural rules (e.g. banning certain nodes 
from being parent nodes) for the network need to be defined 
at this point. Once the basic assumptions are in place, 
operational and laboratory data and calculated data from 
mathematical models may then be used to determine the 
best structure for the DBN and the distribution parameters 
of the network. Reliability data and mathematical reliability 
models can then be used to augment probability 
distributions for some faults.  

2.3. Learning Bayesian Networks & Dynamic Bayesian 
Networks 

Learning BNs and DBNs consists of learning the structure 
of a network which defines the conditional independence 
relationships between variables and learning the distribution 
parameters of the network. Algorithms have been developed 
that can learn the structure and parameters for networks 
composed of discrete and continuous variables as well as 
hidden variables and missing data. 

2.3.1. Learning a Static BN 

Initially, it is assumed that all the variables are independent 
with unknown distributions. After gathering all available 
expert opinion about the variables (distribution types, 
constraints on the network structure), the structure learning 
algorithm evaluates any laboratory and experimental data 
available to determine the system structure of the system 
BN. The laboratory and experimental data along with any 
reliability data or mathematical models are used to 
determine the distribution parameters of the network. 

One of the first algorithms for learning a BN is the K2 
algorithm by Cooper and Herskovits (Cooper & Herskovits, 
1992). The algorithm requires placing the variables in a 
fixed order. The variable that is first in the order can have 
no parents and subsequent variables in the ordering may 
have the preceding nodes as parents. The algorithm analyzes 
each node, attempting to determine which set of parents 
maximizes some scoring metric for the local structure (node 
+ parents). The scoring metric computes the probability of 
observing the data given that local structure (essentially, a 
Bayes’ factor). Once each node has been evaluated, the 
collection of local structures is combined into a global 
structure for the network. Other algorithms are available 
such as conditional independence testing (de Campos, 2006) 
or expectation-maximization (EM) methods (Friedman, 
1998). EM methods can handle situations where data is 
missing or variables are unobservable.  

2.3.2. Learning a Dynamic BN 

DBN learning generally consists of learning the structure of 
a transition network which defines the relationships between 



Annual Conference of Prognostics and Health Management Society 2012 
 

4 

variables in different time slices and learning the parameters 
of this network. Variations of several algorithms have been 
developed that can handle various combinations of discrete 
and continuous variables. The basic methodology for DBN 
structure learning followed in this paper is that given by 
Friedman et al. (Friedman et al., 1998). 

Structure learning in a DBN is similar to that in a static BN. 
The observations for a dynamic system may include 
multiple time histories of instantiations of the system. By 
lagging each time history individually, data for a variable at 
t and t + 1 are obtained. After each time history is lagged, 
all the time histories can be combined into a database. In 
this database, a data case represents simultaneous 
observations of all the variables at a discrete point in time. 
Note that for the purpose of learning, it is here assumed that 

 

Figure 1. DBN before and after learning. 
  

all the variables are observable. In general this may not be 
true. 

Consider the cantilever beam model. Time series of 
measurements are collected for each beam. In this case, it is 
desirable not only to seed the faults (i.e. loosen the bolt 
manually), but also to observe healthy beams over time as 
they are loaded and then begin to form cracks or have a bolt 
gradually loosen. Say evaluating 100 beams results in 100 
time series of data. Each time series of data is lagged 
individually so as to create e.g. B(t) and B(t+1). Instead of 5 
variables per beam, there are now 10.  Then, the data for 
100 sets of 10 variables are combined into a database for 
learning the DBN structure. Fig. 1 shows the initial 
assumption of the variables being independent and the 
structure after learning. 

2.4. Diagnosis 

Diagnosis is the process of detecting and isolating faults in a 
system and quantifying their magnitudes. Detection and 
isolation can be performed using a BN or DBN model of the 
system which treats faults as binary (true or false). 

In detection, it is desired to determine the state of the 
system, including the states of potentially unobservable 
variables (faults). First, the case of a static system is 
considered followed by the dynamic case. 

2.4.1. Diagnosis of a Static System 

Diagnosis of a static system using a BN is a relatively 
straightforward problem. The purpose of diagnosis is to 
determine values of the unknown parameters (hidden state) 
from the measurements. Given observations of observable 
variables, the state of unobservable variables, which are 
hidden, can be inferred using Bayes’ Theorem. The state of 
the fault values that best explains the observations is taken 
as the fault state. Inference is automated using algorithms 
such as the junction tree algorithm for exact inference or 
Monte Carlo-based approaches for approximate inference. 
Static BN diagnosis has been implemented in e.g. medical 
diagnosis. 

