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ABSTRACT 

Self-tuning aircraft engine models can be applied for control 
and health management applications.  The self-tuning 
feature of these models minimizes the mismatch between 
any given engine and the underlying engineering model 
describing an engine family.  This paper provides details of 
the construction of a self-tuning engine model centered on a 
piecewise linear Kalman filter design.  Starting from a 
nonlinear transient aerothermal model, a piecewise linear 
representation is first extracted.  The linearization procedure 
creates a database of trim vectors and state-space matrices 
that are subsequently scheduled for interpolation based on 
engine operating point.  A series of steady-state Kalman 
gains can next be constructed from a reduced-order form of 
the piecewise linear model.  Reduction of the piecewise 
linear model to an observable dimension with respect to 
available sensed engine measurements can be achieved 
using either a subset or an optimal linear combination of 
“health” parameters, which describe engine performance.  
The resulting piecewise linear Kalman filter is then 
implemented for faster-than-real-time processing of sensed 
engine measurements, generating outputs appropriate for 
trending engine performance, estimating both measured and 
unmeasured parameters for control purposes, and 
performing on-board gas-path fault diagnostics.  
Computational efficiency is achieved by designing 
multidimensional interpolation algorithms that exploit the 
shared scheduling of multiple trim vectors and system 
matrices.  An example application illustrates the accuracy of 
a self-tuning piecewise linear Kalman filter model when 
applied to a nonlinear turbofan engine simulation.  
Additional discussions focus on the issue of transient 
response accuracy and the advantages of a piecewise linear 

Kalman filter in the context of validation and verification.  
The techniques described provide a framework for 
constructing efficient self-tuning aircraft engine models 
from complex nonlinear simulations. 

1. INTRODUCTION 

An emerging technology in the field of aircraft engine 
controls and health management is the inclusion of real-time 
on-board self-tuning models for the in-flight estimation of 
engine performance variations (Luppold, Roman, Gallops, 
& Kerr, 1989). Self-tuning engine models are comprised of 
an engine model and an associated tracking filter as shown 
in Figure 1. Here, the Aircraft Engine block also includes an 
on-board engine control computer (not shown).  Real-time 
sensor and actuator information available within this control 
computer is used as inputs to the engine model. The engine 
model reflects engine aero-thermodynamic performance at 
both steady-state and transient conditions. Analytical 
modeling approaches, such as piecewise linear models and 
nonlinear component level models, are commonly applied. 
Recently, Volponi (2008) also demonstrated the merits of a 
hybrid modeling approach combining analytical (physics-
based) and empirical (neural network) elements. The 
tracking filter, typically based on Kalman filter estimation 
concepts, is designed to automatically adjust tuning 
parameters within the engine model to enable the model to 
match the observed performance of the physical engine. The 
discrepancy between the physical engine parameters and the 
model variables is referred to as model mismatch.  The 
tuning parameter adjustment is necessary to enable the 
model to account for the gas turbine engine performance 
variations caused by deterioration, wear, and fouling that 
turbomachinery will incur over time with usage. 

_____________________ 
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medium, provided the original author and source are credited. 



Annual Conference of Prognostics and Health Management Society 2012 
 

2 

+

‐

Aircraft
Engine

Engine
Model

Tracking
Filter

Actuator commands & 
ambient operating 

conditions

Sensor 
measurements

Estimated sensor 
measurements

Parameter estimates
(provided to control & 
health management 

applications)

Model tuning
Parameter
adjustments

 

Figure 1. Self-tuning engine model architecture including an 
aircraft engine, an engine model, and a tracking filter to tune 
the model 

One of the earliest investigations to consider the use of self-
tuning engine model technology was under the NASA and 
Department of Defense led Performance-Seeking Control 
(PSC) program of the 1980’s and 1990’s (Shaw, Foxgrover, 
Berg, Swan, Adibhatla, & Skira, 1986), (Nobbs, Jacobs, & 
Donahue, 1992). The PSC program demonstrated multiple 
performance benefits achievable through in-flight 
propulsion control optimization including reduced fuel-
burn, increased thrust, and increased component life 
(Gilyard & Orme, 1993). Central to the PSC design is the 
inclusion of a self-tuning engine model that provides the 
control system with real-time estimates of unmeasured 
engine performance parameters. Follow-on research efforts 
have continued to mature and advance aircraft engine 
model-based control technology (Dwyer, 1990), (Klaus & 
Kreiner, 2001), (Brunell, Bitmead, & Connolly, 2002). 

In addition to control applications, self-tuning engine model 
technology also holds benefits for propulsion system health 
management. This includes estimating, trending, and 
forecasting the level of performance deterioration within the 
major rotating modules of the engine, and diagnosing faults 
that impact engine gas path performance (Gallops, Gass, & 
Kennedy, 1992), (Bushman & Gallops, 1992),  (Armstrong 
& Simon, 2011). It is expected that the application of on-
board self-tuning engine model technology within the 
aircraft engine industry will continue to increase. A future 
vision put forth by Behbahani, Adibhatla, and Rauche 
(2009) is to develop an integrated on-board self-tuning 
model-based engine controller architecture with control, 
diagnostic, and prognostic functionalities.  

This paper is intended to serve as a guide for the 
development and implementation of self-tuning engine 
models for turbomachinery diagnostics, prognostics, and 
health management. It will cover the required information, 
design considerations, and design steps necessary to 
construct and implement such models. The focus of this 
work is specifically on piecewise linear self-tuning engine 
models with a Kalman filter as the tracking filter.  

