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ABSTRACT 

Predictive maintenance has been attracting researchers and 

industry in recent years, since maintenance and repair of 

assets is one of the most contributing factors of operating & 

support cost. Predictive maintenance proposes to maintain 

the assets only when necessary aiming to reduce the 

unnecessary repair and maintenance by monitoring the 

health of the assets. The expected time of the failure is 

estimated by analyzing the monitored signals and remaining 

useful life of the asset before failure is used to plan, get 

prepared and perform the maintenance. When one team is 

responsible for maintenance of systems that are located in 

various places, the travel time between these systems should 

also be incorporated in the maintenance planning. Off shore 

wind farms and railway switches are two examples of these 

systems. This paper presents formulation of the problem 

that incorporates travel times between systems and 

prognostics information obtained from each system. 

1. INTRODUCTION  

Predictive maintenance has been attracting researchers and 

industry in recent years, since maintenance and repair of 

assets is one of the most contributing factors of operating & 

support cost (Camci & Chinnam, 2010). Predictive 

maintenance, also called Condition Based Maintenance 

(CBM), proposes to maintain the assets only when 

necessary aiming to reduce the unnecessary repair and 

maintenance by monitoring the health of the assets. The 

term asset represents any system that is monitored for 

predictive maintenance.  

In CBM, health of the asset is observed real time by 

analyzing signals collected from sensors embedded on the 

asset. Two main aspects of CBM are diagnostics and 

prognostics (Jardine et. al. 2006). Diagnostics is the process 

of detection of an existing incipient failure, whereas 

prognostics is the process of forecasting the time of the 

failure and identification of remaining useful life (RUL) of 

the asset before failure (Camci & Chinnam 2010a). 

Maintenance is scheduled immediately for an asset when a 

failure is diagnosed. On the other hand, when a failure is 

prognosed, the identified remaining useful life can be used 

for planning, preparation, and performing the maintenance. 

The asset is expected to perform its functionality maybe 

with less efficiency within the identified RUL.  

In predictive maintenance research, RUL information may 

be given in different formats such as the real time (e.g., 

three months to failure), operational working period (e.g., 

3000 miles of driving before failure), efficiency decrease 

(%95 efficiency), or probability of failure (0.20 probability 

to fail) (Camci & Chinnam 2010a). In most maintenance 

scheduling methods with RUL information, a threshold 

value is set to RUL (Barbera et. al. 1996, Marseguerra et. al. 

2002, Sloan & Shanthikumar 2002, Yam et. al., 2001, 

Berenguer et. al. 2003). In these methods, maintenance is 

performed when the RUL reaches the threshold. Even if the 

threshold is optimized perfectly for an asset, the cost of 

travelling for maintenance will be a critical issue that cannot 

be incorporated easily in the static threshold optimization. 

An optimization model without threshold setting has been 

discussed in (Camci F. 2009), (Camci F. 2009a). However, 

the optimization model presented in these studies assumes 

that all the components or systems are located in the same 

place and do not incorporate travel time between systems.  
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Consider an off shore wind farm with many wind turbines 

located in the middle of the sea. Assume that one of the 

wind turbines is scheduled for maintenance next week, since 

the RUL is expected to reach to the threshold next week. A 

team of maintenance operators will be sent to the sea for 

maintenance. Consider that two wind turbines are located 10 

miles and 20 miles away from the wind turbine scheduled 

for maintenance. The RUL of these wind turbines are 

identified to be two and three weeks, respectively. 

Maintenance scheduling based on only RUL thresholds will 

not always give the best maintenance scheduling. Thus, cost 

of travelling should also be incorporated within the 

maintenance scheduling. This paper presents the problem of 

incorporating the maintenance scheduling with RUL 

information for geographically distributed assets. Section 2 

presents the problem modeling, and section 3 demonstrates 

the problem with small number of systems. Section 4 

concludes the paper. 