2.4.2. Diagnosis of a Dynamic System 

Diagnosis of a dynamic system is built around the concept 
of tracking. First, the tracking problem is explained as well 
as a Monte Carlo solution to the problem. Then, it is 
explained how the results of tracking can be used to detect 
and isolate faults in the system. 

2.4.2.1 Filtering 
 
Diagnosis of a dynamic system reduces to the problem of 
filtering the state of the system over time, as opposed to 
inferring the state at once, as for a static system. Filtering 
combines theoretical system state estimates with noisy  
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measurements to estimate the true state of the system. The 
state estimate includes estimates of the states of faults, 
whose states are otherwise unknown, which is why tracking 
can be used for diagnosis.  The general tracking problem, 
explained by Arulampalam et al. (Arulampalam, Maskell, & 
Gordon, 2002) takes the form of a recursive Bayesian filter, 
where the prior pdf of the current state estimate, having 
been constructed from previous state estimates, is updated 
using a current measurement. This is also known as a 
predictor-corrector algorithm. The state estimate is often 
called the belief state due to the Bayesian nature of the 
estimation. 
 
More formally, consider the kth state estimate ܠ௞ given by 
the state model ܎௞ିଵሺܠ௞ିଵ, ௞ିଵሻܞ , where ܠ௞ିଵ  is the 
previous state estimate and ܞ௞ିଵ  is an i.i.d process noise 
sequence. It is desired to determine ܠ௞  using the 
measurements z୩  given by the measurement model 
,௞ܠ௞ሺܐ ௞ሻܖ  where ܖ௞  is an i.i.d measurement noise 
sequence.  In a Bayesian sense, this translates to finding the 
belief state, the pdf ݌ሺܠ௞|܈ଵ:௞ሻ , where ܈ଵ:௞  are the 
measurements from 1:k. The prior pdf ݌ሺܠ଴|ܢ଴ሻ ≡  ଴ሻܠሺ݌
since ܢ଴ is a set of no measurements. 
 
If ݌ሺܠ௞ିଵ|܈ଵ:௞ିଵሻ is available, the pdf ݌ሺܠ௞|܈ଵ:௞ିଵሻ may be 
estimated by the Chapman-Kolmogorov equation 

 

ଵ:௞ିଵሻ܈|௞ܠሺ݌ ൌ 

(3) 
න݌ሺܠ௞|ܠ௞ିଵሻ݌ሺܠ௞ିଵ|܈ଵ:௞ିଵሻ݀ܠ௞ିଵ 

 

where ݌ሺܠ௞|ܠ௞ିଵሻ  is the probabilistic model defined by 
 .௞ିଵܞ ௞ିଵ using the known statistics of the process noise܎
Eq. (1) makes use of the Markov property by having 
,୩ିଵܠ|௞ܠሺ݌ ଵ:௞ିଵሻ܈ ൌ ௞ିଵሻܠ|௞ܠሺ݌  The estimation of the 
prediction pdf ݌ሺܠ௞|܈ଵ:௞ିଵሻ   is known as the prediction 
stage. 
 
Once the measurement ܢ௞ is available, ݌ሺܠ௞|܈ଵ:௞ሻ   is 
determined in the update stage using Bayes’ rule as 
 
ଵ:௞ሻ ൌ܈|௞ܠሺ݌ ,௞ܢ|௞ܠሺ݌  ଵ:௞ିଵሻ܈

 

ൌ
,୩ܠ|୩ܢሺ݌ ଵ:௞ିଵሻ܈|௞ିଵܠሺ݌ଵ:௞ିଵሻ܈

ଵ:௞ିଵሻ܈|௞ܢሺ݌
 

ൌ
ଵ:௞ିଵሻ܈|௞ିଵܠሺ݌௞ሻܠ|௞ܢሺ݌

ଵ:௞ିଵሻ܈|௞ܢሺ݌
 

(4) 

where ݌ሺܢ௞|܈ଵ:௞ିଵሻ ൌ ௞ܠଵ:௞ିଵሻ݀܈|௞ܠሺ݌௞ሻܠ|௞ܢሺ݌׬  is a 
normalizing constant. The likelihood function ݌ሺܢ௞|ܠ௞ሻ is  
the probabilistic measurement model defined by ܐ௞ and the 
known statistics of the measurement noise ܖ௞. The optimal  
state estimated may then be computed as the maximum a 
posteriori (MAP) estimate, ܽܠݔܽ݉݃ݎೖ݌ሺܠ௞|܈ଵ:௞ሻ , or the 
minimum mean-square error (MMSE), ܧሼܠ௞|܈ଵ:௞ሽ ൌ
׬ ௞ܠ ∙  .௞ (Ristic & Arulampalam, 2004)ܠଵ:௞ሻ݀܈|௞ܠሺ݌
 
