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ABSTRACT 

Prediction of remaining useful life of a system is important 
for safety and maintenance scheduling. In the physics-based 
prognostics, the accuracy of predicted remaining useful life 
is directly related to that of estimated model parameters. It, 
however, is not a simple task to estimate the model 
parameters because most real systems have multivariate 
model parameters, which are often correlated each other. 
This paper mainly discusses the difference in estimating 
model parameters among different prognostics methods: the 
particle filter method, the overall Bayesian method, and the 
incremental Bayesian method. These methods are based on 
the same theoretical foundation, Bayesian inference, but 
they are different from each other in the sampling scheme 
and/or uncertainty analysis process. A simple analytical 
example and the Paris model for crack growth are used to 
demonstrate the difference among the three methods in 
terms of prognostics metrics. The numerical results show 
that particle filter and overall Bayesian methods outperform 
the incremental Bayesian method. Even though the particle 
filter shows slightly better results in terms of prognostics 
metrics, the overall Bayesian method is efficient when batch 
data exist. 

1. INTRODUCTION 

Structural health monitoring (SHM) facilitates condition-
based maintenance that provides a safe and cost-effective 
strategy by predicting the level of degradation or damage 
without intrusive and time-consuming inspections 
(Giurgiutiu, 2008). Since SHM systems can assess damage 
frequently, they can also be used to predict the future 
behavior of damage, which is important for safety and 

maintenance schedule management. SHM systems can have 
a significant impact on increasing safety by allowing 
evaluation of the system's health status and prediction of the 
remaining useful life (RUL), which is called prognostics. 

In general, prognostics methods can be categorized into 
data-driven (Schwabacher, 2005), physics-based (Luo et al., 
2008), and hybrid (Yan & Lee, 2007) approaches. The data-
driven method that does not use any particular physical 
model is powerful in predicting near-future behaviors, while 
the physics-based method has advantages in predicting long-
term behaviors of the system by identifying model 
parameters. Since fatigue failures slowly progresses, the 
physics-based method fits better than the data-driven 
method. In the physics-based method, model parameter 
estimation has a great effect on evaluating the system’s 
health status and predicting the RUL.  

The objective of this paper is to compare different methods 
in estimating model parameters and predicting RUL: the 
particle filter (PF), the overall Bayesian method (OBM), and 
the recursive Bayesian method (RBM). These methods are 
based on the Bayesian inference in which the uncertainty in 
model parameters can be reduced using SHM data, which 
makes the estimated RUL more reliable. Each method is 
introduced in the following paragraphs. 

PF is also known as a sequential Monte Carlo method 
(Orchard & Vachtsevanos, 2007; DeCastro et al., 2009), for 
sequentially updating a time-dependent system model based 
on Bayesian inference, where the posterior distribution is 
expressed as a number of particles and their weights. PF has 
been widely employed to estimate system states and model 
parameters (Orchard & Vachtsevanos, 2007; DeCastro et al., 
2009; Li et al., 2003; Zio & Peloni, 2011; Gašperin, 2011). 
Although many efforts have been directed to improve PF 
(Wang et al., 2009; Daigle & Goebel, 2011; Storvik, 2002; 
Campillo & Rossi, 2009) only sequential important 
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resampling (SIR) is considered in this paper as it is the most 
commonly used algorithm. 

OBM is to estimate the unknown parameters using a batch 
of measurement data. Samples of the updated posterior 
distribution of the model parameters based on Bayesian 
inference are drawn from a viable sampling method, such as 
the Markov Chain Monte Carlo (MCMC) simulation (An et 
al., 2011; An et al., 2011; Payne, 2005; Park et al., 2010; An 
et al, 2012; Andrieu et al., 2003). RBM is similar to OBM, 
but instead of using the final updated distribution, the 
update is performed incrementally with each measurement 
data. 

It, however, should be noted that the three methods are 
based on the same theoretical background, the Bayesian 
estimation technique. Despite the same theoretical 
background, the results from these methods are different 
from each other. The reason is that the PF and RBM predict 
the time evolution of the growing damage state, while the 
OBM, strictly speaking, is based on the given entire set of 
data, not the time evolution. Another important reason is 
from the difference in the sampling scheme: resampling for 
PF and MCMC for OBM and RBM.  

