
Constructing an Efficient Self-Tuning Aircraft Engine Model for
Control and Health Management Applications

Jeffrey B. Armstrong1 and Donald L. Simon2

1Vantage Partners, LLC, Cleveland, Ohio, 44135, U. S. A.
jeffrey.b.armstrong@nasa.gov

2NASA Glenn Research Center, Cleveland, Ohio, 44135, U. S. A.
donald.l.simon@nasa.gov

ABSTRACT

Self-tuning aircraft engine models can be applied for control
and health management applications. The self-tuning
feature of these models minimizes the mismatch between
any given engine and the underlying engineering model
describing an engine family. This paper provides details of
the construction of a self-tuning engine model centered on a
piecewise linear Kalman filter design. Starting from a
nonlinear transient aerothermal model, a piecewise linear
representation is first extracted. The linearization procedure
creates a database of trim vectors and state-space matrices
that are subsequently scheduled for interpolation based on
engine operating point. A series of steady-state Kalman
gains can next be constructed from a reduced-order form of
the piecewise linear model. Reduction of the piecewise
linear model to an observable dimension with respect to
available sensed engine measurements can be achieved
using either a subset or an optimal linear combination of
“health” parameters, which describe engine performance.
The resulting piecewise linear Kalman filter is then
implemented for faster-than-real-time processing of sensed
engine measurements, generating outputs appropriate for
trending engine performance, estimating both measured and
unmeasured parameters for control purposes, and
performing on-board gas-path fault diagnostics.
Computational efficiency is achieved by designing
multidimensional interpolation algorithms that exploit the
shared scheduling of multiple trim vectors and system
matrices. An example application illustrates the accuracy of
a self-tuning piecewise linear Kalman filter model when
applied to a nonlinear turbofan engine simulation.
Additional discussions focus on the issue of transient
response accuracy and the advantages of a piecewise linear

Kalman filter in the context of validation and verification.
The techniques described provide a framework for
constructing efficient self-tuning aircraft engine models
from complex nonlinear simulations.

1. INTRODUCTION

An emerging technology in the field of aircraft engine
controls and health management is the inclusion of real-time
on-board self-tuning models for the in-flight estimation of
engine performance variations (Luppold, Roman, Gallops,
& Kerr, 1989). Self-tuning engine models are comprised of
an engine model and an associated tracking filter as shown
in Figure 1. Here, the Aircraft Engine block also includes an
on-board engine control computer (not shown). Real-time
sensor and actuator information available within this control
computer is used as inputs to the engine model. The engine
model reflects engine aero-thermodynamic performance at
both steady-state and transient conditions. Analytical
modeling approaches, such as piecewise linear models and
nonlinear component level models, are commonly applied.
Recently, Volponi (2008) also demonstrated the merits of a
hybrid modeling approach combining analytical (physics-
based) and empirical (neural network) elements. The
tracking filter, typically based on Kalman filter estimation
concepts, is designed to automatically adjust tuning
parameters within the engine model to enable the model to
match the observed performance of the physical engine. The
discrepancy between the physical engine parameters and the
model variables is referred to as model mismatch. The
tuning parameter adjustment is necessary to enable the
model to account for the gas turbine engine performance
variations caused by deterioration, wear, and fouling that
turbomachinery will incur over time with usage.

Jeffrey B. Armstrong et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Annual Conference of Prognostics and Health Management Society 2012

2

+

‐

Aircraft
Engine

Engine
Model

Tracking
Filter

Actuator commands &
ambient operating

conditions

Sensor
measurements

Estimated sensor
measurements

Parameter estimates
(provided to control &
health management

applications)

Model tuning
Parameter
adjustments

Figure 1. Self-tuning engine model architecture including an
aircraft engine, an engine model, and a tracking filter to tune
the model

One of the earliest investigations to consider the use of self-
tuning engine model technology was under the NASA and
Department of Defense led Performance-Seeking Control
(PSC) program of the 1980’s and 1990’s (Shaw, Foxgrover,
Berg, Swan, Adibhatla, & Skira, 1986), (Nobbs, Jacobs, &
Donahue, 1992). The PSC program demonstrated multiple
performance benefits achievable through in-flight
propulsion control optimization including reduced fuel-
burn, increased thrust, and increased component life
(Gilyard & Orme, 1993). Central to the PSC design is the
inclusion of a self-tuning engine model that provides the
control system with real-time estimates of unmeasured
engine performance parameters. Follow-on research efforts
have continued to mature and advance aircraft engine
model-based control technology (Dwyer, 1990), (Klaus &
Kreiner, 2001), (Brunell, Bitmead, & Connolly, 2002).

In addition to control applications, self-tuning engine model
technology also holds benefits for propulsion system health
management. This includes estimating, trending, and
forecasting the level of performance deterioration within the
major rotating modules of the engine, and diagnosing faults
that impact engine gas path performance (Gallops, Gass, &
Kennedy, 1992), (Bushman & Gallops, 1992), (Armstrong
& Simon, 2011). It is expected that the application of on-
board self-tuning engine model technology within the
aircraft engine industry will continue to increase. A future
vision put forth by Behbahani, Adibhatla, and Rauche
(2009) is to develop an integrated on-board self-tuning
model-based engine controller architecture with control,
diagnostic, and prognostic functionalities.

This paper is intended to serve as a guide for the
development and implementation of self-tuning engine
models for turbomachinery diagnostics, prognostics, and
health management. It will cover the required information,
design considerations, and design steps necessary to
construct and implement such models. The focus of this
work is specifically on piecewise linear self-tuning engine
models with a Kalman filter as the tracking filter.

The remainder of this paper guides the reader through the
design and implementation details of a self-tuning engine
model. First, the overall design is discussed briefly to
introduce the various requirements and components of such
a model. Next, the generation of linear state space engine
models and the design and setup of the Kalman filter is
explained. Then, the implementation is explicated to aid the
reader in constructing an efficient adaptation of this design.
This is followed by the presentation of example results from
the application of the technique to a turbofan engine
simulation. Finally, a discussion of some design choices
and model advantages is presented.

2. MODEL COMPONENTS

The self-tuning engine model outlined in this paper is
composed of a number of modular components. Two major
components comprise this design: a piecewise linear state-
space engine model and an associated piecewise linear
steady-state Kalman filter.

