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ABSTRACT 

The application of PHM (Prognostics and Health 

Monitoring) techniques can provide a wide range of benefits 

to aircraft operators. Since the primary goal of PHM 

systems is to estimate the health state of components and 

equipments, as well as forecasting their RUL (Remaining 

Useful Life), they are often closely associated with the 

reduction in the number of unscheduled maintenance tasks. 

Indeed, the avoidance of unscheduled maintenance is a very 

important factor, but this technology may potentially lead to 

considerable further savings in other fields. The usage of 

PHM information by the logistics team for spare parts 

inventory control is a good example to illustrate that a PHM 

system can potentially provide benefits for other teams 

besides the maintenance team. The purpose of this work is 

to present a comparison between two different inventory 

control policies for non-repairable parts in terms of average 

total cost required and service level achieved. The well 

known [R, Q] (re-order point, economic order quantity) 

inventory model will be used as a reference. This model will 

be compared with a model based on information obtained 

from a PHM system. Discrete event simulation will be used 

in order to simulate and assess the performance of both 

models. 

1. INTRODUCTION 

PHM technology is recognized by the members of the 

aeronautical sector such as aircraft operators, MRO 

(Maintenance, Repair and Overhaul) service providers, 

aircraft manufacturers and OEMs (Original Equipment 

Manufacturers) as a relevant tool that may lead to important 

competitive advantages such as reduction in operational cost 

and increase in fleet reliability. However, quantifying PHM 

benefits is not a simple task. Hess, Frith and Suarez (2006) 

stated that cost-benefit models are the key to estimate the 

value of PHM technology. 

In order to demonstrate the benefit of PHM technologies, 

many cost-benefit models have been proposed (Hess et al., 

2006; Luna, 2009; Sandborn & Wilkinson, 2007; Feldman, 

Jazouli & Sandborn, 2009). Some of these works (Luna, 

2009; Sandborn & Wilkinson, 2007) comprise discrete-

event simulation models. 

The objective of these models is to simulate the behavior of 

the maintenance or logistics departments when a PHM 

system is available for a set of components. Such models 

can be divided basically into three blocks: Fleet simulation, 

decision making and cost evaluation (Rodrigues, Gomes, 

Bizarria, Galvão & Yoneyama, 2010). Figure 1 shows how 

each simulation block interacts with others. 

 

Figure 1. Simulation block diagram 
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medium, provided the original author and source are credited. 
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The fleet simulation block comprises a simulation of a set of 

components that are monitored by a PHM system. Failures 

are inserted in the simulation based on historical rates and 

the PHM system is assumed to anticipate a given number of 

failures by providing PDFs (Probability Density Functions) 

of failure instant. 

Based on that information, the decision making block is 

responsible for defining which actions should be taken in a 

certain moment in time. The logic of the decision making 

block depends on the activities covered by the simulation. 

When the maintenance planning is simulated, the decision 

making block can define the best time and the best location 

to perform maintenance. If logistics department is 

simulated, the decision making block can define the best 

moment to place a new purchase order for spare parts and 

the ideal number of spare parts to be acquired. 

The cost evaluation block computes the total cost resulting 

from the actions taken during the simulation. Usually, this 

cost is compared to the cost obtained by using a 

conventional model in order to quantify the benefits due to 

the PHM system. 

This work presents a spare parts inventory control policy for 

non-repairable items. The proposed policy is based on the 

health condition information obtained from a PHM system. 

A discrete event simulation is performed in order to 

compute the costs associated with the implementation of the 

proposed method. A comparison between the proposed 

method and the classical [R, Q] inventory control model is 

made in terms of average total cost required and service 

level achieved. 

2. PHM BASIC CONCEPTS 

PHM can be defined as the ability of assessing the health 

state, predicting impending failures and forecasting the 

expected RUL of a component or system based on a set of 

measurements collected from the aircraft systems 

(Vachtsevanos, Lewis, Roemer, Hess & Wu, 2006). It 

comprises a set of techniques which use analysis of 

measurements to assess the health condition and predict 

impending failures of monitored equipment or system. 

The main goal of a PHM system is to estimate the health 

state of the monitored equipment and forecast when a failure 

is expected to occur (Roemer, Byington, Kacprzynski & 

Vachtsevanos, 2005). In order to accomplish this task, it is 

necessary to collect a set of data from the aircraft. The 

choice of the parameters that will be recorded is based on 

the type of equipment/system to be monitored (hydraulic, 

electronic, mechanic, structural, etc.) and the failure modes 

that shall be covered by the PHM system. These factors also 

guide the data collection specification (sample rate, flight 

phase, etc.). 

 

A health monitoring algorithm must be developed for each 

monitored system. Each algorithm processes the relevant 

data and generates a degradation index that indicates how 

degraded the monitored system is. A degradation index can 

be generated for each flight leg or for a defined period of 

time (a day, a week, etc.). 