The remainder of this paper guides the reader through the 
design and implementation details of a self-tuning engine 
model.  First, the overall design is discussed briefly to 
introduce the various requirements and components of such 
a model.  Next, the generation of linear state space engine 
models and the design and setup of the Kalman filter is 
explained.  Then, the implementation is explicated to aid the 
reader in constructing an efficient adaptation of this design.  
This is followed by the presentation of example results from 
the application of the technique to a turbofan engine 
simulation.  Finally, a discussion of some design choices 
and model advantages is presented. 

2. MODEL COMPONENTS 

The self-tuning engine model outlined in this paper is 
composed of a number of modular components.  Two major 
components comprise this design: a piecewise linear state-
space engine model and an associated piecewise linear 
steady-state Kalman filter.   

The input signals available to a self-tuning engine model are 
restricted to the following signals, which are also provided 
to the engine controller: engine actuator commands and 
sensor measurements from the engine.  Additional inputs 
may consist of airframe sensed measurements, such as free 
stream conditions, that affect gas-path analyses.   

The outputs of the self-tuning engine model will normally 
consist of three components: sensor estimates, tuning 
parameters, and unmeasured parameter estimates.  In this 
architecture, the sensor estimates should be nearly identical 
to the actual sensed measurements since the model is 
“tuned” to match these measurements.  Tuning parameters 
generated by the model are available as outputs.  The 
parameters selected and applied as model tuning parameters 
depend on design decisions, but they often act as proxies for 
engine performance parameters, as is discussed later.  
Finally, the self-tuning engine model can produce estimates 
of unmeasured engine parameters.  Since the engine model 
is physics-based, the estimates of unmeasured parameters 
are expected to approach the actual values.  The estimates 
often include thrust, stall margins, and gas-path pressures 
and temperatures where physical measurement is 
impractical.   

A piecewise linear state-space model forms the basis for 
modeling theoretical engine dynamics.  This model is 
comprised of state space matrices and associated trim 
points, both of which are interpolated based on operating 
point.  The piecewise linear model is created from a 
nonlinear aerothermal model, but offers some advantages 
over the more complex physics-based simulation.  A 
piecewise linear model is usually less computationally 
intensive than its nonlinear equivalent, and the simpler 
structure allows for straightforward design of tuning 
solutions, a Kalman filter in this case.   
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Accompanying the piecewise linear model in this approach 
is a piecewise steady-state Kalman filter.  This 
implementation uses gain matrices that are pre-computed 
and held constant as opposed to updating the gain matrices 
online while processing the input data.  Similar to the state-
space matrices, the Kalman gain matrices are also 
interpolated based on operating point.  The Kalman filter 
produces tuning parameters that drive the difference 
between the actual sensor measurements and their respective 
estimates to zero. 

When employing piecewise solutions, design considerations 
related to interpolation mechanisms, parameter scaling, 
degrees of freedom, and processing time are important.  For 
accuracy reasons, it is often advantageous to consider 
interpolation based on multiple dimensions, as will be 
described.  Efficient algorithms should be employed to 
exploit multidimensional data alignment and shared 
scheduling.  Additionally, correction techniques applied 
internally within the model, as discussed later, require some 
supporting code infrastructure. 

3. MODEL DATA COMPUTATION 

Constructing this self-tuning model requires translating a 
nonlinear aerothermal model to an equivalent piecewise 
linear model and piecewise linear Kalman filter.  The initial 
step is to linearize the nonlinear model at multiple operating 
points to generate a piecewise linear state-space model and 
an associated set of trim points.  Once linearization is 
complete, the Kalman gain matrices are computed.  The 
resultant trim points, state-space system matrices, and 
Kalman gains can then be used in the self-tuning engine 
model implementation. 

3.1. Linearization 

The nonlinear model of an aircraft engine can be 
represented by the following equations 

 

 

, ,

( , , )

, ,z

x f x u h

y g x u h

z g x u h








 (1) 

where x and u represent the vectors of engine state variables 
and control command inputs, respectively.  The vector h 
represents health parameters, such as efficiency or flow 
capacity, reflective of performance deterioration within the 
major modules of the engine.  For given input values, the 
nonlinear functions f, g, and gz generate the vectors of state 
derivatives x , sensed engine outputs y, and unmeasured 
engine outputs z, respectively.  By linearizing the engine 
model at a given operating point, the following state-space 
equations are obtained: 
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   

   

z F x G u N h     

 (2) 

Here, A, B, C, D, F, G, L, M, and N are the state-space 
matrices reflecting system dynamics.  The trim vectors, 
denoted by the subscript “trim,” reflect the values of the 
state variables, commands, and measured and unmeasured 
outputs when the model is at steady-state (i.e., x  = 0) at the 
given operating point. Collectively, the trim vectors define 
what is referred to as a “trim point.” The vector href 
represents a reference health condition specified by the 
system designer.  In Equation 2, parameter deviations 
relative to trim or reference conditions are denoted by the 
delta symbol ().    

The initial step in creating this self-tuning engine model is 
the computation of linear state-space models from the 
nonlinear model at multiple operating points.  These 
operating points serve as the interpolation scheduling 
parameters in the piecewise linear model. Figure 2 shows a 
notional three-dimensional example of operating point 
specification using altitude, Mach number, and power 
setting as the scheduling parameters.  The number of 
operating points and spacing between operating points, 
which does not have to be uniform, are design decisions left 
to the end user.  In general, a denser grid of operating points 
will allow the piecewise linear model to more closely 
approximate the nonlinear model.  However, that will 
increase memory storage requirements required for 
implementation.  While the operating points generally reside 
within a standard flight envelope, it may be advantageous to 
select some operating points beyond the standard envelope 
(assuming the nonlinear engine model is operable and valid 
at these points).  This expanded operating envelope 
functionality is necessary to enable the piecewise linear 
model to account for scenarios where the actual aircraft 
engine operates beyond normal expected operating 
conditions.   
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Figure 2. Example of three-dimensional piecewise linear 
model operating point scheduling 

As described above, the piecewise linear model will use two 
related datasets:  the trim points for the piecewise linear 
model and    the state-space system matrices that model 
engine dynamics.  Scheduling of the model and the 
generation of these datasets are discussed below. 