The purpose of this paper is to discuss the difference 
between the three methods, which has not been founded yet. 
The methods are compared by using a simple analytical 
example as well as the Paris model (Paris & Erdogan, 1963) 
that describes crack growth in a plate under mode I loading, 
and are evaluated by using established prognostics metrics 
(Saxena et al., 2009). The paper is organized as follows. In 
Section 2, PF, OBM, and RBM are introduced with simple 
mathematical example. In Section 3, the differences 
between the three methods, i.e., PF, OBM, and RBM, are 
compared by applying crack growth problem. In Section 4, 
the differences are discussed, and conclusions are presented 
in Section 5. 

2. THREE METHODS FOR BAYESIAN-BASED PROGNOSTICS 

Bayesian inference is a statistical method in which 
observations are used to estimate unknown model 
parameters or system states. The unknown parameters are 
represented as a probability density function (PDF), which 
is updated with observed data. Bayesian inference is based 
on the following Bayes’ theorem (Bayes, 1763):  

( ) ( ) ( )| |p L p∝z zΘ Θ Θ                     (1) 
where Θ  is a vector of model parameters or system states, 
z  is a vector of observed data, ( )|L z Θ  is the likelihood or 

the PDF value of z  conditional on the given Θ , ( )p Θ  is 

the prior PDF of Θ , and ( )|p zΘ  is the posterior PDF of 
Θconditional on z . In the following subsections, three 
Bayesian-based methods, the particle filter (PF), the overall 
Bayesian method (OBM), and the incremental Bayesian 
method (RBM), are explained in a general way. 

2.1. Particle Filter (PF) 

The particle filter (PF, a.k.a. sequential Monte Carlo method 
(Orchard & Vachtsevanos, 2007; DeCastro et al., 2009)) is a 
method of estimating and sequentially updating a time-
dependent system model based on Bayesian inference, 
where the posterior distribution is expressed as a number of 
particles and their weights. In the case of a linear system, 
the exact posterior distribution with a Gaussian noise can be 
obtained analytically using the Kalman filter (Kalman, 
1960) though the convergence of KF largely depends on the 
initial condition of the parameter and variance of the 
parameter. On the other hand, the posterior distribution of a 
non-linear system with non-Gaussian noise cannot be 
obtained exactly. In such a case, there are several 
suboptimal filters such as the extended Kalman filter that 
requires linearization (Ristic, et al., 2004), the multiple 
model filter that performs the state estimation algorithm for 
multiple degradation models (Rago et al., 1998), the 
unscented Kalman filter (Julier & Uhlmann, 1997), and PF 
(Orchard & Vachtsevanos, 2007; DeCastro et al., 2009; Li 
et al., 2003; Zio & Peloni, 2011; Gašperin, 2011) that are 
based on the sampling theory. This paper focuses on the 
original PF because it contains fundamental characteristics 
of other filtering methods. 

It would be better to explain the importance sampling 
method (Glynn & Iglehart, 1989) first to understand PF. In 
sampling-based methods, a number of samples can be used 
to approximate the posterior distribution. In order to 
approximate the distribution better with a limited number of 
samples, the importance sampling method assigns a weight 
to each sample (or particle) in proportion to an arbitrarily 
chosen importance distribution; therefore, the quality of 
estimation depends on the selected importance distribution. 
The weight is expressed as 

( ) ( )
( )

( ) ( )
( )

|i i i
i

i i

L z p
w

q q

π
= =

Θ Θ Θ
Θ

Θ Θ
            (2) 

where ( )iπ Θ  and ( )iq Θ  are i th particle’s PDF value of 
the posterior distribution and an arbitrarily chosen 
importance distribution, respectively. From the viewpoint of 
Bayes’ theorem, it is possible to use the prior distribution as 
an importance distribution because it is already available 
and close to the posterior distribution. Then, the Eq. (2) is 
reduced to the likelihood function by substituting the prior 
( )ip Θ for ( )iq Θ ; this is called the Condensation 

(CONditional DENSity propagATION) algorithm, which is 
employed in this paper. 