At first glance it appears that the structure of a DBN might 
allow for easy tracking of the belief state, perhaps similar to 
a static BN, and providing system-level diagnosis with 
minimal effort. Unfortunately, even with a structured 
process, the belief state quickly becomes very complex after 
only a couple of updates, except in degenerate cases, as over  
time the system becomes highly correlated (Boyen & 
Koller, 1998). Only specific implementations of the 
recursive filter such as the Kalman filter or grid-based 
methods provide analytical solutions. Even more, the 
computational expense of exact inference algorithms is 
exponential in the number of nodes for a discrete DBN and 
even worse for hybrid or continuous distribution DBNs. 
Exact inference in the conditional Gaussian distributions 
used in this paper is NP-hard (Lerner, 2001). Thus, it is 
necessary to pursue approximate inference algorithms. 
Particle filtering is one technique that makes the tracking 
problem tractable. 
 
Particle filtering, i.e. sequential Monte Carlo (MC), is a 
method for approximating the distribution of the belief state. 
Common particle filtering method are based on sequential 
importance sampling (SIS), which improves upon the basic 
sequential MC by weighting point masses (particles) 
according to their importance sampling density, thus 
focusing on the samples that affect the posterior belief state 
the most. A comprehensive tutorial on particle filters is 
given by Ristic et al. (Ristic & Arulampalam, 2004). 
 

Figure 2. Cantilever beam DBN in filtering. 
Gray nodes are unobservable. 
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A summary of the SIS algorithm for one time step is as 
follows. A previous (or initial if k = 1) set of N weights 
௞ିଵݓ
௜  and N corresponding particles ܠ௞ିଵ

௜  are given initially 
or known from the previous time step, where i denotes the 
ith particle. N samples are drawn from the importance 
distribution,  ݍ൫ܠ௞

௜ หܠ௞ିଵ
௜ , ௞൯ܢ , where ܢ௞  are the 

measurements at the kth time step. Unnormalized weights ݓ෥௞
௜  

are then computed up to a normalizing constant using a ratio 
of the distribution of the state estimate to the distribution of 
the importance sampling density. The weights ݓ෥௞

௜  are then 
normalized so that their sum is equal to 1. The normalized 
weights ݓ௞

௜  and points ܠ௞
௜  form an approximation to the state 

estimate ݌ሺܠ௞|ܢ௞ሻ. Two common choices of the importance 
density ݍ൫ܠ௞

௜ หܠ௞ିଵ
௜ , ௞൯ܢ  are the prior ݌൫ܠ௞

௜ หܠ௞ିଵ
௜ ൯  and the 

likelihood ݌൫ܢ௞หܠ௞
௜ ൯.  

 
Many variations of the SIS PF exist using different priors, 
resampling techniques, etc. For the conditional Gaussian 
system model employed in this paper, also called a jump 
Markov model, hybrid state model, or switching system, a 
dynamic multiple model (MM) filter is appropriate for 
tracking. The multiple model particle filter (MMPF) given 
in Ristic et al. (Ristic & Arulampalam, 2004)  implements 
this filter. This particle filter is a generalization of a standard 
particle filter and is equivalent to a standard particle filter 
when there is only one underlying discrete state. Each 
discrete state in r௞ ∈ R௞  represents an operating mode. 
Before doing SIS for the continuous components of the 
state, an operating mode is selected based on the 
probabilities of those operating modes occurring.  
 
Considering the DBN dynamic beam model  in Fig. 5, the 
state of the unobservable (gray) nodes at t + 1 is first 
predicted based on the state of the unobservable nodes at t. 
Next, the measurements P ൌ ௧ାଵ and δ݌ ൌ  ௧ାଵ are used toߜ
update (correct) the predictions and obtain the state estimate 
of the unobservable nodes. The process  is implemented 
using a MMPF, which allows tracking of the discrete fault B 
as well as the continuous variables crack length, a, and 
stiffness, K. 