3.1.1. Selection of Operating Points and Scheduling 

The authors suggest selecting engine power level and flight 
conditions as scheduling parameters to enhance simulation 
accuracy.  The rotational speed of the engine, specifically 
the fan speed for a two-spool turbofan, is considered a 
suitable proxy for power level.  Alternatively, engine 
command parameters, such as power lever angle, may be 
used. However, since these variables do not necessarily 
reflect actual engine conditions, their usage may introduce 
inaccuracies during interpolation of trim points.   

When scheduling on flight condition, Mach number and 
pressure altitude are suggested.  While neither value is 
directly measurable, both can be easily computed from free 
stream and inlet pressure and temperature measurements.  
The use of Mach number and altitude will hide the 
nonlinearities that may be present in pressure and 
temperature changes over the flight envelope, allowing for 
more uniform steps in scheduling parameters. 

The number of dimensions chosen for scheduling is a 
tradeoff between computational complexity and accuracy.  
The added accuracy that higher dimensional scheduling 
provides comes with both data storage and computational 
requirement penalties; significantly more mathematical 
operations are required as interpolation dimensions increase.  
As is discussed later, parameter correction may be used to 
minimize altitude effects.  One may choose, therefore, to 
eliminate altitude as a scheduling parameter.  However, 
parameter correction is imperfect, and there may be a 
resultant loss in accuracy.   

Because two discrete data sets are generated (i.e., trim 
points and state-space system matrices) the interpolation 
scheduling may be separated if desired to decrease data 
storage requirements.  Trim points require nearly an order of 
magnitude less storage space per operating point compared 
to state-space matrices.  Furthermore, the dynamics of the 
system are not expected to change drastically; scheduling of 
the state-space matrices may not require the same grid 
density as the steady-state trim points.  It may be 
advantageous to generate a denser or higher dimensional 
data set of trim points, while keeping the dynamics data set 
sparser or of a lower scheduling dimension (Brotherton, 
Volponi, Luppold, & Simon, 2003). 

3.1.2. Trim Points Calculation 

Generation of trim point data can be achieved using a 
steady-state engine model, as the trim points represent only 
the engine inputs and outputs without dynamics.  After 
choosing operating conditions at which to compute trim 
points, the data can be generated in a hierarchical manner.  
For example, to generate the trim points in the three 
recommended dimensions discussed above, one would 
implement the algorithm below: 

for each X in selected altitudes: 

 for each Y in selected Mach numbers: 

  for each Z in selected power levels: 

   Compute engine inputs, sensed outputs, and 
unmeasured outputs 

   Append trim point data sets 

The trim points generally should be computed around the 
traditional flight envelope of the engine.  Many models 
should be capable of computing conditions beyond the 
typical operating limits of the engine.  Having data in 
regions beyond the expected operating envelope will help to 
protect against unforeseen flight conditions.  Furthermore, 
the algorithm described will inherently generate unrealistic 
conditions.  If, for example, the Mach numbers of interest 
vary from 0 to 0.8 and the altitude varies from sea level to a 
high cruise point, the algorithm will attempt to compute a 
condition of 0.8 Mach at sea level, which is likely an 
unrealistic condition.  If generating the trim points from a 
physics-based model, this condition can most likely be 
computed with reasonable accuracy as altitude and Mach 
number translate into free stream and engine inlet 
conditions. 

In situations where the algorithm cannot compute the 
desired steady-state condition, the operating point should be 
logged as a failure.  After attempting to compute all 
conditions using the outlined algorithm, the failed 
conditions can be interpolated from those that were 
successfully calculated.  It is suggested that the interpolation 
of failed conditions be performed linearly from nearest 
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successful computations along the power level axis.  
Extrapolation can be performed when a failed steady-state 
condition is not bounded by successful calculations. 
Extrapolated parameters, however, should not be relied on 
heavily for accuracy.   

If the self-tuning model is to be applied to a variety of actual 
engines, it may be advantageous to carefully choose an 
engine performance level at which to compute the trim 
points.  A fleet of engines will exhibit a statistical 
distribution of degradation of the rotating modules, which is 
manifested in changes to each module’s efficiency and flow 
capacity (Sallee, 1978).  The self-tuning engine model 
would benefit from being designed at a mean or median 
degradation condition with regards to the specific fleet to 
minimize the possible difference in performance variations 
across all engines.   

3.1.3. Dynamics Calculation 

Each of the matrices previously presented in Equation 2 
must be calculated by perturbing their respective driving 
parameters via the nonlinear model.  In this self-tuning 
implementation, the dynamics are captured by perturbing a 
given parameter within a modified version of the steady-
state model that balances at a point described with non-zero 
state derivative conditions.  When the perturbation is 
applied, the modified steady-state solver will attempt to 
calculate a balanced engine state, where the state variables 
are held constant, and the state derivatives are permitted to 
assume non-zero values.  This condition is the instantaneous 
dynamic response of the engine after a perturbation is 
applied.  The difference between the perturbed and 
unperturbed engine model outputs and state derivatives 
represent the dynamic behavior of the system for each given 
perturbation. 