PF can be considered as a sequential importance sampling, 
which continuously performs the importance sampling 
whenever a new observed data is available. In addition, a 
resampling process, called sequential importance 
resampling (SIR), is required to solve the degeneracy 
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phenomenon that decreases the accuracy in the posterior 
distribution. In SIR, those particles with a very small weight 
are eliminated, while those particles with a high weight are 
duplicated. 

Conventionally, PF has been used to estimate the system 
state using measurement data given model parameters, 
which are obtained from laboratory tests (Orchard & 
Vachtsevanos, 2007; Zio & Peloni, 2011). However, the 
parameters from laboratory tests can be different from those 
in service due to different conditions. In such a case, PF can 
be used to estimate both the system state and model 
parameters; detailed procedure is as follows (Li et al., 2003; 
Zio & Peloni, 2011):  

 

* Given information: 

 State transition function f  and measurement function 
h : 

( )1, ,k k k kx f x ν−= θ                      (3) 

( ),k k kz h x ω=                           (4) 

where k  is the time step index, kx  is the system state, 

kθ  is a vector of model parameters, kz  is 
measurement data. The measurement function is 
needed when the system state cannot be measured 
directly. kν  and kω  are, respectively, process and 
measurement noise; in the case of Gaussian distribution, 
the noises are represented as ( )~ 0,k pNν σ  and 

( )~ 0,k mNω σ . 

1. Assume initial distribution of 0x  and 0θ . Set k  = 1. 

2. Prediction- First, generate N  particles of kθ  from 

( )1|k kp −θ θ , which means a predicted distribution of 

kθ  conditional on the previous distribution, ( )1kp −θ . It, 
however, should be noted that model parameters 
inherently do not depend on time evolution. Therefore, 
N  particles of kθ  become the same as the previous 
particles. In other words, there is no transition between 

1k−θ  and kθ , only update process is required. Next, 
sample N  particles of kx  based on ( )1| ,k k kp x x − θ , 
that is, N  particles of each variables; process noise 
generated from ( )0, pN σ  as well as 1kx −  and kθ  are 

used in Eq. (3) to obtain N  particles of kx .  

3. Update- Calculate weight for each particle in Step 2. In 
the case that measurement noise is normally distributed 
with zero mean and standard deviation, mσ , the 
likelihood function and weight become as follows: 

( ) ( )( )2

2

1 1| exp
22

i
k ki i

k k k
mm

z h x
L z x

σπσ

 − = − 
  

, θ ,  (5) 

( )
( )1

|

|

i i
k k ki

k N j j
k k kj

L z x
w

L z x
=

=
∑

,θ

, θ
                  (6) 

4. Resample- Resample the particles proportional to their 
weights. Several methods can be used for this purpose, 
and one thing among them is to repeat N  times with 
the following way; (1) construct CDF from the 
likelihood function in Eq. (5). In other words, CDF is 
based on the weights in Eq. (6) which corresponds to 
PDF of kz  conditional on i i

k kx , θ . (2) find particles of 

k kx , θ  which make CDF of kz  be the same value as (or 
the closest to) randomly chosen value from ( )0,1U  

which is the uniform distribution in the interval of [ ]0,1 . 
By repeating N  times this process, N  samples of 

k kx , θ  are obtained, which represents an approximation 
of the posterior distribution ( )0:, |k k kp x zθ  obtained 

based on the weighted samples ( ), |i i i
k k kx wθ . 

5. Prognosis- The system state k lx +  where k lt +  is the 
future time can be predicted based on the transition 
function and estimated model parameters until kt . 
There are no new data and update process after kt . 
Therefore, the weigh after kt  are kept unchanged with 

1/i
kw N=  since every particle is assigned to the same 

weight after resampling. 
The process of PF with one parameter is illustrated in Figure 
1. The length of vertical bars represents magnitude of the 
weight, and the particles in the prediction step are assigned 
to the weight at the update step and duplicated as much as 
the magnitude of the weight at the resampling step. 

As a simple example, the following linear system is 
considered. 