The input signals available to a self-tuning engine model are
restricted to the following signals, which are also provided
to the engine controller: engine actuator commands and
sensor measurements from the engine. Additional inputs
may consist of airframe sensed measurements, such as free
stream conditions, that affect gas-path analyses.

The outputs of the self-tuning engine model will normally
consist of three components: sensor estimates, tuning
parameters, and unmeasured parameter estimates. In this
architecture, the sensor estimates should be nearly identical
to the actual sensed measurements since the model is
“tuned” to match these measurements. Tuning parameters
generated by the model are available as outputs. The
parameters selected and applied as model tuning parameters
depend on design decisions, but they often act as proxies for
engine performance parameters, as is discussed later.
Finally, the self-tuning engine model can produce estimates
of unmeasured engine parameters. Since the engine model
is physics-based, the estimates of unmeasured parameters
are expected to approach the actual values. The estimates
often include thrust, stall margins, and gas-path pressures
and temperatures where physical measurement is
impractical.

A piecewise linear state-space model forms the basis for
modeling theoretical engine dynamics. This model is
comprised of state space matrices and associated trim
points, both of which are interpolated based on operating
point. The piecewise linear model is created from a
nonlinear aerothermal model, but offers some advantages
over the more complex physics-based simulation. A
piecewise linear model is usually less computationally
intensive than its nonlinear equivalent, and the simpler
structure allows for straightforward design of tuning
solutions, a Kalman filter in this case.

Annual Conference of Prognostics and Health Management Society 2012

3

Accompanying the piecewise linear model in this approach
is a piecewise steady-state Kalman filter. This
implementation uses gain matrices that are pre-computed
and held constant as opposed to updating the gain matrices
online while processing the input data. Similar to the state-
space matrices, the Kalman gain matrices are also
interpolated based on operating point. The Kalman filter
produces tuning parameters that drive the difference
between the actual sensor measurements and their respective
estimates to zero.

When employing piecewise solutions, design considerations
related to interpolation mechanisms, parameter scaling,
degrees of freedom, and processing time are important. For
accuracy reasons, it is often advantageous to consider
interpolation based on multiple dimensions, as will be
described. Efficient algorithms should be employed to
exploit multidimensional data alignment and shared
scheduling. Additionally, correction techniques applied
internally within the model, as discussed later, require some
supporting code infrastructure.

3. MODEL DATA COMPUTATION

Constructing this self-tuning model requires translating a
nonlinear aerothermal model to an equivalent piecewise
linear model and piecewise linear Kalman filter. The initial
step is to linearize the nonlinear model at multiple operating
points to generate a piecewise linear state-space model and
an associated set of trim points. Once linearization is
complete, the Kalman gain matrices are computed. The
resultant trim points, state-space system matrices, and
Kalman gains can then be used in the self-tuning engine
model implementation.

3.1. Linearization

The nonlinear model of an aircraft engine can be
represented by the following equations

 

 

, ,

(, ,)

, ,z

x f x u h

y g x u h

z g x u h








 (1)

where x and u represent the vectors of engine state variables
and control command inputs, respectively. The vector h
represents health parameters, such as efficiency or flow
capacity, reflective of performance deterioration within the
major modules of the engine. For given input values, the
nonlinear functions f, g, and gz generate the vectors of state
derivatives x , sensed engine outputs y, and unmeasured
engine outputs z, respectively. By linearizing the engine
model at a given operating point, the following state-space
equations are obtained:

     

     

     

trim trim ref

x u h

trim trim trim ref

y x u h

trim trim trim ref

z x u h

x A x x B u u L h h

x A x B u L h

y y C x x D u u M h h

y C x D u M h

z z F x x G u u N h h

  

   

   

     

     

      

      

      




  



   

   

z F x G u N h     

 (2)

Here, A, B, C, D, F, G, L, M, and N are the state-space
matrices reflecting system dynamics. The trim vectors,
denoted by the subscript “trim,” reflect the values of the
state variables, commands, and measured and unmeasured
outputs when the model is at steady-state (i.e., x = 0) at the
given operating point. Collectively, the trim vectors define
what is referred to as a “trim point.” The vector href
represents a reference health condition specified by the
system designer. In Equation 2, parameter deviations
relative to trim or reference conditions are denoted by the
delta symbol ().

The initial step in creating this self-tuning engine model is
the computation of linear state-space models from the
nonlinear model at multiple operating points. These
operating points serve as the interpolation scheduling
parameters in the piecewise linear model. Figure 2 shows a
notional three-dimensional example of operating point
specification using altitude, Mach number, and power
setting as the scheduling parameters. The number of
operating points and spacing between operating points,
which does not have to be uniform, are design decisions left
to the end user. In general, a denser grid of operating points
will allow the piecewise linear model to more closely
approximate the nonlinear model. However, that will
increase memory storage requirements required for
implementation. While the operating points generally reside
within a standard flight envelope, it may be advantageous to
select some operating points beyond the standard envelope
(assuming the nonlinear engine model is operable and valid
at these points). This expanded operating envelope
functionality is necessary to enable the piecewise linear
model to account for scenarios where the actual aircraft
engine operates beyond normal expected operating
conditions.

Annual Conference of Prognostics and Health Management Society 2012

4

Z
(power level)

X
(altitude)

Y
(Mach)

 denotes location in 3‐dimensional
space defining an operating point

Figure 2. Example of three-dimensional piecewise linear
model operating point scheduling

As described above, the piecewise linear model will use two
related datasets: the trim points for the piecewise linear
model and the state-space system matrices that model
engine dynamics. Scheduling of the model and the
generation of these datasets are discussed below.

3.1.1. Selection of Operating Points and Scheduling

The authors suggest selecting engine power level and flight
conditions as scheduling parameters to enhance simulation
accuracy. The rotational speed of the engine, specifically
the fan speed for a two-spool turbofan, is considered a
suitable proxy for power level. Alternatively, engine
command parameters, such as power lever angle, may be
used. However, since these variables do not necessarily
reflect actual engine conditions, their usage may introduce
inaccuracies during interpolation of trim points.

When scheduling on flight condition, Mach number and
pressure altitude are suggested. While neither value is
directly measurable, both can be easily computed from free
stream and inlet pressure and temperature measurements.
The use of Mach number and altitude will hide the
nonlinearities that may be present in pressure and
temperature changes over the flight envelope, allowing for
more uniform steps in scheduling parameters.