As stated earlier, it may be advantageous to compute the 
state-space matrices at different operating conditions than 
the trim points to address storage space concerns.  If we 
again assume that the recommended three dimensions are 
used for scheduling state-space matrix interpolation, the 
algorithm will be: 

for each X in selected altitudes: 

 for each Y in selected Mach numbers: 

  for each Z in selected power levels: 

   Compute state-space matrices 

   Append matrix data sets 

The procedure for computing the matrices via perturbation 
of the inputs flows as follows: 

Compute steady-state xtrim, ytrim, ztrim, and urim for current 
operating point 

for each state in x: 

 Compute x, y, z for (xi+δxi), where δxi is the 
perturbation size for the ith state, as xp, yp, zp using 
“unbalanced” steady-state model 

 Compute state derivatives from the “unbalanced” state 

 Set column i of A to be 
i

p
x

x



 

 Set column i of C and F to be 
( )p trim

i

y y
x


,

( )p trim

i

z z
x



 
respectively 

for each input in u: 

 Compute x, y, z for (ui+δui), where δui is the 
perturbation size for the ith actuator, as xp, yp, zp using 
“unbalanced” steady-state model 

 Compute state derivatives from the “unbalanced” state 

 Set column i of B to be 
i

p
u

x



 

 Set column i of D and G to be 
( )p trim

i

y y
u


,

( )p trim

i

z z
u


,respectively 

for each health parameter in h: 

 Compute x, y, z for (hi+δhi), where δhi is the 
perturbation size for the ith health parameter, as xp, yp, 
zp using “unbalanced” steady-state model 

 Compute state derivatives from the “unbalanced” state 

 Set column i of L to be 
i

p
h

x



 

 Set column i of M and N to be 
( )p trim

i

y y
h


,

( )p trim

i

z z
h


respectively 

The health parameters are set nominally to the desired 
design point that describes a mean or median engine 
deterioration level.  Note that the procedure above generates 
state-space systems in continuous form.  Conversion to 
discrete-time state-space equivalents can be performed 
using an appropriate technique such as zero-order hold after 
generating the continuous time matrices. 

The scale of the applied perturbations depends on the 
variables to be perturbed.  The authors suggest using 
perturbations at least an order of magnitude less than a 
particular variable’s steady-state value.  Some trial and error 
experimentation is necessary with each parameter to 
determine an acceptable perturbation scale.   
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The algorithm outlined suggests that the small changes are 
performed in a single direction.  However, improved 
accuracy might be gained by applying perturbations in two 
directions and computing an average effect from these two 
perturbations.  Moreover, some perturbations in a given 
direction may not be possible if, for example, they exceed 
the capabilities of a given engine actuator.  The implementer 
should take care to consider these special cases when 
performing linearization. 

Similar to the trim point calculation procedure, one may 
encounter problematic operating conditions due to the 
algorithm’s simplicity with respect to cycling through 
desired points.  However, unlike the solution for failed 
convergence of trim points during calculations, interpolation 
and extrapolation is not recommended when dealing with 
matrices that cannot be reliably computed.  Extrapolation 
can quickly lead to unrealistic dynamic behavior if great 
care is not taken, and the system dynamics are not expected 
to vary drastically across neighboring operating points. 
Instead, it is suggested that a nearby (in terms of scheduling 
parameters) successfully computed state-space matrix set 
should be used for the given failed calculation point.   

3.2. Kalman Filter Design 

The piecewise linear Kalman filter is the core of this self-
tuning engine model.  For each state-space system of the 
piecewise linear engine model, a corresponding Kalman 
gain matrix must also be computed.  In this implementation, 
steady-state Kalman filtering is applied. This means that the 
Kalman gain matrix corresponding to each state-space 
system is invariant—it is pre-computed off-line, which 
helps to reduce computational requirements at runtime that 
would accompany the online calculation of the Kalman 
gain.   

The system must be observable with respect to the number 
of available sensed engine measurements to construct this 
steady-state Kalman filter.  The goal of tuning is to 
eliminate model mismatch due to the unknown performance 
characteristics of the engine.  It is assumed that the model 
itself is theoretically correct, but the actual engine may 
exhibit behavior that differs from the theoretical model due 
to performance degradation, manufacturing variations, or 
other unknown variables.  The health parameters, which 
theoretically quantify these performance differences, can be 
selected as engine tuning parameters.  Additionally, since 
these parameters remain relatively constant in the short-
term, they are usually measured over the course of a single 
flight. 

The observability issue may prove problematic when 
dealing with aircraft gas turbine engines.  Often times the 
number of sensors available for use with the self-tuning 
engine model is less than the number of health parameters 
present in the model.  To overcome this underdetermined 
estimation problem, two techniques are suggested to 

transform the state-space matrices appropriately.  If the 
health parameters are shifted to become states in our model 
in Equation 2, the system becomes: 

 

 

0 0

x A L x
B u

h h

x
y C M D u

h

x
z F N G u

h

     
            

 
     

 
     




 (3) 

Since engine performance deterioration evolves slowly in 
time, the health parameter states in Equation 3 are modeled 
without dynamics. Once the health parameters are 
augmented with the state variables, they can be estimated by 
applying a Kalman filter as long as the system is observable. 
However, a necessary condition for observability given the 
Equation 3 formulation is that there are at least as many 
measurements as health parameters (España, 1994).  To 
construct a reduced-order state space system of appropriate 
dimension to enable Kalman filter formulation, consider a 
transformation matrix, V*, that maps the health parameter 
vector, h, to a tuning vector of lower dimension, q, such 
that: 

q V h *  (4) 

An approximation for h based on q can be calculated using 
the pseudoinverse of V*: 

h V q *†  (5) 

Then, substituting Equation 5 into Equation 3 produces the 
following reduced-order state space system: 

0 0

x xA LV
B u

q q

x
y C MV D u

q

x
z F NV G u

q

     
          

         
         




*†

*†

*†

 (6) 

The choice of the transformation matrix is a design decision 
to be made prior to constructing the Kalman gains.  To 
allow for piecewise interpolation of the Kalman gain, the 
value of the transformation matrix must remain constant 
regardless of operating condition so that the definition of the 
tuning vector does not change based on operating point 
(Simon, Armstrong, & Garg, 2011).   