1k k k kx x tθ ν−= + ∆ +                          (7) 

 
Figure 1. Illustration of the PF process with resampling 
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where kθ  is a model parameter to be estimated, process 
noise kν  is normally distributed with zero mean and 
standard deviation pσ =1. In this example, it is assumed that 
both the initial distributions of the system state and model 
parameter are uniform in the interval of [ ]-25,50 . Let the 
measurement function k k kz x ω= + , where measurement 
noise kω  is normally distributed with zero mean and 
standard deviation mσ =10. Then, the likelihood function to 
calculate the weight becomes as follows: 

( ) ( )2

2

1 1| , exp
22

i
k ki i

k k k
mm

z x
L z x θ

σπσ

 −
 = −
 
 

       (8) 

The results of estimated model parameter and system state 
with t∆ =1 are shown in the Figure 2. N =5,000 particles 
(which is applied for all problems in this paper) are used 
with the data observed until ( )20 or 20t k= = . The 
estimated parameter converges to the true value ( true 2θ = ) 
with small confidence intervals. In addition, the prediction 
result of the system state is also fairly accurate. 

2.2. Overall Bayesian Method (OBM) 

The overall Bayesian method (OBM) is to estimate the 
unknown parameters using the measurement data in which 
the final posterior distribution is expressed as an equation. 
The posterior distribution is obtained by multiplying all the 
likelihood functions given by n  number of data and the 
prior as 

( ) ( ) ( ) ( ) ( )1 2| | | |np L z L z L z p∝ × × × ×θ z θ θ θ θ  (9) 

Using Eq. (9), a sampling method, such as the Markov 
Chain Monte Carlo (MCMC) method (Andrieu et al., 2003), 
can be used to construct the posterior distribution. The 
Metropolis-Hastings (M-H) algorithm is a typical method of 
MCMC, and the procedure is summarized in the following 

pseudo-code: 

( )
( )

( ) ( ) ( )
( ) ( )

0

* * 1

* 1 *
1 *

1 * 1

*

1

1. Initialize 
2. For 1 to 
  Sample ~ 0,1

  Sample ~ |

| |
  if  , min 1,

| |

                           
 else
                           

z

z

i

i
i

i i

i

i i

i N
u U

q

p q
u A

p q

−

−
−

− −

−

=

−

−

  − < =  
  

=

=

θ

θ θ θ

θ θ θ
θ θ

θ θ θ

θ θ

θ θ

 (10) 

where 0θ  is a vector of initial values of the unknown model 
parameters to estimate, N  is the number of samples, 
( )| zp θ  is the posterior distribution in Eq. (9), and 

( )* 1| iq −θ θ  is an arbitrary chosen proposal distribution 

which is used when a new sample *θ  is to be drawn 
conditional on the current point 1i−θ . ( )1 *|iq −θ θ  is chosen 

to be a uniform distribution centered at *  θ  with the 

interval of d± , where d  is a vector for setting the sampling 
interval and is selected arbitrarily based on the experience. 
The same interval is used for ( )* 1| iq −θ θ . If the sample 

*  θ  is not accepted as an i th sample, the 1i − th sample 
becomes the i th sample; that is, the particular sample is 
doubly counted. This process is illustrated in Figure 3. 
Compared to PF, there is no need for resampling, but 
subsequent samples are affected by previous samples. 

In common with PF, the linear system in Eq. (7) is used for 
OBM, which can be rewritten in the following form after 
ignoring process noise, kν : 

k kx tθ= ×                                    (11) 

In this case, the posterior distribution is as follows: 
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Figure 2. The results from PF in the simple example 

 
Figure 3. Illustration of the OBM process 
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( ) ( ) ( )
2

2
1

1 1| exp 25,50
22

z
n

k k

k mm

z x
p Uθ

σπσ =

 −
∝ − × − 

  
∑ (12) 

where n =20 data are used. The system state is calculated 
from Eq. (11) after model parameter is estimated. The 
results are shown in the Figure 4. They are similar to those 
from PF, but the intervals are narrower than PF because 
there is no process noise in OBM. 