The number of dimensions chosen for scheduling is a
tradeoff between computational complexity and accuracy.
The added accuracy that higher dimensional scheduling
provides comes with both data storage and computational
requirement penalties; significantly more mathematical
operations are required as interpolation dimensions increase.
As is discussed later, parameter correction may be used to
minimize altitude effects. One may choose, therefore, to
eliminate altitude as a scheduling parameter. However,
parameter correction is imperfect, and there may be a
resultant loss in accuracy.

Because two discrete data sets are generated (i.e., trim
points and state-space system matrices) the interpolation
scheduling may be separated if desired to decrease data
storage requirements. Trim points require nearly an order of
magnitude less storage space per operating point compared
to state-space matrices. Furthermore, the dynamics of the
system are not expected to change drastically; scheduling of
the state-space matrices may not require the same grid
density as the steady-state trim points. It may be
advantageous to generate a denser or higher dimensional
data set of trim points, while keeping the dynamics data set
sparser or of a lower scheduling dimension (Brotherton,
Volponi, Luppold, & Simon, 2003).

3.1.2. Trim Points Calculation

Generation of trim point data can be achieved using a
steady-state engine model, as the trim points represent only
the engine inputs and outputs without dynamics. After
choosing operating conditions at which to compute trim
points, the data can be generated in a hierarchical manner.
For example, to generate the trim points in the three
recommended dimensions discussed above, one would
implement the algorithm below:

for each X in selected altitudes:

 for each Y in selected Mach numbers:

 for each Z in selected power levels:

 Compute engine inputs, sensed outputs, and
unmeasured outputs

 Append trim point data sets

The trim points generally should be computed around the
traditional flight envelope of the engine. Many models
should be capable of computing conditions beyond the
typical operating limits of the engine. Having data in
regions beyond the expected operating envelope will help to
protect against unforeseen flight conditions. Furthermore,
the algorithm described will inherently generate unrealistic
conditions. If, for example, the Mach numbers of interest
vary from 0 to 0.8 and the altitude varies from sea level to a
high cruise point, the algorithm will attempt to compute a
condition of 0.8 Mach at sea level, which is likely an
unrealistic condition. If generating the trim points from a
physics-based model, this condition can most likely be
computed with reasonable accuracy as altitude and Mach
number translate into free stream and engine inlet
conditions.

In situations where the algorithm cannot compute the
desired steady-state condition, the operating point should be
logged as a failure. After attempting to compute all
conditions using the outlined algorithm, the failed
conditions can be interpolated from those that were
successfully calculated. It is suggested that the interpolation
of failed conditions be performed linearly from nearest

Annual Conference of Prognostics and Health Management Society 2012

5

successful computations along the power level axis.
Extrapolation can be performed when a failed steady-state
condition is not bounded by successful calculations.
Extrapolated parameters, however, should not be relied on
heavily for accuracy.

If the self-tuning model is to be applied to a variety of actual
engines, it may be advantageous to carefully choose an
engine performance level at which to compute the trim
points. A fleet of engines will exhibit a statistical
distribution of degradation of the rotating modules, which is
manifested in changes to each module’s efficiency and flow
capacity (Sallee, 1978). The self-tuning engine model
would benefit from being designed at a mean or median
degradation condition with regards to the specific fleet to
minimize the possible difference in performance variations
across all engines.

3.1.3. Dynamics Calculation

Each of the matrices previously presented in Equation 2
must be calculated by perturbing their respective driving
parameters via the nonlinear model. In this self-tuning
implementation, the dynamics are captured by perturbing a
given parameter within a modified version of the steady-
state model that balances at a point described with non-zero
state derivative conditions. When the perturbation is
applied, the modified steady-state solver will attempt to
calculate a balanced engine state, where the state variables
are held constant, and the state derivatives are permitted to
assume non-zero values. This condition is the instantaneous
dynamic response of the engine after a perturbation is
applied. The difference between the perturbed and
unperturbed engine model outputs and state derivatives
represent the dynamic behavior of the system for each given
perturbation.

As stated earlier, it may be advantageous to compute the
state-space matrices at different operating conditions than
the trim points to address storage space concerns. If we
again assume that the recommended three dimensions are
used for scheduling state-space matrix interpolation, the
algorithm will be:

for each X in selected altitudes:

 for each Y in selected Mach numbers:

 for each Z in selected power levels:

 Compute state-space matrices

 Append matrix data sets

The procedure for computing the matrices via perturbation
of the inputs flows as follows:

Compute steady-state xtrim, ytrim, ztrim, and urim for current
operating point

for each state in x:

 Compute x, y, z for (xi+δxi), where δxi is the
perturbation size for the ith state, as xp, yp, zp using
“unbalanced” steady-state model

 Compute state derivatives from the “unbalanced” state

 Set column i of A to be
i

p
x

x




 Set column i of C and F to be
()p trim

i

y y
x


,

()p trim

i

z z
x



respectively

for each input in u:

 Compute x, y, z for (ui+δui), where δui is the
perturbation size for the ith actuator, as xp, yp, zp using
“unbalanced” steady-state model

 Compute state derivatives from the “unbalanced” state

 Set column i of B to be
i

p
u

x




 Set column i of D and G to be
()p trim

i

y y
u


,

()p trim

i

z z
u


,respectively

for each health parameter in h:

 Compute x, y, z for (hi+δhi), where δhi is the
perturbation size for the ith health parameter, as xp, yp,
zp using “unbalanced” steady-state model

 Compute state derivatives from the “unbalanced” state

 Set column i of L to be
i

p
h

x




 Set column i of M and N to be
()p trim

i

y y
h


,

()p trim

i

z z
h


respectively

The health parameters are set nominally to the desired
design point that describes a mean or median engine
deterioration level. Note that the procedure above generates
state-space systems in continuous form. Conversion to
discrete-time state-space equivalents can be performed
using an appropriate technique such as zero-order hold after
generating the continuous time matrices.

The scale of the applied perturbations depends on the
variables to be perturbed. The authors suggest using
perturbations at least an order of magnitude less than a
particular variable’s steady-state value. Some trial and error
experimentation is necessary with each parameter to
determine an acceptable perturbation scale.

Annual Conference of Prognostics and Health Management Society 2012

6

The algorithm outlined suggests that the small changes are
performed in a single direction. However, improved
accuracy might be gained by applying perturbations in two
directions and computing an average effect from these two
perturbations. Moreover, some perturbations in a given
direction may not be possible if, for example, they exceed
the capabilities of a given engine actuator. The implementer
should take care to consider these special cases when
performing linearization.