2.4.2.2 Fault Detection and Isolation 
 
Given a DBN which can track the system, fault detection 
and isolation may occur in a couple ways. Roychoudhury et 
al. (Roychoudhury, Biswas, & Koutsoukos, 2006) use a 
DBN derived from a bond graph with SIS of the healthy 
system for tracking. The belief state estimate estimates are 
compared with measurements using a statistical hypothesis 
test to detect faults. A qualitative, bond-graph based 
procedure is used to isolate fault candidates. Separate DBNs 
for each fault candidate are then used to quantify the faults 
and determine the most likely fault candidate.  Another 
example is provided by Jha et al. (Jha et al., 2009) who use 
a discrete DBN to determine the most probable explanation 

of transient faults. However, the approach is offline and 
does not require any tracking. Still, it is successful in 
combining consistency and abduction-based diagnosis 
methods. 
 
Bayes’ factors (and related ratios) may be used to detect 
faults. Because the transition model pሺx୩|x୩ିଵሻ  is not 
updated until a fault is diagnosed, after the fault occurs the 
model and measurements diverge and the Bayes’ factor of 
the state estimate decreases. Thus, the Bayes’ factor may be 
used to indicate the presence of a fault. Vaswani et al. 
(Vaswani, 2004) calculate െ݈݃݋൫ܲݎሺܢ௞|ܢ଴:௞ିଵ,ܯሻ൯  where 
M is the transition model (not updated for the current fault) 
for abrupt faults and use the posterior expected negative log-
likelihood of the state under the prior distribution of the 
state for incipient faults. In both cases a threshold for 
detection is established. Sankararaman and Mahadevan 
(Sankararaman & Mahadevan, 2011) use Bayes’ factors to 
indicate faults and update the Bayes’ factor as new data is 
collected. Again, if the Bayes’ factor crosses a 
predetermined threshold, the fault is then isolated by 
checking the state estimate of the system. Following the 
approach of Sankararaman and Mahadevan (Sankararaman 
& Mahadevan, 2011), the Bayes’ factor is taken as  

 
 

ܤ ൌ
ଵሻܪ|ܦሺݎܲ

଴ሻܪ|ܦሺݎܲ
 (5) 

 
where D is is the set of measurements, ܪ଴ is the no damage 
hypothesis, ܪଵ is the damage hypothesis, and ܲݎሺܪ|ܦଵሻ ൌ
1 െ   ଴ሻ. The probability of damage isܪ|ܦሺݎܲ
 

ሻܦ|ଵܪሺݎܲ ൌ
ଵሻܪଵሻܲሺܪ|ܦሺݎܲ

଴ሻܪ଴ሻܲሺܪ|ܦሺݎܲ ൅ ଵሻܪଵሻܲሺܪ|ܦሺݎܲ
 (6) 

 
If the prior probabilities of ܪ଴ and ܪଵ are assumed to be 0.5, 
Eq. (5) reduces to 
 

 
ሻܦ|ଵܪሺݎܲ ൌ

ܤ
ܤ ൅ 1

 (7) 

 
If a new Bayes’ factor is calculated based on new 
measurement information becoming available, the updated 
probabilities of ܪ଴ and ܪଵ are 
 

ሻܦ|ଵܪሺݎܲ ൌ
ܤ′ܤ

1 ൅ ܤ′ܤ
 (8) 

and 
 

ሻܦ|଴ܪሺݎܲ ൌ
1

1 ൅ ܤ′ܤ
. (9) 

Following the results of Vaswani et al. (Vaswani, 2004), for 
detection of abrupt faults, ܪ଴  and ܪଵ  refer to healthy and 
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unhealthy realizations of the transition model, 
௞ܠሺ݌

௡|ܠ௞ିଵ
௡ , r௞

௡ሻ , and we denote the corresponding Bayes’ 
factor as Bt. For incipient faults, ܪ଴  and ܪଵ  refer to a 
baseline and current value of the state estimate and we 
denote the corresponding Bayes’ factor as Bt. By updating 
both Bayes’ factors and comparing to a threshold 
probability, fault detection can occur. Fault isolation is then 
achieved by determining the MMSE or MAP estimate from 
the state estimated, as approximated by samples and 
weights. After isolation, any parameter changes that need to 
be made to the state transition or measurement models are 
made.  