2.3. Incremental Bayesian Method (RBM) 

RBM sequentially updates the distribution instead of using 
the final posterior distribution based on a batch of data. In 
this case, Eq. (10) can be changed to the following 
procedure: 

( )

( )
( )

( ) ( )
( )

0
1

*
1

*
1 *

1

*

1.For 1to 
2. Initialize ~ |
3. For 1 to 
  Sample ~ 0,1

  Sample ~ |

  if  , min 1,

                           
 else
                   

k k k

k k k

k ki
k k i

k k

i
k k

k n
p

i N
u U

p

L z
u A

L z

−

−

−
−

=

=

−

−

  − < =  
  

=

θ θ θ

θ θ θ

| θ
θ θ

| θ

θ θ

1        i i
k k

−=θ θ

    (13) 

where ( )1|k kp −θ θ  and ( )k kL z | θ , respectively, are the 
sample set of prior and likelihood as shown in Eq. (8). The 
likelihood is the same as OBM, but the prior is given as a 
set of samples in RBM. Since it is not easy to express the 
sets of samples as equations, the samples are directly used 
as prior in the same was as PF. As a simple method to use 
samples itself as prior, samples obtained at the previous step  

replace the proposal distribution in MCMC as shown in Eq. 
(13). In this case, all prior samples are not selected for new 
sample, *

kθ , because *
kθ  is randomly selected from prior. 

This is different from PF where all prior samples once are 
selected then updated by applying the weight. In this context, 
the relationship of samples between previous step and 
current step in OBM is similar to that of PF rather than that 
of RBM since the posterior in OBM can be regarded the 
result from accumulated weight in PF. These characteristics 
of sampling in the three methods are illustrated in the Figure 
5. 

2.4. Comparison of the Three Methods with the Same 
Configuration 

In this subsection, the differences between the three 
methods are discussed using a same configuration. The 
model parameter estimation is focused rather than the state 
estimation, so the Eq. (11) is used for the state transition 
function or degradation model; that is, the system state is 
calculated from the estimated parameter without state 
transition. The procedure of three methods are illustrated as 
shown in Figure 6 and summarized in Table 1. The Figure 
6(a) represents sequential updating process, in which 
distribution information to update is disseminated by 
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Figure 4. The results from OBM in the simple example 

 

  

(a) PF (b) OBM (c) RBM 

Figure 5. Illustration of sampling characteristic 

Step PF OBM RBM 

initial 
distribution ( )

0 ~
25,50U

θ
−  

( )25,50U −  ( )
0 ~

25,50U
θ

−  
prediction 

(prior) ( )1|k kp θ θ −  ( )|p θ z  (Eq. 
(12)) 

( )1|k kp θ θ −  
update 

(likelihood) 
( )| i

k kp z θ
 

(Eq. (8)) 
( )|k kp z θ   

(Eq.(8)) 
sampling resampling MCMC MCMC 

Table 1. The procedure of the three methods 
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samples. The posterior at k=1 depicted as solid curve 
becomes the prior at k=2 which is multiplied by likelihood 
at k=2 depicted as dotted curve to obtain the posterior 
distribution at k=2 depicted as dashed curve, which also 
becomes the prior at the next step. On the other hand, the 
posterior distribution in the overall method depicted as 
black solid curve in the Figure 6(b) is obtained resulting 
from multiplying all likelihood functions and prior 
distribution depicted as blur solid curve. Once the posterior 
is obtained, samples are drawn using MCMC. The more 
detailed procedure of three methods is listed in the Table 1. 
First, initial distribution is prerequisite for PF and is 
assumed as ( )0 ~ 25,50Uθ −  which is wide enough not to 
affect the posterior distribution. For OBM and RBM, initial 
distribution is not required, but is given for the same 
configuration because initial distribution of PF corresponds 
to the prior information. Next, prediction and update step is 
performed sequentially in PF and RBM, while the posterior 
distribution expressed in the Eq. (12) is used for OBM. To 
implement the procedure, resampling and MCMC, 
respectively, are used for PF and RBM as well as OBM. 