In many cases it is possible to establish a threshold that 

defines the system failure. When the failure threshold is 

known, it is possible to extrapolate the curve generated by 

the evolution of the degradation index over time and 

estimate a time interval in which the failure is likely to 

occur (Leão, Yoneyama, Rocha & Fitzgibbon, 2008; 

Kacprzynski, Roemer & Hess, 2002). This estimation is 

usually represented as a probability density function, as 

illustrated in Figure 2. Due to the operational characteristics 

of some equipment – such as tires and the braking system – 

it can be useful to express the remaining useful life in terms 

of flight cycles. There is always a confidence level 

associated with the predicted time interval. 
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Figure 2. Degradation evolution and instant of failure 

prediction 

 

The term IVHM (Integrated Vehicle Health Management) is 

commonly used when the information generated by a PHM 

system is used as decision support tool. IVHM can be 

defined as the ability of making appropriate decisions in 

both strategic and tactic levels based on 

diagnostics/prognostics information, available resources, 

logistics information and operational demand in order to 

optimize the efficiency of operation (Puttini, 2009). 
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3. CLASSICAL INVENTORY MODELS 

Failure events occur during fleet operation and spare parts 

must be available to keep aircraft flying. To deal with these 

failure events and avoid AOG (Aircraft on Ground) 

situations, aircraft operators have to maintain a spare parts 

inventory. An inventory control program must be 

implemented in order to fulfill the highest possible number 

of spare parts demand at the least possible cost. 

There is a set of classical inventory control models 

described in literature that can be used to establish an 

inventory policy. Most of these models define an inventory 

policy based on total cost minimization. Inventory cost can 

be broken down into the following factors (Ballou, 2006; 

Hillier & Lieberman, 2005): 

Ordering Cost 

The cost of ordering an amount of Q spare parts is presented 

in Eq. (1). It is composed by two main components: The 

acquisition cost C (directly proportional to the amount 

ordered) and a constant term K representing the 

administrative cost of placing a new purchase order. 

 

QCKQOC ⋅+=)(  (1) 

 

Where OC is the ordering cost, Q is the number of spare 

parts to be purchased, K is the administrative cost and C is 

the unit cost. 

Holding Cost 

Holding cost is also known as storage cost and represents 

the aggregated cost related to the storage of the inventory 

until it is used. It comprises the cost of capital tied up, 

warehouse space leasing, insurance, obsolescence, 

protection, inventory management labor, etc. 

The holding cost can be computed either continuously or on 

a period-by-period basis. In the latter case, the cost may be a 

function of the maximum quantity held during the period, 

the average amount held, or the quantity in inventory at the 

end of the period. If holding cost is computed continuously, 

it can be calculate as indicated in Eq. (2). 

 

∫ ⋅= dttXHHC )(  (2) 

 

Where HC is the holding cost, H is the holding cost per unit 

per unit of time held in inventory and X(t) is the number of 

spare parts held in inventory at instant t. In some cases, H is 

defined as a fraction of the unit cost. 

Stockout Cost 

Stockout cost is the cost of not having a spare part on hand 

when it is needed. In the event of a failure, if the failed 

component cannot be replaced due to the lack of a spare 

part, it may result in an AOG situation. In this case, the 

stockout cost represents the losses in the aircraft operator’s 

revenue related to the aircraft unavailability. 

Some aircraft operators outsource the spare part inventory 

management. In this case, the stockout cost is also known as 

penalty cost and represents possible contractual penalties for 

the inventory owner. Indirect costs such as company 

reputation and damage to customer relationship may also be 

included as part of the stockout cost. 

Inventory simulation can adopt two different scenarios for 

stockout costs. In the first scenario, when a spare part is 

required and there are no spares on hand, the aircraft with 

the failed component remains unavailable until the 

inventory is replenished and demand for the failed 

component can be satisfied. This scenario is called 

backlogging. 

In the second scenario, when a spare part is required and 

there are no spares on hand, the inventory is no longer 

responsible for satisfying that specific demand. In this 

scenario, this demand is considered to be met by a priority 

shipment. This scenario is called no backlogging. 

In this work, the backlogging scenario is considered. The 

stockout cost is given by: 

 

∫ ⋅= dttYPSC )(  (3) 

 

Where SC is the stockout cost, P is the stockout cost (or 

penalty cost) per unit per unit of time and Y(t) is the number 

of spare parts requests not satisfied by the inventory at 

instant t. Sometimes, P is defined as a fraction of the unit 

cost. 

3.1. Deterministic Models and Stochastic Models 

Inventory models can be divided in two categories: 

Deterministic models and stochastic models, according to 

whether the demand for a specific period is known or is a 

random variable having a known probability distribution 

(Hillier & Lieberman, 2005). 