2.5. Prognosis 

In prognosis, it is desired to make an inference about the 
future distribution of the state of a system given its current 
state and possible future scenarios. As no new 
measurements are available, a Bayesian recursive filter 
which integrates measurement data is no longer necessary. 
The last set of state estimates and measurements are 
propagated through the DBN (as was done with the particle 
filter). The result is an estimate of the future distribution of 
the state variables.   

3. NUMERICAL EXAMPLE 

To illustrate the diagnosis methodology, fault detection, 
isolation, and prognosis  is performed on a cantilever beam 
system subjected repeatedly to a point load at the free end. 
In this system, a crack is growing near the support according 
to Paris’ law (Paris, Gomez, & Anderson, 1961) 

 ݀ܽ
݀ܰ

ൌ  ሻ௠. (10)ܭ∆ሺܥ

where C and m are material dependent constants, a is the 
crack length, N is the number of load cycles, and ∆ܭ is the 
stress intensity factor. 

Additionally, a bolt may become loose at the support, which 
is modeled by removing constraints on finite element model 
boundary conditions for nodes at the support up to a 
distance d from the bottom of the beam. 

3.1.1. Model Construction 

To obtain operational data, 50 load histories were 
constructed containing 100 load cycles each. In these load 
histories, it was assumed that crack length, deflection, load, 
and whether the bolt is loose or tight are observable. For 
each load history, a load P, Paris law parameter m, 
 
 
 
 
 
 

 
 
 
Variable Symbol Distribution 

Bolt state B 
Categorical, binary 
(tight, loose) 

Load P 
Categorical, 
ternary (-.5 kN, -1 
kN, -1.5 kips) 

Crack length parameter A aA Gaussian 
Crack length parameter B aB Gaussian 
Crack length parameter C aC Gaussian 
Crack length parameter D aD Gaussian 
Deflection parameter A δA Gaussian 
Deflection parameter B δB Gaussian 
Deflection parameter C δC Gaussian 
Deflection parameter D δD Gaussian 

 
Table 1. Cantilever beam model variables. 

 
exponential failure rate for the bolt loosening, and elastic 
modulus E (finite element model input) are selected. Paris’ 
law parameter C was held constant across all experiments. 
A crack is initiated near the support of the beam. The beam 
is then repeatedly subjected to load P.  With each 
application of P, the crack grows slightly larger, according 
to Paris’ law. Additionally, there is a growing chance with 
each application of P that the bolt will become loose. The 
severity of damage is determined by d, which is selected 
before each load history. Table 1 describes the distributions 
used to model these variables. A rendering of the system in 
ANSYS is shown in Fig. 6. 
 
A DBN model of the beam (Fig. 3) is systematically 
constructed from heterogeneous information. First expert 
opinion is solicited to determine the variables to be used in 
modeling the system and the structure of the DBN. The 
variables selected to represent the system model are the 
loose bolt indicator variable, B, the load P, the parameters of 
the two-term exponential model describing the crack length, 
a, and the deflection, δ. The two-term parameters of the 
exponential models are estimated over a sliding 10 load 
cycle window from smoothed crack length and deflection 
data. The parameters of the DBN are then calculated via the 
principle of maximum likelihood.  

3.1.2. Diagnosis 

To perform diagnosis, a 100 cycle load history was 
synthesized with P = -.5 kN and known deflection 
parameters, ߜ஺, ,஻ߜ ,஼ߜ ,஽ߜ . The bolt condition, B, crack 
length parameters, ܽ஺, ܽ஻, ܽ஼, ܽ஽ were assumed to be 
unobservable.  The DBN is used in conjunction with a 
MMPF with 200 particles to obtained filtered estimates of 
the system state. After each load cycle, detection 
probabilities corresponding to the loose bolt condition are  Figure 3. Meshed cantilever beam finite element model 
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updated as per Section II.D. The threshold probability of 
detection used is 95%. As the fault considered was abrupt, 
the Bayes’ factor corresponding to the transition model as 
opposed to the belief state was used in detection.  
 

3.1.3 Prognosis 

After the last measurement data has been filtered, the 
system state is estimated 100 cycles into the future. As no 
new measurements are available, a Bayesian recursive filter 
which integrates measurement data is no longer necessary. 
The last set of state estimates and measurements are 
propagated through the DBN (as was done with the particle 
filter) with one estimate per particle. The result is an 
estimate of the future distribution of the model parameters. 
By using Eq. (2) with the model parameters, estimates of the 
crack length and deflection distributions are obtained. The 
model parameters are smoothed offline before estimating 
crack length and deflection so that trends are easier to 
visualize. 