The three methods are performed at every discrete time step, 
and the results of estimated parameter using PF are shown 
in Figure 7 and Table 2. In the figure, it can be found that 
the PDF shape becomes sparse as the update is progressed. 
Similar results can be observed in the case of RBM. Table 2 
lists the Kolmogorov-Smirnov (K-S) test results that are the 
maximum difference of CDF value between the posterior 
distribution obtained by grid method (Haldar & Mahadevan, 
2000) and the distribution from the three methods. The CDF 
error between posterior obtained by grid method and 
sampling results becomes larger as the update is progressed 

in both PF and RBM. The reason is that sampling error 
caused by expressing the posterior distribution is 
accumulated as time evolves. On the other hand, the table 
shows that the samples fairly well represent the posterior 
distribution at all times in OBM since there is no 
accumulated sampling error. 

In the usage aspect, PF and RBM are related with the time 
evolution, while OBM uses batch data for estimating the 
posterior distribution; PF and RBM are useful for estimating 
in real time as the particles are directly used for the prior 
information, and it is not necessary to preserve the data. On 
the other hand, OBM has no cumulated error and no need to 
suffer from utilizing prior information. PF and RBM are 
fundamentally the same method except sampling schemes, 
and if there is no cumulated error in the two methods, they 
are the same as OBM. In the next section, performances of 
the three methods are evaluated as well as the differences 
between the methods are discussed. 

3. CRACK GROWTH PROBLEM FOR COMPARISON OF THE 
THREE METHODS 

3.1. Crack Growth Model 

In this paper, a physical model for crack growth in an 
aircraft panel is used to compare the three methods: PF, 
OBM and RBM. This example is to estimate damage 
growth parameters in Paris model (Paris, 1963) based on the 
measured crack size over a number of cycles (one cycle 
corresponds to one flight), which was addressed by An et 
al.(2012) When the stress range due to the pressure 
differential is σ∆ , the rate of damage growth can be 
written using the Paris model (Paris, 1963) as 

( ) ,mda C K K a
dN

σ π= ∆ ∆ = ∆              (14) 

where a  is the half crack size, N  is the number of cycles, 
K∆  is the range of stress intensity factor, and m  and C  are 

damage growth parameters. 

The synthetic measurement data are used for prognostics in 
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(a) sequential method: PF and RBM 

 
(b) overall method: OBM 

Figure 6. Illustration of the Bayesian inference 
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(c) k=10 

Figure 7. The parameter estimation results from PF 

 k=1 k=2 k=10 
PF 0.0262 0.0326 0.1186 

OBM 0.0234 0.0286 0.0260 
RBM 0.0278 0.0512 0.1130 

Table 2. The K-S test to compare three methods 
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this example, which are generated by (a) assuming that the 
true parameters, truem  and trueC , are known; (b) calculating 
the true crack sizes based on Eq. (14); and (c) adding 
random noise to the true crack size data. Once the synthetic 
data are obtained, the true values of crack sizes as well as 
the true values of model parameters are not used in the 
prognostics process. In this paper, the following values of 
parameters are used: true 3.8m = , 10

true 1.5 10C −= × , 
78.6MPaσ∆ = , and initial half crack size, 0 10mma = . 

Also, it is assumed that the measurements are performed at 
every 100 cycles, and noise is uniformly distributed between 
-1mm and +1mm. In this study, the measurement noise is 
also considered as an unknown parameter. 

3.2. Comparison of the Three Methods from Two 
Parameter Estimation 

First, it is assumed that model parameter m  and 
measurement noise mσ  are unknown and have prior 

( )3.3,4.0U  and ( )0,5U mm, respectively. In this case, true 
value of model parameter C  is used. Figure 8 shows the 
results from PF, where the parameters are converged to the 
true values as the number of cycles increase; i.e., more data 
are obtained. Other two methods also show a similar 
convergence. The K-S test results listed in the Table 3 
shows that the error in PF is the largest among the three 
methods. However, the result of crack growth prediction 
from PF with estimated parameters at 1000 cycles is fairly 
good as shown in the Figure 9. Also, the error between the 

true crack growth and median of predicted crack growth 
( / 100true prediction truea a a− × ) and its standard deviation (std.) 
are listed in the Table 4. In the table, the errors of three 
methods are close, but the error of PF is the smallest, even 
though the error at the parameter estimation is the other way 
around. This means that while the parameter estimation 
cannot represent well the distribution shape due to sample 
duplication, the prediction results from PF can be accurate 
because information about the distribution are well 
contained in the duplicated samples. Therefore, it can be 
concluded that the future behavior of system can be 
predicted by estimating the model parameters based on the 
three methods. 