Similar to the trim point calculation procedure, one may
encounter problematic operating conditions due to the
algorithm’s simplicity with respect to cycling through
desired points. However, unlike the solution for failed
convergence of trim points during calculations, interpolation
and extrapolation is not recommended when dealing with
matrices that cannot be reliably computed. Extrapolation
can quickly lead to unrealistic dynamic behavior if great
care is not taken, and the system dynamics are not expected
to vary drastically across neighboring operating points.
Instead, it is suggested that a nearby (in terms of scheduling
parameters) successfully computed state-space matrix set
should be used for the given failed calculation point.

3.2. Kalman Filter Design

The piecewise linear Kalman filter is the core of this self-
tuning engine model. For each state-space system of the
piecewise linear engine model, a corresponding Kalman
gain matrix must also be computed. In this implementation,
steady-state Kalman filtering is applied. This means that the
Kalman gain matrix corresponding to each state-space
system is invariant—it is pre-computed off-line, which
helps to reduce computational requirements at runtime that
would accompany the online calculation of the Kalman
gain.

The system must be observable with respect to the number
of available sensed engine measurements to construct this
steady-state Kalman filter. The goal of tuning is to
eliminate model mismatch due to the unknown performance
characteristics of the engine. It is assumed that the model
itself is theoretically correct, but the actual engine may
exhibit behavior that differs from the theoretical model due
to performance degradation, manufacturing variations, or
other unknown variables. The health parameters, which
theoretically quantify these performance differences, can be
selected as engine tuning parameters. Additionally, since
these parameters remain relatively constant in the short-
term, they are usually measured over the course of a single
flight.

The observability issue may prove problematic when
dealing with aircraft gas turbine engines. Often times the
number of sensors available for use with the self-tuning
engine model is less than the number of health parameters
present in the model. To overcome this underdetermined
estimation problem, two techniques are suggested to

transform the state-space matrices appropriately. If the
health parameters are shifted to become states in our model
in Equation 2, the system becomes:

 

 

0 0

x A L x
B u

h h

x
y C M D u

h

x
z F N G u

h

     
            

 
     

 
     




 (3)

Since engine performance deterioration evolves slowly in
time, the health parameter states in Equation 3 are modeled
without dynamics. Once the health parameters are
augmented with the state variables, they can be estimated by
applying a Kalman filter as long as the system is observable.
However, a necessary condition for observability given the
Equation 3 formulation is that there are at least as many
measurements as health parameters (España, 1994). To
construct a reduced-order state space system of appropriate
dimension to enable Kalman filter formulation, consider a
transformation matrix, V*, that maps the health parameter
vector, h, to a tuning vector of lower dimension, q, such
that:

q V h * (4)

An approximation for h based on q can be calculated using
the pseudoinverse of V*:

h V q *† (5)

Then, substituting Equation 5 into Equation 3 produces the
following reduced-order state space system:

0 0

x xA LV
B u

q q

x
y C MV D u

q

x
z F NV G u

q

     
          

         
         




*†

*†

*†

 (6)

The choice of the transformation matrix is a design decision
to be made prior to constructing the Kalman gains. To
allow for piecewise interpolation of the Kalman gain, the
value of the transformation matrix must remain constant
regardless of operating condition so that the definition of the
tuning vector does not change based on operating point
(Simon, Armstrong, & Garg, 2011).

The first technique for dimensional reduction of the health
parameters is to select a subset of health parameters to use
as tuning parameters, effectively assuming the excluded
parameters remain constant. In this scenario, the elements

Annual Conference of Prognostics and Health Management Society 2012

7

of the transformation matrix will be comprised of ones and
zeros appropriately selected to map the selected subset of
health parameters properly. Defining this subset of
parameters is a design decision. Based on a theoretical error
analysis, the optimal subset can be algorithmically selected
(Simon, Armstrong, & Garg, 2011). While this technique
preserves the definition of the selected health parameters,
the excluded health parameters cannot be estimated and
“smearing” effects may cause inaccuracies in the estimation
of the selected subset of parameters (Simon, Armstrong, &
Garg, 2011).

A second technique, referred to as “optimal tuner selection,”
can be employed to produce a transformation matrix that is
a linear combination of all health parameters (Simon &
Garg, 2010). This method involves optimizing the
transformation matrix and the resultant definition of the
tuning vector to minimize a desired estimation error. The
error to be minimized is normally either the theoretical
estimation error in a selection of unmeasured outputs (z),
health parameters (h), or a combination of both. The
selection of which errors to minimize is tailored to the
intended usage of the self-tuning engine model. Because
the value of the transformation matrix must not change with
operating condition, a global optimization algorithm should
be employed across the expected flight envelope (Simon,
Armstrong, & Garg, 2011).

Once the dimensions of the tuning vector are reduced (if
necessary) to make the estimation problem observable and
the process and measurement noise covariance matrices are
specified, the Kalman gain matrices are constructed at every
operating point where a state-space system exists (Simon,
Armstrong, & Garg, 2011). The general algorithm proceeds
as follows, again, assuming three-dimensional interpolation:

for each X in selected altitudes:

 for each Y in selected Mach numbers:

 for each Z in selected power levels:

 Transform or reduce the state-space system per
Equation 6

 Calculate the associated Kalman gain

 Append transformed state-space and Kalman gain
matrix data sets

Because of the mathematics inherent in computing the
Kalman gain, most notably the algebraic Riccati equation,
the gain matrix may not be calculable at some operating
points (Zarchan & Musoff, 2005). In these cases, it is
suggested that the entire state-space system be disposed of
and replaced with the nearest (in terms of scheduling points)
state-space system where a Kalman gain can be reliably
computed. The failure to construct the Kalman gain may
imply some mathematical stability issues with the state-
space system used as a basis for the computation.

3.3. Data Storage

The algorithms presented in the previous section do not
address data storage. The issue of storing the data generated
is somewhat architecture and platform dependent, but some
general guidelines are suggested to improve efficiency when
using the resultant data.

For efficient interpolation, the authors found that it was
beneficial to align the data in memory such that any given
single vector or matrix in a data set containing multiple
vectors or matrices exist in a single, congruent memory
location. Placing each data set in a continuous memory
block allowed for fast pointer arithmetic during
interpolation. Access to vectors or matrices in the data set
“in place” via pointer arithmetic avoided unnecessary
penalties resulting from copying data to temporary storage
during interpolation procedures.