3.1.3. Results and Discussion 

 
Data for the DBN for crack length and deflection used in 
training the DBN are overlaid with the measurement data 
used in diagnosis in Fig. 4. Considering the measurement 
data, the first item to discuss is the smoothness of the crack 
length and deflection curves versus the jagged model 
parameter curves. The jagged curves of particle values for 
the crack length parameters overlaid with the MAP estimate 
and true value are shown in Fig. 5.  This is due to several 
uncertainties in estimating the model parameters. First, the 
curves produced by the FEM model may not be perfectly 
smooth. Locally, parts of the curve may not fit the two-term  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
exponential model as well as others. A limited window of 
data is used in estimating these parameters, resulting 
infurther errors. Also, the optimization procedure used to 
estimate the model parameters induces errors. 
 
The operational data lies in three bands, one for each value 
of P. When the bolt becomes loose, it is important to note 
that the deflection does not fall far outside the range of 
healthy deflection curves. This highlights the importance of 
integrating a mathematical model into this system. The 
parameters of the mathematical model, on the other hand, 
are able to isolate the loose bolt fault shortly after 
occurrence as well as estimate the crack length and 
deflection. The MAP estimate of the bolt condition, the true 
value of the bolt condition, and the measured values of δD, 
which is the variable most strongly connected with the bolt 
condition, are shown in Fig. 6.  
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Figure 4. Deflection data for training DBN (gray lines) 
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0 10 20 30 40 50 60 70 80 90
-1

0

1

a
A

0 10 20 30 40 50 60 70 80 90
-0.02

0

0.02

a
B

0 10 20 30 40 50 60 70 80 90
-1

0

1

a
C

0 10 20 30 40 50 60 70 80 90
-0.02

0

0.02

A
D

Load Cycle

0 10 20 30 40 50 60 70 80 90
Bolt = tight

Bolt = loose
Bolt Condition

 

 

0 10 20 30 40 50 60 70 80 90
0

0.002

0.004

0.006

0.008

0.01

0.012

delta
D

Load Cycle

MAP Estimate
True

Figure 5. Overlay of MAP filtered estimate (gray with 
circles), true values (gray), and filtered estimates (black) for 

crack length parameters 

Figure 6. MAP estimate vs. true value of bolt condition and 
plot of δD when a fault occurs. 
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Prognosis of the system shows how small changes in the 
model parameters result in large amounts of uncertainty in 
prognosis. The prognosis results (Fig. 7) are in line with 
expectations, giving the trends evident in the training data 
(Fig. 4). Figure 8 shows histograms of crack length data 
after 115 and 175 load cycles, showing a gradual shift to 
towards larger crack lengths. Using MAP estimates and 
offline smoothing of the crack length (Fig. 9) and deflection 
parameters enhances the legibility of the plots but can 
induce some error, particularly near the beginning and end 
of a time series.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results show that a DBN-based methodology can be 
used for diagnosis and prognosis of a mechanical system in 
the presence of many different types of information. Where 
other methodologies may exclusively model crack growth or 
detect faults, the DBN-based methodology is capable of 
doing both as it integrates expert opinion, a database of 
observational information, failure rate information, and a 
mathematical model for crack growth and deflection. 
 

4. CONCLUSION 

 
In this paper, a methodology for diagnosis and prognosis of 
a mechanical system in the presence of heterogeneous 
information has been proposed. First, a DBN is constructed 
using heterogeneous information such as expert opinion, 
operational and laboratory data, published reliability data, 
and mathematical models. Next, the DBN is employed for 
filtering the system. Filtering is performed via a particle 
filter. Faults are detected using Bayesian hypothesis testing. 
Then, by determining the MAP estimate of the state, faults 
are isolated. After the diagnosis has been performed, a 
prognosis estimate of the future distribution of the system 
state is obtained. In future work, a hydraulic actuator system 
constructed from heterogeneous information and containing 
multiple fault scenarios will be considered for PHM. 
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Figure 8. Histograms of crack length after 115 and 175 load 
cycles). 
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NOMENCLATURE 

B = Bayes’ factor 
DBN = dynamic Bayesian network 
MAP = Maximum a posteriori estimate 
MMSE = Minimum mean-square estimate 
PF = Particle filter 
SIS = Sequential importance sampling 
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