Although the three methods represent similar results, Table 
5 shows a difference in computational time, which is 
normalized by that of PF until 2500 cycles. In the case that 
data are added in stages (new data comes in at every 100 
cycles), PF has the best efficiency. On the other hand, if 
batch data are available (all 25 data sets are available), 
computational time of OBM is considerably reduced in 
contrast to PF and RBM. This is because OBM can evaluate 
the posterior distribution by multiplying all likelihoods at 
the same time as in Eq. (9).  
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Figure 8. Convergence process of estimated parameters 
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Figure 9. Crack growth prediction with estimated parameters 

at 1000 cycles 

PF OBM RBM 
0.0987 0.0632 0.0871 
Table 3. The K-S test to compare three methods at 

1000 cycles 

 1000 cycle 1500 cycle 2000 cycle 
 median std. median median std. median 

true 
crack 
size 

14.88  19.47 14.88  19.47 

PF 14.95 1.02 19.62 14.95 1.02 19.62 
error 
(%) 0.45  0.78 0.45  0.78 

OBM 14.95 1.08 19.71 14.95 1.08 19.71 
error 
(%) 0.50  1.20 0.50  1.20 

RBM 14.92 1.03 19.68 14.92 1.03 19.68 
error 
(%) 0.24  1.09 0.24  1.09 

Table 4. The median and std. of predicted crack 
growth and the error with the true value 

 PF OBM RBM 
data added in 

stages 1.0 2.13 1.70 

batch data 
existence 1.0 0.08 1.70 

Table 5. Relative computational costs of three 
methods 
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3.3. Comparison of the Three Methods from Three 
Parameter Estimation 

Next, two model parameters m  and C , and measurement 
noise mσ  are considered as unknown parameters. m  and 

mσ  have the same prior as in Section 3.3, and ( )log C  has 

prior ( ) ( )( )log 3E 11 , log 5E 10U − − . The estimated model 
parameters from the three methods at 1000 cycles are shown 
in the Figure 10 with the true values in a star symbol. In this 

case, m  and C  are strongly correlated, and the difference 
in sampling results caused by the different procedures is 
better exposed than the case of two parameters. Although 
the samples from PF look scattered due to duplication of 
high weighted particles, the shape is similar to that of OBM, 
which is close to the exact posterior distribution. On the 
other hand, the samples from RBM are less scattered 
because some samples at t-1 are selected repeatedly. 

RUL prediction is an ultimate goal in prognostics, and the 
results from three methods are shown in the Figure 11. After 
1000 cycles, the median of predicted RUL is fairly accurate 
in PF and OBM. RBM produces somewhat worse results 
than PF and OBM, which is caused by the estimated 
parameters that do not represent overall posterior 
distribution as shown in the Figure 10(c). The results of 
RUL prediction are evaluated by using established 
prognostics metrics (Saxena et al., 2009) to compare the 
three methods more objectively. In this paper, five 
performance metrics are used to evaluate the three methods; 
prognostic horizon (PH), -α λ  accuracy, relative accuracy 
(RA), cumulative relative accuracy (CRA), and convergence. 