The suggested memory layout of data described above
should be considered when designing long-term storage of
the data sets. If the data is initially generated in the proper
format and saved to a permanent storage medium, the
process of loading the data at runtime should result in an
advantageous memory layout automatically. One
suggestion is to store high-dimensional (3+ dimensions)
data as concatenated two-dimensional arrays with
scheduling as shown in Figure 3 for the three dimensional
case. The advantage of this layout will become apparent
when the interpolation implementation is discussed.

Matrix
(m,n)
or
Vector
(m,1)

Matrix
(m,n)
or
Vector
(m,1)

Matrix
(m,n)
or
Vector
(m,1)

Matrix
(m,n)
or
Vector
(m,1)

…

Altitude 1 Altitude 2

Mach 1 Mach 2 Mach 1

…

…
Power 1 Power 2 Power 1 Power 1

…

Figure 3. Suggested hierarchical data storage

4. MODEL IMPLEMENTATION

The implementation details surrounding the self-tuning
engine model are application-specific. This section outlines
an implementation that emphasizes efficiency and accuracy.
The resultant design is appropriate for online, real-time
applications and ground-based data analyses. The
discussion will focus on a discrete-time implementation.

The overall self-tuning engine model design is illustrated in
the block diagram in Figure 4. The self-tuning engine
model requires sensed engine measurements (y) and actuator

Annual Conference of Prognostics and Health Management Society 2012

8

C
o
rrect

SVM
+

Kalman
Filter

Trim
Interp

Matrix
Interp

U
n
co
rrect

yc

uc

x

u
y

y

u

Altitude

Mach

Altitude

Mach

z

Fan Speed

+

‐

+

‐

+

+

+
++

+

q̂

ŷ

ẑ

ˆcy

ˆcz

From Engine

yc

uc

ˆcy

ˆcz

Figure 4. Self-tuning engine model overview

inputs (u). The model produces sensor estimates (ŷ),

unmeasured engine parameter estimates (ẑ), and tuning
parameters (q̂). The sensor estimates should match the

sensed measurements. The tuning parameters will be
transformable back into estimates of engine performance
parameters (Simon & Garg, 2010).

The individual components of this self-tuning engine model
are explained below. The details of the implementation are
independent of computing language and hardware platform.

4.1. Parameter Correction

For aircraft engine applications, the use of corrected
parameters within the self-tuning model is encouraged to
improve accuracy and to reduce the number of operating
points included in the piecewise linear design. Parameter
correction is used to minimize the effects of atmospheric
variations due to temperature and pressure (Volponi, 1998).
The inlet total pressure and temperature sensors are
employed to normalize parameters with respect to standard
day sea level static conditions. In a gas turbine engine, it is
likely that the only actuator input requiring correction will
be a fuel flow command. The sensor measurements must
also be corrected prior to use. The tuning parameters, which
are considered to be proxies for the health parameters and
are assumed to be independent of altitude and Mach
number, will not require correction. The correction of trim
values and system matrices is performed during
linearization. Within the block shown in Figure 4, all values
remain in corrected form, including inputs, to improve
accuracy.

4.2. Kalman Filter Implementation

The filter in this self-tuning engine model is a steady-state
Kalman filter implementation. The Kalman gain, state-
space matrices, and trim vectors are delivered to this module
via the interpolation routines, as will be discussed. This
implementation uses a discrete-time form of the Kalman
filter. A block-diagram in Figure 5 outlines the structure of
this Kalman filter. Here, k represents the discrete time

+

+

+

x
correction

xtrim,k
1ˆxq kA x


z -1

z -1
uk uk-1

1xq kB u 

+

+

ˆkx

ˆxq kC x

kD u

kG u

ˆxq kF x

yk
kK y

ky-

+-

+

+ ˆkx

1ˆkx


kD u

ˆxq kC x ˆky

ˆkz

+

Figure 5. Block diagram of Kalman filter

index and the matrices and vectors have been augmented per
Simon and Garg (2010) to include tuning parameters in the
state vector, Δx, accompanied by proper state-space matrix
modifications. Here, the “+” and “-” superscripts denote
Kalman filter a posteriori and a priori estimates,
respectively, ky is the residual between the sensed and

estimated measurement vector, and z-1 is the unit sample
delay.

The implementation of a piecewise linear Kalman filter does
pose unique implementation requirements. The Kalman
filter, which is a recursive estimator, relies on state
estimates calculated at the previous time step. However, on
each time step in the piecewise linear implementation, the
trim vectors, state-space matrices, and Kalman gain matrix
are interpolated, and all are likely to shift from the previous
time point. Therefore, the a posteriori state estimate
calculated the previous time step will reflect a deviation
relative to the state trim vector applied during the previous
time step. Prior to use on the current time step, the a
posteriori state estimate must be updated to reflect the
change in the trim values, as shown below:

)(111   kkkk xxxx (7)

In the above equation, the expression inside the parenthesis
reflects the change in trim values from one time step to the
next. Applying this adjustment ensures that deviations from
trim are relative to the trim point applied at time step k, as
opposed to the trim point previously applied at time step
k-1. For additional details on the formulation of the Kalman
filter, readers are referred to Simon & Garg, 2010.

4.3. Interpolation Technique

Self-tuning engine model computational efficiency is highly
dependent on the interpolation technique employed within
the model. Therefore, to lessen overall model
computational requirements the interpolation procedure

Annual Conference of Prognostics and Health Management Society 2012

9

dy

dy

dx

yd 

xd 

xd 

yd 
zd 

dx

v0,0 v1,0

v1,1v0,1

dz

v1,1,1v0,1,1

v1,1,0

v1,0,0

v1,0,1

v0,0,0

v0,1,0

v0,0,1

p

p

(a)

(b)

Figure 6. (a) Two- and (b) Three-dimensional interpolation

should employ rapid and efficient techniques. The earlier
section, focusing on the storage of the trim vectors, state-
space matrices, and Kalman gain matrix data sets, discussed
the proper layout of data in memory for efficient
interpolation. Once this data is stored in memory, efficient
interpolation methods can be used across the multiple
dimensions.