2. PROBLEM DEFINITION  

Consider multiple systems that are located in various places 

and are within the responsibility of one maintenance team. 

The health of each asset is observed using condition 

monitoring techniques and forecasted by analyzing the 

signals obtained using prognostics techniques. Forecasted 

health (RUL information) is assumed in the format of 

probability of failure.  

The problem aims to identify the most cost effective 

maintenance routing. The cost function to be minimized 

involves three major terms: expected failure cost, 

maintenance cost, and travel cost. All three terms are highly 

correlated with the time of the maintenance of each asset. 

Early maintenance reduces the failure risk more than late 

maintenance. The order of the locations to be visited for 

maintenance affects the time of maintenance in each 

location. For example, if maintenance is scheduled for an 

asset that requires long travelling time, then all other assets 

waiting for maintenance will be negatively affected from 

this decision. Fig. 1 illustrates the effect of early, late, and 

no maintenance on failure probability of a system for a 

given time frame. 

 

Fig.1 Illustration of reducing risk by maintenance 

The problem aims to minimize the total cost that consists of 

failure, maintenance, and travel cost by finding the best 

maintenance schedule of n geographically distributed assets. 

The objective function is the sum of each asset cost.  

In the simple case of the problem, it is assumed that every 

location is visited only once and the tour ends at the initial 

location. Thus, the maintenance cost will be constant 

assuming that one and only one maintenance will be 

performed at each location. Thus, only failure cost will be 

considered in the formulation, since total maintenance cost 

will be constant. Mathematically, the problem can be 

expressed as follows: find a permutation ( ) of 

integers from 1 to n that minimizes the total cost of 

travelling, expected failure and maintenance cost of assets 

given a distance matrix , where  is the distance 

between locations i and j. This is the first objective function 

to be explored in this paper and shown in (1). Note that the 

distance information is actually considered as time-to-travel 

information. If it is given as real distance, it should be 

converted to time-to-travel, since the time information 

affects the expected failure cost, not the distance. 

   (1) 

: Asset number scheduled for maintenance with i
th

 

order (starting point when i=0) 

         : Failure cost function for system located at  

         : Scheduled maintenance time for location  

         : Time to travel to reach from  to  

Failure cost is the product of fixed failure cost and the 

cumulative failure probability ( ) of the asset as shown 

in (2).  Effects of maintenance times should be considered in 

calculation of cumulative failure probability ( ) within 

the given period (T). The given period is divided into 

periods as before and after maintenance since only one 

maintenance in the given period is assumed. is 

calculated as the union of failure probabilities in before and 

after maintenance periods ( , failure probabilities 

before maintenance, after maintenance respectively) since 

failure may occur either before or after maintenance in the 

given period. The formulation of  calculation is given 

in (3).  

                       (2) 

  (3) 

: Cumulative failure probability starting time 0 

till just before the maintenance 

: Cumulative failure probability starting from 

maintenance time till end of given period 

Forecasted failure probabilities can be obtained in two 

ways: prognostics-based and reliability-based. In 

prognostics-based calculation, failure probabilities (Pfo) 



Annual Conference of Prognostics and Health Management Society 2012 

 

3 

represent the specific failure probability of the asset under 

observation with CBM. This failure probability (Pfo) is used 

until the maintenance time of the system. Many prognostics 

methods to predict failure probabilities have been presented 

in the literature (Lu H. et. al.2001, Xu et. al., 2008, Xu et. 

al., 2009, Heng et. al. 2009, Sritavastava & Das 2009). After 

the maintenance, failure probabilities obtained from 

reliability-based calculation is used. Reliability based failure 

probability (Pfw) is obtained from the reliability analysis of 

past similar assets. Reliability based failure probability 

(Pfw) is not specific to the asset under observation. We do 

not use prognostics-based failure probability after 

maintenance because we do not know how the asset under 

observation will behave after maintenance (maintenance has 

not happened yet.)  