PH is defined as the difference between the time index it  
when more than β % of the predictions distribution first 
meet the α  accuracy zone and the time index EOLt  for end 
of life (EOL). The best score for PH is obtained when an 
algorithm always predicts within the desired accuracy zone. 
In -α λ  accuracy, α  and λ , respectively, are an accuracy 
modifier and time window modifier. λ = 0 when prediction 
is started, pt , and λ = 1 at EOLt . The result of -α λ  accuracy 
becomes true or false. True is when more than β % of the 

predictions distribution at ( )p EOL pt t t tλ λ= + − is included 
in -α λ  accuracy zone. RA is determined based on the error 
between true and prediction RUL at tλ . CRA is the same to 
the accumulated RA from pt  to EOLt . RA and CRA have the 
range from zero to one, and perfect value is one. The 
median of prediction RUL is used for RA and CRA. Lastly, 
convergence can be represented by the Euclidean distance 
between the center of mass of the area under the curve 

( )M i  and ( ),0pt . The lower the distance is, the faster the 
convergence is. In this study, the following conditions are 
used; β =50%, pt =600, and EOLt =2400, and the results are 
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Figure 10.  Samples of estimated parameters at 1000 cycles 
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Figure 11.  The RUL prediction 

 

PH 
(α =10%) 

-α λ  
accuracy 
(α =10%
, λ =0.5,) 

RA 
( λ =0.5) 

 
CRA 

Convergence 
( ( )M i  is a 

non-negative 
prediction 

error) 
PF 1600 true 0.9940 0.9391 735 

OBM 1600 true 0.9731 0.9262 642 
RBM 1300 false 0.8953 0.8958 524 

Table 6. Performance evaluation for three methods 
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listed in the Table 6. 

In the table, the best performances are represented with a 
bold-typed text. The reason why RBM has the worst 
performance is that the prior given in samples cannot be 
used effectively, so there is much error as the time evolves 
as shown in the Figure 10(c) which does not represent the 
posterior distribution well. But, the convergence 
performance of RBM is the best because the median of RUL 
at pt =600 is much higher than other two methods. The 
performances of PF and OBM are similar, but PF has a little 
better performance than OBM. The reason is that sampling 
in OBM is not an easy task, especially under correlated 
parameters. It is difficult to confirm the convergence of 
sampling results at all time steps, because there might be 
improper samples. On the other hand, there are almost no 
samples which are not satisfied posterior distribution, and 
RUL can be exact since it is obtained in consequence of 
combination of the model parameters; scanty samples 
phenomenon is not too much trouble in the problem. 

4. DISCUSSION ABOUT THE DIFFERENCE BETWEEN THE 
THREE METHODS 

In this section, the differences between the three methods 
are summarized. In conclusion, PF is useful for estimating 
in real time, and OBM is efficient when batch data exist. 
RBM is also for estimating in real time even though it has 

not been considered as a time concept, and the basic theory 
is the same to the PF. However, sampling method in PF 
(resampling) is more effective than one of RBM. The 
resampling method is a simple and effective way to 
represent the prior distribution. The sampling result from 
OBM is more accurate than that of PF because the latter can 
be changed from the initial distribution and shows scanty 
samples phenomenon. It is, however, difficult to obtain the 
accurate result because result from OBM can be 
significantly different from the proposal distribution. Since 
both PF and OBM have pros and cons, they can be used 
simultaneously in order to compensate for each other. Lastly, 
PF and RBM are fundamentally the same method except 
sampling schemes, and if there is no cumulated sampling 
error in the two methods, they will be the same to OBM. 
Summary of the difference between the three methods are 
listed in the Table 7. 

5. CONCLUSION 

In this paper, the three methods to estimate model 
parameters in the physics-based prognostics are compared 
and discussed; PF, OBM, and RBM are introduced with a 
simple mathematical example and evaluated by using 
established prognostics metrics with crack growth problem. 
The basic theory of RBM is the same to the PF in terms of 
estimating in real time. However, sampling methods of the 
two methods are different from each other, and sampling 
method in PF is more effective than one of RBM. On the 
other hand, OBM utilizes all the data available up to current 
time and evaluate the posterior distribution with one set of 
samples. The sampling result from OBM could be more 
accurate than that of PF. Consequently, PF and OBM have 
pros and cons, the former is useful for estimating in real 
time, but there is scanty samples phenomenon, while the 
latter is efficient under a batch of measurement data and has 
adequate samples, but the prediction results somewhat lack 
the accuracy comparing to PF. Therefore, they can be used 
complementally; e.g., PF is used from the latter stage after 
OBM is used until the early stage of growing damage state. 
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