When working in multiple dimensions, linear interpolation
requires an expansion. Consider the two simple
interpolation cases in Figure 6. The point, p, at which to
interpolate can be projected onto each of the interpolation
axes, as the figure shows, and the point is bounded by either
four or eight schedule points for the two- and three-
dimensional cases, respectively. For each axis (i.e.,
dimension), weights are computed that represent the
normalized distances from each bounding point on that axis.
For a single axis, assuming d is the distance between two
schedule operating points and d' is the distance between the
projection of p onto the axis and the schedule point that
precedes p, two weights can be calculated as:

 
ddw

ddw

/

/1

1

0




 (8)

The weight w0 represents the contribution of the schedule
point v0 that precedes the projection of p, while the weight
w1 is the contribution of the schedule point v1 that follows
the projection of p. The weight pairs are computed for each
axis. This procedure will yield two pairs of weights for the
two-dimensional interpolation case and three weighting
pairs for the three-dimensional case. The interpolated value
for the two-dimensional case (bi-linear interpolation) is then
defined as:

1,11,1,1,01,0,

0,10,1,0,00,0,

vwwvww

vwwvwwx

yxyx

yxyxp




 (9)

Likewise, the interpolated value for three dimensions (tri-
linear interpolation) would be:

1,1,11,1,1,1,1,01,1,0,

1,0,11,0,1,1,0,01,0,0,

0,1,10,1,1,0,1,00,1,0,

0,0,10,0,1,0,0,00,0,0,

vwwwvwww

vwwwvwww

vwwwvwww

vwwwvwwwx

zyxzyx

zyxzyx

zyxzyx

zyxzyxp









 (10)

The calculations described above require determining the
bounding points along each axis from the schedules. A
simple search for the desired index is usually sufficient, but
some efficiency gains can be realized by using a bracketed,
binary search with memory of the last successful search
between requests. A binary search technique can rapidly
search through a sorted array, such as our scheduling axes,
with a worst case O(log n)* performance (Knuth, 1997). An
additional improvement can be gained by storing the index
of the lower bounding point for each axis at each time step.
Because the change in operating point on each time step is
likely to be relatively small, the previously used index on
each axis can be rapidly checked to see if it is still
applicable rather than performing a binary search on every
time step. The performance on the majority of time steps
would remain at O(1), and only the applied weights would
require recalculation.

Another way to improve efficiency is to limit the number of
schedule searches and subsequent weight calculations based
on the sharing of scheduling axes. The trim point vectors
would all share one set of scheduling axes, while the state-
space matrices and Kalman gains would use a less dense set.
Therefore, only two passes of weight calculations would be
necessary, one for trim vectors and another for matrices.
The weights could then be shared between trim point vector
interpolations when applying the data set for each parameter

* Shown in Big O notation indicating that worst case
computational time grows proportional to log n, where n is the
number of grid points on the scheduling axis.

Annual Conference of Prognostics and Health Management Society 2012

10

to either equation 9 or 10. Similarly, the matrix weights
could be shared for all the state-space matrix data sets and
the Kalman gain data set. This approach decreased the
number of schedule searches by a factor of five for this
three-dimensional model design.

As explained earlier, the memory layout of the data can lead
to dramatic improvements in performance. Matrix
interpolation may seem costly, and this implementation is
suggesting a minimum of five matrix interpolations per time
step, with each involving a considerable number of products
to be computed. To minimize the impact of the large
number of products necessary, one method may be to
exploit “single instruction, multiple data,” or SIMD,
instructions that are conveniently available on many modern
central processing units, including modern embedded
processors (ARM, 2010-2011), (Intel Corporation, 1997-
2012), (International Business Machines Corporation,
2006). Rather than focus on processor-specific capabilities,
the use of the Basic Linear Algebra Subprograms, or BLAS,
library is suggested (Lawson, Hanson, Kincaid, & Krogh,
1979). Some modern interpreted languages will use these
procedures internally, and modern optimizing compilers can
often detect and use these procedures in a manner
transparent to the designer. Examining equations 9 and 10,
one may notice that the BLAS routines “*AXPY,” which
multiplies a vector by a scalar (our weights) and adds the
product to another vector, can be applied multiple times to
calculate the desired interpolated value (BLAS, 2011).
Using such routines eliminates the element-by-element
multiplication that might be used naively, allowing the
SIMD capabilities of the processor to be used.

The continuous memory locations, which had been
suggested earlier, allow for further efficiency improvement.
If each data set is held in a single memory block, each
matrix or vector can be accessed “in-place” rather than
copying or extracting the matrix or vector elements to an
appropriately sized array prior to weighting each individual
point. In a lower level language, pointer arithmetic can be
exploited to specify the location in memory of an individual
matrix or vector within a data set. By employing these
efficiency gains, the computational costs of performing
multidimensional interpolation of matrices and vectors are
minimized without sacrificing accuracy.

5. EXAMPLE RESULTS

For evaluation purposes, this self-tuning engine model is
compared against the nonlinear engine model upon which it
is based. To illustrate the capabilities of the suggested
design, an appropriate self-tuning engine model has been
derived from the Commercial Modular Aero-Propulsion
System Simulation 40k, or C-MAPSS40k, a nonlinear
aerothermal model that simulates a 40,000lbf-class turbofan
engine (May, Csank, Lavelle, Litt, & Guo, 2010). The self-
tuning engine model was designed to reflect an engine at

Figure 7. Thrust calculations using nonlinear and piecewise
linear models at 25,000 ft and 0.55 Mach

50% of useful life remaining. The piecewise linear state-
space model and Kalman filter have been designed as
discrete-time models using the same time step size as the
nonlinear model serving as the comparison basis.

First, the standalone piecewise linear model (without
tuning) is compared with the nonlinear model to determine
the accuracy of the linearization and effectiveness of the
interpolation algorithms. Figure 7 shows the thrust estimate
for the piecewise linear model as compared to the nonlinear
C-MAPSS40k model running at the mean degradation
design point for a rapid power increase followed by a
subsequent decrease to the original power level. The
altitude and Mach number conditions tested lie between
schedule points, meaning the interpolation algorithm is
being exercised in this example. The percent error graph,
which examines the point-by-point difference in thrust
between the piecewise linear model versus the nonlinear
model, shows a noticeable increase in the residuals during
transients.