The first technique for dimensional reduction of the health 
parameters is to select a subset of health parameters to use 
as tuning parameters, effectively assuming the excluded 
parameters remain constant.  In this scenario, the elements 
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of the transformation matrix will be comprised of ones and 
zeros appropriately selected to map the selected subset of 
health parameters properly.  Defining this subset of 
parameters is a design decision.  Based on a theoretical error 
analysis, the optimal subset can be algorithmically selected 
(Simon, Armstrong, & Garg, 2011). While this technique 
preserves the definition of the selected health parameters, 
the excluded health parameters cannot be estimated and 
“smearing” effects may cause inaccuracies in the estimation 
of the selected subset of parameters (Simon, Armstrong, & 
Garg, 2011). 

A second technique, referred to as “optimal tuner selection,” 
can be employed to produce a transformation matrix that is 
a linear combination of all health parameters (Simon & 
Garg, 2010).  This method involves optimizing the 
transformation matrix and the resultant definition of the 
tuning vector to minimize a desired estimation error.  The 
error to be minimized is normally either the theoretical 
estimation error in a selection of unmeasured outputs (z), 
health parameters (h), or a combination of both.  The 
selection of which errors to minimize is tailored to the 
intended usage of the self-tuning engine model.  Because 
the value of the transformation matrix must not change with 
operating condition, a global optimization algorithm should 
be employed across the expected flight envelope (Simon, 
Armstrong, & Garg, 2011). 

Once the dimensions of the tuning vector are reduced (if 
necessary) to make the estimation problem observable and 
the process and measurement noise covariance matrices are 
specified, the Kalman gain matrices are constructed at every 
operating point where a state-space system exists (Simon, 
Armstrong, & Garg, 2011).  The general algorithm proceeds 
as follows, again, assuming three-dimensional interpolation: 

for each X in selected altitudes: 

 for each Y in selected Mach numbers: 

  for each Z in selected power levels: 

   Transform or reduce the state-space system per 
Equation 6 

   Calculate the associated Kalman gain 

   Append transformed state-space and Kalman gain 
matrix data sets 

Because of the mathematics inherent in computing the 
Kalman gain, most notably the algebraic Riccati equation, 
the gain matrix may not be calculable at some operating 
points (Zarchan & Musoff, 2005).  In these cases, it is 
suggested that the entire state-space system be disposed of 
and replaced with the nearest (in terms of scheduling points) 
state-space system where a Kalman gain can be reliably 
computed.  The failure to construct the Kalman gain may 
imply some mathematical stability issues with the state-
space system used as a basis for the computation. 

3.3. Data Storage 

The algorithms presented in the previous section do not 
address data storage.  The issue of storing the data generated 
is somewhat architecture and platform dependent, but some 
general guidelines are suggested to improve efficiency when 
using the resultant data.  

For efficient interpolation, the authors found that it was 
beneficial to align the data in memory such that any given 
single vector or matrix in a data set containing multiple 
vectors or matrices exist in a single, congruent memory 
location.  Placing each data set in a continuous memory 
block allowed for fast pointer arithmetic during 
interpolation.    Access to vectors or matrices in the data set 
“in place” via pointer arithmetic avoided unnecessary 
penalties resulting from copying data to temporary storage 
during interpolation procedures. 

The suggested memory layout of data described above 
should be considered when designing long-term storage of 
the data sets.  If the data is initially generated in the proper 
format and saved to a permanent storage medium, the 
process of loading the data at runtime should result in an 
advantageous memory layout automatically.  One 
suggestion is to store high-dimensional (3+ dimensions) 
data as concatenated two-dimensional arrays with 
scheduling as shown in Figure 3 for the three dimensional 
case.  The advantage of this layout will become apparent 
when the interpolation implementation is discussed. 

Matrix 
(m,n) 
or 
Vector 
(m,1)

Matrix 
(m,n) 
or 
Vector 
(m,1)

Matrix 
(m,n) 
or 
Vector 
(m,1)

Matrix 
(m,n) 
or 
Vector 
(m,1)

…

Altitude 1 Altitude 2

Mach 1 Mach 2 Mach 1

…

…
Power 1 Power 2 Power 1 Power 1

…

 

Figure 3. Suggested hierarchical data storage 

4. MODEL IMPLEMENTATION 

The implementation details surrounding the self-tuning 
engine model are application-specific.  This section outlines 
an implementation that emphasizes efficiency and accuracy.  
The resultant design is appropriate for online, real-time 
applications and ground-based data analyses.  The 
discussion will focus on a discrete-time implementation. 

The overall self-tuning engine model design is illustrated in 
the block diagram in Figure 4.  The self-tuning engine 
model requires sensed engine measurements (y) and actuator 
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Figure 4. Self-tuning engine model overview 

inputs (u).  The model produces sensor estimates ( ŷ ), 

unmeasured engine parameter estimates ( ẑ ), and tuning 
parameters ( q̂ ).  The sensor estimates should match the 

sensed measurements.  The tuning parameters will be 
transformable back into estimates of engine performance 
parameters (Simon & Garg, 2010). 