Probability of failure in each section bases on the 

maintenance time and corresponds the failure probability 

value at the time the maintenance will be performed as 

shown in (4) and (5). Note that (Pfw) and (Pfo) are received 

as input in the problem. 

    (4) 

     (5) 

The second objective function involves failure and travel 

costs as shown in (6). Travel cost simply is calculated as 

product of traveling cost one unit distance and total travel to 

reach location .  

  (6) 

 : Cost of travelling from to  

The third objective function involves maintenance cost as 

well as failure and travel cost as shown in (7). This is 

important when systems at various locations may be 

maintained in different number of times in the given period 

and they are different with different maintenance costs 

( ).  

 

(7) 

3. DEMONSTRATION OF THE PROBLEM  

In this section, the problem is demonstrated with a simple 

case study. In this case study, there are four locations to 

perform maintenance, and a starting point π0. Distances 

between locations are shown in Table 1. 

Table 1 Distance matrix  

Locations 0 1 2 3 4 

0 0 4 11 6 2 

1 4 0 8 10 6 

2 11 8 0 13 10 

3 6 10 13 0 4 

4 2 6 10 4 0 

Fixed failure and maintenance costs for the systems at 

these four customers are indicated in Table 2. 

Table 2 General Parameters of first example 

Locations 1 2 3 4 

Failure Cost ($) 3500 3200 300 5100 

Maintenance Cost ($) 450 230 400 150 

Table 3: Results of the case study 

 

 

To simplify the problem, it is assumed that each location 

will be visited at least and at most once. This limits the total 

number of possible visit alternatives to 24. In Table 3, total 

costs for all these alternatives are shown. First four columns 

in Table 3 show the visiting order of locations. Fifth column 

is the total travelled distance. Sixth column gives the total 

cost obtained from the first objective function in (1). The 
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seventh column displays the second objective function given 

in (6). The last column is the third objective function in (7). 

Changes in the visit order changes the time of the visit for 

each location. Thus, the failure probability for the system at 

each location for a different visit order becomes different 

leading to different failure costs, which cause variations in 

the values of the first objective function. The best result for 

the first objective function is obtained from the visit order 

(3-4-2-1) given in the 7
th

 row with $2785.23.  

The calculation of the second objective function involves 

the cost of travel in addition to failure cost. It is assumed 

that traveling one unit distance-time costs 100$. The best 

routing is given in the first permutation (i.e., 4- 3- 2- 1) with 

minimum cost of $5909.85. It is shown in this example that 

the travel cost affects the decision of the maintenance order.  

The third objective function includes the maintenance costs 

as well as failure and travel cost. This example was 

simplified with the assumption of visiting each location at 

least and at most once. Thus, the maintenance cost for each 

permutation will be the same. Even though maintenance 

times are different, systems at all locations will be 

maintained once. Thus, the ranking of results of the second 

and third objective function are the same. If this assumption 

is removed, then some of the locations may be visited 

multiple times or some are not visited at all. Table 4 gives 

an example of costs for a given visit order without any visit 

limits.  

 Table 4: Result example without visit limit 

 

As seen from the table, not visiting location three reduces 

the failure cost because the failure consequence of the 

system in location three is very low compared to the system 

in location four ($300 in location 3, $5100 in location 4). 

Thus, replacing maintenance in location three with location 

four reduces the total failure cost. In addition, maintenance 

cost in location four is lower compared to location three. 

Total travel time is also low if location three is not visited at 

all. Note that this example is selected to demonstrate the 

nature of the problem, not fully demonstrate a real system.  

4. CONCLUSION  

The cost reduction pressure on industry has increased 

research on condition based maintenance. Maintenance 

schedule now bases on detection and forecasting of failures. 

This paper presents a problem formulation to be used in 

maintenance planning that incorporates prognostics output 

with distances between systems located in various places. 

Formulation and numerical example are presented in the 

paper. As future work, it is recommended to develop 

heuristic or meta-heuristics algorithms for the given 

problem formulation with large number of locations. 
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