The self-tuning model provides much of its advantage for
engines that operate away from the model degradation
design point. Under the same transient situation with tuning
enabled, the self-tuning model should be able to maintain
accuracy when applied to engines that are not represented
by the mean performance level. Figure 8 illustrates the
accuracy of a self-tuning engine model when estimating the
unmeasured combustor exit temperature for an ideal (new)
engine and an end-of-life engine. The combustor exit
temperature has been chosen for comparison because it
experiences significant shift as engine performance
degrades. In this example, the nonlinear engine model
serves as the “truth” model and its sensed outputs and
actuator commands are provided as inputs to the self-tuning
engine model. The figure shows the outputs of the nonlinear

0 10 20 30 40 50 60
-1

0

1

2

%
 E

rr
o

r

Time (s)

0 10 20 30 40 50 60
6000

7000

8000

9000

10000

11000

12000

13000

N
e

t T
h

ru
st

 (
lb

f)

Nonlinear
Piecewise Linear

Annual Conference of Prognostics and Health Management Society 2012

11

Figure 8. Unmeasurable combustor exit temperature

estimates for an off-design engine

engine model (red), the self-tuning engine model (blue), and
the piecewise linear model without tuning (green). Here,
the estimate of combustor exit temperature produced by the
self-tuning engine model exhibits good matching with the
nonlinear model at these two extreme performance ranges.
Conversely, the piecewise linear model, which does not
have self-tuning functionality, is unable to match the
nonlinear model as well.

The self-tuning engine model is considerably simpler than
the full nonlinear model. While C-MAPSS40k is capable of
running faster than real-time on modern consumer-grade
computing hardware, the self-tuning engine model exhibits
better computational performance due to its efficient
interpolation algorithm and the inherent simplicity of its
linear design. Compared to the nonlinear model, the self-
tuning engine model runs approximately an order of
magnitude faster than the nonlinear model on the same
computer.

6. DISCUSSION

The main advantage of the self-tuning engine model is its
ability to eliminate the mismatch between the theoretical
model and the actual engine. Because of this feature, on-
board implementations of such models may be desirable for
a variety of reasons, including control system integration,
on-board model-based engine diagnostics, and simple
informational purposes. However, this model loses much of
its utility if it is unable to accurately estimate parameters
during transient operation.

The accuracy during transients is related to a number of
design choices made during the generation of the self-tuning

model's data. The schedule density of the piecewise linear
model must always be considered during the design phase.
Comparison of the piecewise linear model itself against its
nonlinear basis model during simple transients represents a
“best case” accuracy that can be achieved by the subsequent
self-tuning engine model. Often times, adjustments to the
perturbations during linearization must be made to better
improve dynamic accuracy. Additionally, some highly
nonlinear parameters, such as stall margins, may not lend
themselves to linearization inherently; these parameters
appear to result in large mismatches even when great care is
taken to improve accuracy.

Transient behavior of the tuning parameters within the
Kalman filter is normally adjusted via modification of the
process noise. Scaling of the noise has been shown to
accelerate or decelerate the response of tuning parameters to
engine transients (Simon, Armstrong, & Garg, 2011).
Furthermore, ongoing research suggests that numerical
factors related to the globally optimal tuner selection
strategy may produce tuner transformation matrices that
have undesirable transient properties. The current
optimization algorithm does not consider the transient
behavior of resultant Kalman filters, only the steady-state
errors. Depending on the models involved, this issue may
or may not be encountered during implementation of a self-
tuning engine model.

The advantage of this self-tuning engine model is the
relative simplicity of its design, among other benefits. The
structure of the Kalman filter, although this model uses a
piecewise version, lends itself to well-known verification
and validation, or V&V, procedures (Schumann & Liu,
2007). For online implementations or control system
integration, the ability to perform V&V on this self-tuning
engine model using accepted processes is advantageous
when comparing against alternatives such as a full
nonlinear, physics-based online model.

7. CONCLUSION

A piecewise linear Kalman filter has been proposed as a
self-tuning engine model solution. The well-understood
Kalman filter algorithm combined with an efficient
implementation make this piecewise solution an attractive
candidate for resolving differences between theoretical,
physics-based models and actual engine hardware.

The two outputs of the self-tuning engine model, tuning
parameters and unmeasured parameter estimates, can be
exploited for a variety of purposes. Estimates of these
parameters, which could be employed in either ground-
based or on-board solutions, could be used for performance
trending and assisting in current engine health management
programs. Such trending information is also useful for
engine diagnostic algorithms by allowing these conceptual
algorithms to discern between normal engine degradation
and possible faults. The estimated parameters, while useful

0 10 20 30 40 50 60
2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

Time (s)

T
e

m
pe

ra
tu

re
 (o

R
)

Combustor Exit
Temperature

End-of-Life (Nonlinear model)
End-of-Life (Self-tuning model)
End-of-Life (Piecewise linear model)
Ideal (Nonlinear model)
Ideal (Self-tuning model)
Ideal (Piecewise linear model)

Annual Conference of Prognostics and Health Management Society 2012

12

for informational purposes alone, introduce the prospect of
advanced parameter synthesis and control algorithms,
including controlling directly on thrust. Possible efficiency
gains may be realized through the accurate estimation of
engine-specific operational limits, providing the opportunity
to relax generally conservative stall margin, temperature,
and pressure limits.

ACKNOWLEDGEMENT

The research associated with this work was performed under
the Vehicle Systems Safety Technologies project as part of
the National Aeronautics and Space Administration’s
Aviation Safety Program.

NOMENCLATURE

A, B, C,
D, F, G,
L, M, N

Linear state-space system matrices

d, d’ Distance in interpolation calculations
h Health parameter vector
q Engine tuning parameter vector
U Engine control input vector

V*
Transformation matrix mapping health
parameters to engine tuning parameters

X,Y,Z Interpolation scheduling axes
f Nonlinear function of engine state derivatives
g Nonlinear function of engine outputs
u Control inputs
v Value placeholder for interpolation
w Weighting for interpolation
x Engine state vector
y Engine sensed measurement vector
z Engine unmeasured parameter vector
z-1 Unit sample delay
Δ prefix Deviation from trim value

δ prefix Perturbation value

Subscripts
c Corrected value
k Discrete time index
ref Health parameter reference vector
trim Trim vector

Superscripts
† Pseudoinverse
- a priori Kalman filter estimate
+ a posteriori Kalman filter estimate

Diacritical Marks
ˆ Estimated value

~
Residual between estimated and sensed
measurement vector

REFERENCES

ARM. (2010-2011). ARMv6 SIMD Instruction Intrinsics. In
ARM Compiler Toolchain Version 4.1: Compiler
Reference (pp. A-1 - A-67). ARM.