The individual components of this self-tuning engine model 
are explained below.  The details of the implementation are 
independent of computing language and hardware platform. 

4.1. Parameter Correction 

For aircraft engine applications, the use of corrected 
parameters within the self-tuning model is encouraged to 
improve accuracy and to reduce the number of operating 
points included in the piecewise linear design.  Parameter 
correction is used to minimize the effects of atmospheric 
variations due to temperature and pressure (Volponi, 1998). 
The inlet total pressure and temperature sensors are 
employed to normalize parameters with respect to standard 
day sea level static conditions.  In a gas turbine engine, it is 
likely that the only actuator input requiring correction will 
be a fuel flow command.  The sensor measurements must 
also be corrected prior to use.  The tuning parameters, which 
are considered to be proxies for the health parameters and 
are assumed to be independent of altitude and Mach 
number, will not require correction.  The correction of trim 
values and system matrices is performed during 
linearization.  Within the block shown in Figure 4, all values 
remain in corrected form, including inputs, to improve 
accuracy. 

4.2. Kalman Filter Implementation 

The filter in this self-tuning engine model is a steady-state 
Kalman filter implementation.  The Kalman gain, state-
space matrices, and trim vectors are delivered to this module 
via the interpolation routines, as will be discussed.  This 
implementation uses a discrete-time form of the Kalman 
filter.  A block-diagram in Figure 5 outlines the structure of 
this Kalman filter.  Here, k represents the discrete time 

+

+

+

x
correction

xtrim,k
1ˆxq kA x


z -1

z -1
uk uk-1

1xq kB u 

+

+

ˆkx

ˆxq kC x

kD u

kG u

ˆxq kF x

yk
kK y

ky-

+-

+

+ ˆkx

1ˆkx


kD u

ˆxq kC x ˆky

ˆkz

+

Figure 5. Block diagram of Kalman filter 

index and the matrices and vectors have been augmented per 
Simon and Garg (2010) to include tuning parameters in the 
state vector, Δx, accompanied by proper state-space matrix 
modifications.  Here, the “+” and “-” superscripts denote 
Kalman filter a posteriori and a priori estimates, 
respectively, ky  is the residual between the sensed and 

estimated measurement vector, and z-1 is the unit sample 
delay. 

The implementation of a piecewise linear Kalman filter does 
pose unique implementation requirements.  The Kalman 
filter, which is a recursive estimator, relies on state 
estimates calculated at the previous time step.  However, on 
each time step in the piecewise linear implementation, the 
trim vectors, state-space matrices, and Kalman gain matrix 
are interpolated, and all are likely to shift from the previous 
time point.  Therefore, the a posteriori state estimate 
calculated the previous time step will reflect a deviation 
relative to the state trim vector applied during the previous 
time step.  Prior to use on the current time step, the a 
posteriori state estimate must be updated to reflect the 
change in the trim values, as shown below: 

)( 111   kkkk xxxx  (7) 

In the above equation, the expression inside the parenthesis 
reflects the change in trim values from one time step to the 
next.  Applying this adjustment ensures that deviations from 
trim are relative to the trim point applied at time step k, as 
opposed to the trim point previously applied at time step 
k-1.  For additional details on the formulation of the Kalman 
filter, readers are referred to Simon & Garg, 2010. 

4.3. Interpolation Technique 

Self-tuning engine model computational efficiency is highly 
dependent on the interpolation technique employed within 
the model.  Therefore, to lessen overall model 
computational requirements the interpolation procedure  
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Figure 6. (a) Two- and (b) Three-dimensional interpolation 

should employ rapid and efficient techniques.  The earlier 
section, focusing on the storage of the trim vectors, state-
space matrices, and Kalman gain matrix data sets, discussed 
the proper layout of data in memory for efficient 
interpolation.  Once this data is stored in memory, efficient 
interpolation methods can be used across the multiple 
dimensions. 

When working in multiple dimensions, linear interpolation 
requires an expansion.  Consider the two simple 
interpolation cases in Figure 6.  The point, p, at which to 
interpolate can be projected onto each of the interpolation 
axes, as the figure shows, and the point is bounded by either 
four or eight schedule points for the two- and three-
dimensional cases, respectively.  For each axis (i.e., 
dimension), weights are computed that represent the 
normalized distances from each bounding point on that axis.  
For a single axis, assuming d is the distance between two 
schedule operating points and d' is the distance between the 
projection of p onto the axis and the schedule point that 
precedes p, two weights can be calculated as: 

 
ddw

ddw

/

/1

1

0




 (8) 

The weight w0 represents the contribution of the schedule 
point v0 that precedes the projection of p, while the weight 
w1 is the contribution of the schedule point v1 that follows 
the projection of p.  The weight pairs are computed for each 
axis.  This procedure will yield two pairs of weights for the 
two-dimensional interpolation case and three weighting 
pairs for the three-dimensional case.  The interpolated value 
for the two-dimensional case (bi-linear interpolation) is then 
defined as: 

1,11,1,1,01,0,

0,10,1,0,00,0,

vwwvww

vwwvwwx

yxyx

yxyxp




 (9) 

Likewise, the interpolated value for three dimensions (tri-
linear interpolation) would be: 

1,1,11,1,1,1,1,01,1,0,

1,0,11,0,1,1,0,01,0,0,

0,1,10,1,1,0,1,00,1,0,

0,0,10,0,1,0,0,00,0,0,

vwwwvwww

vwwwvwww

vwwwvwww

vwwwvwwwx

zyxzyx

zyxzyx

zyxzyx

zyxzyxp









 (10) 

The calculations described above require determining the 
bounding points along each axis from the schedules.  A 
simple search for the desired index is usually sufficient, but 
some efficiency gains can be realized by using a bracketed, 
binary search with memory of the last successful search 
between requests.  A binary search technique can rapidly 
search through a sorted array, such as our scheduling axes, 
with a worst case O(log n)* performance (Knuth, 1997).  An 
additional improvement can be gained by storing the index 
of the lower bounding point for each axis at each time step.  
Because the change in operating point on each time step is 
likely to be relatively small, the previously used index on 
each axis can be rapidly checked to see if it is still 
applicable rather than performing a binary search on every 
time step.  The performance on the majority of time steps 
would remain at O(1), and only the applied weights would 
require recalculation. 

Another way to improve efficiency is to limit the number of 
schedule searches and subsequent weight calculations based 
on the sharing of scheduling axes.  The trim point vectors 
would all share one set of scheduling axes, while the state-
space matrices and Kalman gains would use a less dense set.  
Therefore, only two passes of weight calculations would be 
necessary, one for trim vectors and another for matrices.  
The weights could then be shared between trim point vector 
interpolations when applying the data set for each parameter 

                                                           
*  Shown in Big O notation indicating that worst case 
computational time grows proportional to log n, where n is the 
number of grid points on the scheduling axis. 
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to either equation 9 or 10.  Similarly, the matrix weights 
could be shared for all the state-space matrix data sets and 
the Kalman gain data set.  This approach decreased the 
number of schedule searches by a factor of five for this 
three-dimensional model design. 

As explained earlier, the memory layout of the data can lead 
to dramatic improvements in performance.  Matrix 
interpolation may seem costly, and this implementation is 
suggesting a minimum of five matrix interpolations per time 
step, with each involving a considerable number of products 
to be computed.  To minimize the impact of the large 
number of products necessary, one method  may be to  
exploit “single instruction, multiple data,” or SIMD, 
instructions that are conveniently available on many modern 
central processing units, including modern embedded 
processors (ARM, 2010-2011), (Intel Corporation, 1997-
2012), (International Business Machines Corporation, 
2006).  Rather than focus on processor-specific capabilities, 
the use of the Basic Linear Algebra Subprograms, or BLAS, 
library is suggested (Lawson, Hanson, Kincaid, & Krogh, 
1979).  Some modern interpreted languages will use these 
procedures internally, and modern optimizing compilers can 
often detect and use these procedures in a manner 
transparent to the designer.  Examining equations 9 and 10, 
one may notice that the BLAS routines “*AXPY,” which 
multiplies a vector by a scalar (our weights) and adds the 
product to another vector, can be applied multiple times to 
calculate the desired interpolated value (BLAS, 2011).  
Using such routines eliminates the element-by-element 
multiplication that might be used naively, allowing the 
SIMD capabilities of the processor to be used. 

The continuous memory locations, which had been 
suggested earlier, allow for further efficiency improvement.  
If each data set is held in a single memory block, each 
matrix or vector can be accessed “in-place” rather than 
copying or extracting the matrix or vector elements to an 
appropriately sized array prior to weighting each individual 
point.  In a lower level language, pointer arithmetic can be 
exploited to specify the location in memory of an individual 
matrix or vector within a data set.  By employing these 
efficiency gains, the computational costs of performing 
multidimensional interpolation of matrices and vectors are 
minimized without sacrificing accuracy. 

5. EXAMPLE RESULTS 

For evaluation purposes, this self-tuning engine model is 
compared against the nonlinear engine model upon which it 
is based.  To illustrate the capabilities of the suggested 
design, an appropriate self-tuning engine model has been 
derived from the Commercial Modular Aero-Propulsion 
System Simulation 40k, or C-MAPSS40k, a nonlinear 
aerothermal model that simulates a 40,000lbf-class turbofan 
engine (May, Csank, Lavelle, Litt, & Guo, 2010).  The self-
tuning engine model was designed to reflect an engine at  

 

Figure 7. Thrust calculations using nonlinear and piecewise 
linear models at 25,000 ft and 0.55 Mach 

 
50% of useful life remaining.  The piecewise linear state-
space model and Kalman filter have been designed as 
discrete-time models using the same time step size as the 
nonlinear model serving as the comparison basis. 

First, the standalone piecewise linear model (without 
tuning) is compared with the nonlinear model to determine 
the accuracy of the linearization and effectiveness of the 
interpolation algorithms.  Figure 7 shows the thrust estimate 
for the piecewise linear model as compared to the nonlinear 
C-MAPSS40k model running at the mean degradation 
design point for a rapid power increase followed by a 
subsequent decrease to the original power level.  The 
altitude and Mach number conditions tested lie between 
schedule points, meaning the interpolation algorithm is 
being exercised in this example.  The percent error graph, 
which examines the point-by-point difference in thrust 
between the piecewise linear model versus the nonlinear 
model, shows a noticeable increase in the residuals during 
transients.  