Armstrong, J. B., & Simon, D. L. (2011). Implementation of
an Integrated On-Board Aircraft Engine Diagnostic
Architecture. 47th AIAA Joint Propulsion Conference.
San Diego, CA.

Behbahani, A., Adibhatla, S., & Rauche, C. (2009).
Integrated Model-Based Controls and PHM for
Improving Turbine Engine Performance, Reliability, and
Cost. 45th AIAA Joint Propulsion Conference. Denver,
CO.

BLAS. (2011). Retrieved April 30, 2012, from
http://www.netlib.org/blas/

Brotherton, T., Volponi, A., Luppold, R., & Simon, D.
(2003). eSTORM: Enhanced Self Tuning On-board
Real-time Engine Model. Proceedings of the 2003 IEEE
Aerospace Conference. Big Sky, MT.

Brunell, B., Bitmead, R., & Connolly, A. (2002). Nonlinear
Model Predicive Control of an Aircraft Gas Turbine
Engine. Proceedings of the IEEE Conference on
Decision and Control, 4, pp. 4649-4651. Las Vegas, NV.

Bushman, M. A., & Gallops, G. A. (1992). In-Flight
Performance Diagnostic Capability of an Adaptive
Engine Model. 28th AIAA Joint Propulsion Conference.
Nashville, TN.

Dwyer, W. J. (1990). Adaptive Model-Based Control
Applied to a Turbofan Aircraft Engine. Cambridge, MA:
Massachusetts Institute of Technology.

España, M. D. (1994). Sensor Biases Effect on the
Estimation Algorithm for Performance-Seeking
Controllers. ASME Journal of Propulsion and Power ,
10, 527-532.

Gallops, G. W., Gass, F. D., & Kennedy, M. H. (1992). On-
Board Condition Management for Aircraft Gas Turbines.
37th ASME International Gas Turbine and Aeroengine
Congress and Exposition. Cologne, Germany.

Gilyard, G. B., & Orme, J. S. (1993). Performance Seeking
Control: Program Overview and Future Directions.
NASA.

Intel Corporation. (1997-2012). Intel Architecture
Instruction Set Extensions Programming Reference.

International Business Machines Corporation. (2006).
PowerPC Microprocessor Family: Vector/SIMD
Multimedia Extension Technology Programming
Enviornments Manual. Hopewell Junction, NY.

Klaus, L., & Kreiner, A. (2001). Model Based Control
Concepts for Jet Engines. ASME Turbo Expo 2001. New
Orleans, LA.

Knuth, D. (1997). The Art of Computer Programming,
Volume 3: Sorting and Searching. Reading,
Massachusetts: Addison-Wesley.

Lawson, C. L., Hanson, R. J., Kincaid, D., & Krogh, F. T.
(1979). Basic Linear Algebra Subprograms for

Annual Conference of Prognostics and Health Management Society 2012

13

FORTRAN Usage. ACM Transactions on Mathematical
Software , 308-323.

Luppold, R. H., Roman, J. R., Gallops, G. W., & Kerr, L. J.
(1989). Estimating In-Flight Engine Performance
Variations Using Kalman Filter Concepts. 25th AIAA
Joint Propulsion Conference. Monterey, CA.

May, R. D., Csank, J., Lavelle, T. M., Litt, J. S., & Guo, T.
H. (2010). A High-Fidelity Simulation of a Generic
Commercial Aircraft Engine and Controller. 46th AIAA
Joint Propulsion Conference. Nashville, TN.

Nobbs, S. G., Jacobs, S. W., & Donahue, D. J. (1992).
Development of the Full-Envelope Performance Seeking
Control Algorithm. 28th AIAA Joint Propulsion
Conference. Nashville, TN.

Sallee, G. (1978). Performance Deterioration Based on
Existing (Historical) Data – JT9D Jet Engine
Diagnostics Program.

Schumann, J., & Liu, Y. (2007). Tools and Methods for the
Verification and Validation of Adaptive Aircraft Control
Systems. 2007 IEEE Aerospace Conference. Big Sky,
MT.

Shaw, P., Foxgrover, J., Berg, D. F., Swan, J., Adibhatla, S.,
& Skira, C. A. (1986). A Design Approach to
Performance Seeking Control. 22nd AIAA Joint
Propulsion Conference. Huntsville, AL.

Simon, D. L., & Garg, S. (2010, March). Optimal Tuner
Selection for Kalman Filter-Based Aircraft Engine
Performance Estimation. Journal of Engineering for Gas
Turbines and Power , 132.

Simon, D. L., Armstrong, J. B., & Garg, S. (2011).
Application of an Optimal Tuner Selection Approach for
On-Board Self-Tuning Engine Models. Proceedings of
the ASME Turbo Expo 2011 .

Volponi, A. (2008). Enhanced Self Tuning On-Board Real-
Time Model (eSTORM) for Aircraft Engine Performance
Health Tracking. National Aeronautics and Space
Administration.

Volponi, A. J. (1998). Gas Turbine Parameter Corrections.
ASME International Gas Turbine and Aeroengine
Congress and Exposition. Stockholm, Sweden.

Zarchan, P., & Musoff, H. (2005). Fundamentals of Kalman
Filtering: A Practical Approach. AIAA.

BIOGRAPHIES

Jeffrey B. Armstrong is a Controls
Engineer working as a contractor at the
NASA Glenn Research Center in
Cleveland, Ohio. He holds bachelor
(2000) and master of science (2002)
degrees in aerospace and mechanical
engineering from Case Western Reserve

University and has years of experience designing and
implementing numerical simulations. In the past he has
worked in microgravity research, rocket trajectory
validation and verification, and enterprise medical software
fields. Currently Jeffrey participates in air-breathing
propulsion diagnostics research.

Donald L. Simon is a Controls
Engineer at the NASA Glenn Research
Center. He holds a B.S. degree from
Youngstown State University (1987)
and a M.S. degree from Cleveland State
University (1990), both in electrical
engineering. During his career he has

focused on the development of advanced control and health
management technologies for current and future aerospace
propulsion systems. Mr. Simon's specific research interests
are in aircraft gas turbine engine performance diagnostics
and performance estimation. He currently leads the
propulsion gas path health management research effort
ongoing under the NASA Aviation Safety Program, Vehicle
Systems Safety Technologies Project.