The self-tuning model provides much of its advantage for 
engines that operate away from the model degradation 
design point.  Under the same transient situation with tuning 
enabled, the self-tuning model should be able to maintain 
accuracy when applied to engines that are not represented 
by the mean performance level.  Figure 8 illustrates the 
accuracy of a self-tuning engine model when estimating the 
unmeasured combustor exit temperature for an ideal (new) 
engine and an end-of-life engine.  The combustor exit 
temperature has been chosen for comparison because it 
experiences significant shift as engine performance 
degrades.  In this example, the nonlinear engine model 
serves as the “truth” model and its sensed outputs and 
actuator commands are provided as inputs to the self-tuning 
engine model. The figure shows the outputs of the nonlinear 
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Figure 8. Unmeasurable combustor exit temperature 

estimates for an off-design engine 

engine model (red), the self-tuning engine model (blue), and 
the piecewise linear model without tuning (green).  Here, 
the estimate of combustor exit temperature produced by the 
self-tuning engine model exhibits good matching with the 
nonlinear model at these two extreme performance ranges.  
Conversely, the piecewise linear model, which does not 
have self-tuning functionality, is unable to match the 
nonlinear model as well. 

The self-tuning engine model is considerably simpler than 
the full nonlinear model.  While C-MAPSS40k is capable of 
running faster than real-time on modern consumer-grade 
computing hardware, the self-tuning engine model exhibits 
better computational performance due to its efficient 
interpolation algorithm and the inherent simplicity of its 
linear design.  Compared to the nonlinear model, the self-
tuning engine model runs approximately an order of 
magnitude faster than the nonlinear model on the same 
computer. 

6. DISCUSSION 

The main advantage of the self-tuning engine model is its 
ability to eliminate the mismatch between the theoretical 
model and the actual engine.  Because of this feature, on-
board implementations of such models may be desirable for 
a variety of reasons, including control system integration, 
on-board model-based engine diagnostics, and simple 
informational purposes.  However, this model loses much of 
its utility if it is unable to accurately estimate parameters 
during transient operation.   

The accuracy during transients is related to a number of 
design choices made during the generation of the self-tuning 

model's data.  The schedule density of the piecewise linear 
model must always be considered during the design phase.  
Comparison of the piecewise linear model itself against its 
nonlinear basis model during simple transients represents a 
“best case” accuracy that can be achieved by the subsequent 
self-tuning engine model.  Often times, adjustments to the 
perturbations during linearization must be made to better 
improve dynamic accuracy.  Additionally, some highly 
nonlinear parameters, such as stall margins, may not lend 
themselves to linearization inherently; these parameters 
appear to result in large mismatches even when great care is 
taken to improve accuracy. 

Transient behavior of the tuning parameters within the 
Kalman filter is normally adjusted via modification of the 
process noise.  Scaling of the noise has been shown to 
accelerate or decelerate the response of tuning parameters to 
engine transients (Simon, Armstrong, & Garg, 2011).  
Furthermore, ongoing research suggests that numerical 
factors related to the globally optimal tuner selection 
strategy may produce tuner transformation matrices that 
have undesirable transient properties.  The current 
optimization algorithm does not consider the transient 
behavior of resultant Kalman filters, only the steady-state 
errors.  Depending on the models involved, this issue may 
or may not be encountered during implementation of a self-
tuning engine model. 

The advantage of this self-tuning engine model is the 
relative simplicity of its design, among other benefits.  The 
structure of the Kalman filter, although this model uses a 
piecewise version, lends itself to well-known verification 
and validation, or V&V, procedures (Schumann & Liu, 
2007).  For online implementations or control system 
integration, the ability to perform V&V on this self-tuning 
engine model using accepted processes is advantageous 
when comparing against alternatives such as a full 
nonlinear, physics-based online model.   

7. CONCLUSION 

A piecewise linear Kalman filter has been proposed as a 
self-tuning engine model solution.  The well-understood 
Kalman filter algorithm combined with an efficient 
implementation make this piecewise solution an attractive 
candidate for resolving differences between theoretical, 
physics-based models and actual engine hardware.   

The two outputs of the self-tuning engine model, tuning 
parameters and unmeasured parameter estimates, can be 
exploited for a variety of purposes.  Estimates of these 
parameters, which could be employed in either ground-
based or on-board solutions, could be used for performance 
trending and assisting in current engine health management 
programs.  Such trending information is also useful for 
engine diagnostic algorithms by allowing these conceptual 
algorithms to discern between normal engine degradation 
and possible faults.  The estimated parameters, while useful 
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for informational purposes alone, introduce the prospect of 
advanced parameter synthesis and control algorithms, 
including controlling directly on thrust.  Possible efficiency 
gains may be realized through the accurate estimation of 
engine-specific operational limits, providing the opportunity 
to relax generally conservative stall margin, temperature, 
and pressure limits.  

ACKNOWLEDGEMENT 

The research associated with this work was performed under 
the Vehicle Systems Safety Technologies project as part of 
the National Aeronautics and Space Administration’s 
Aviation Safety Program. 

NOMENCLATURE 

A, B, C, 
D, F, G, 
L, M, N 

Linear state-space system matrices 

d, d’ Distance in interpolation calculations 
h Health parameter vector 
q Engine tuning parameter vector 
U Engine control input vector 

V* 
Transformation matrix mapping health 
parameters to engine tuning parameters 

X,Y,Z Interpolation scheduling axes 
f Nonlinear function of engine state derivatives 
g Nonlinear function of engine outputs 
u Control inputs 
v Value placeholder for interpolation 
w Weighting for interpolation 
x Engine state vector 
y Engine sensed measurement vector 
z Engine unmeasured parameter vector 
z-1 Unit sample delay 
Δ prefix Deviation from trim value 

δ prefix Perturbation value 
  
Subscripts 
c  Corrected value 
k Discrete time index 
ref Health parameter reference vector 
trim Trim vector 
  
Superscripts 
†  Pseudoinverse 
- a priori Kalman filter estimate 
+ a posteriori Kalman filter estimate 
  
Diacritical Marks 
ˆ Estimated value 

~ 
Residual between estimated and sensed 
measurement vector 
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