Deterministic inventory models are used when the demand 

for future periods can be forecast with good precision. An 

inventory policy can be developed in order to satisfy all 

spare parts requests. 
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On the other hand, when it is not possible to forecast future 

demand with acceptable precision, stochastic inventory 

models are used. These models assume that future demand 

is a random variable having a known probability 

distribution. The inventory policy is designed based on the 

service level desired. Service level is the percentage of spare 

parts requests that are satisfied immediately. 

In this work, demand is considered to be stochastic with a 

normal distribution. 

3.2. Continuous Review and Periodic Review 

Another common classification for inventory control models 

refers to whether the current inventory level is monitored 

continuously or periodically (Ballou, 2006). 

In continuous review models, a reorder point is defined as 

the quantity that triggers the need for a new order. Then a 

new order is placed as soon as the stock level falls down to 

the reorder point. 

In periodic review models, a maximum inventory level is 

defined and the current inventory level is checked at discrete 

intervals, e.g., at the end of each week or month. A new 

order is placed every time the inventory level is checked in 

order to replenish it to its maximum value. 

In this work, the inventory level will be continuously 

monitored. 

3.3. The [R, Q] Model 

A continuous review inventory policy for a specific 

component normally will be based on two critical numbers: 

The reorder point (R) and the order quantity (Q). That is the 

reason for calling this the [R, Q] model. In this model, 

whenever the effective stock level of the component drops 

to R units, an order for Q more units is placed to replenish 

the inventory. The effective stock is the total of spare parts 

in the warehouse and replenishments ordered but not yet 

received. 

In this work, a [R, Q] model will be simulated and the 

results will be compared with the results obtained when the 

proposed model used. The assumptions of the [R, Q] model 

used in this work are described as follows: 

 

• Each [R, Q] model establishes the policy for a single 

component. 

• The inventory level is under continuous review. 

• There is a lead time between when the order is placed 

and when the order quantity is received. This lead time 

is considered to be fixed. 

• The demand for withdrawing units from inventory 

during the lead time is uncertain. However, the 

probability distribution of demand is known. 

• If a stockout occurs before the order is received, the 

excess demand is backlogged, so that the backorders are 

filled once the inventory is replenished. 

• A fixed administrative cost K is incurred each time an 

order is placed (as described in Eq. (1)).  

• There is no discount for large quantity order. 

• A certain holding cost H is incurred for each unit in 

inventory per unit time. 

• When a stockout occurs, a stockout cost P is incurred for 

each unit backordered per unit time until the backorder 

is filled. 

 

To simulate an inventory model based on this policy, the 

only decisions to be made are to choose R and Q. The 

expression used to calculate Q is the EOQ (Economic Order 

Quantity) formula (Hillier & Lieberman, 2005): 

 

PH

PHKD
Q

⋅

+⋅⋅⋅
=

)(2
 (4) 

 

Where Q is the quantity of spare parts to be purchased when 

a new order is placed, D is the average demand per unit of 

time, K is the administrative cost of placing an order, H is 

the holding cost per unit per unit of time held in inventory 

and P is the stockout cost per unit per unit of time. 

The reorder point R is determined based on the desired 

service level (SL). In this model, service level is related to 

the probability that a stockout will not occur between the 

time an order is placed and it is received (called lead time). 

A managerial decision needs to be made on the desired 

service level. Since the demand probability distribution is 

known, R is chosen so that the area under the demand curve 

is at least equal to the defined service level. The procedure 

to determine R is illustrated in Figure 3. 
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Figure 3. Reorder point definition for the [R, Q] model 

 

3.4. Extensions of the EOQ Model 

Several works exploring the EOQ formula and some 

extensions have been published by the Operational Research 

community over the last decades (Syntetos, Boyland & 

Disney, 2009). In most of these works, continuous demand 

is considered (Yong, Ying & Bing, 2011). Other techniques 

such as Lot for Lot Ordering (Omar & Supadi, 2003), 

Wagner-Within Algorithm (Wagner & Whitin, 1958), Least 

Period Cost Model (Ho, Chang & Solis, 2006) and Silver-

Meal Algorithm (Omar & Deris, 2001) are also applied to 

deal with discrete demand problems. 

Although demand for spare parts presents characteristics 

similar to a discrete pattern, many studies consider the 

assumption that spare parts demand is continuous and apply 

the EOQ formula (Sakaguchi & Kodama, 2009). It happens 

because the EOQ model is very easy to understand and 

simple to implement, while most of techniques developed to 

deal with discrete demand are complex and hard to 

implement. 

Wongmongkolrit and Rassameethes (2011) proposed a 

modification to the EOQ model in order to adapt it to be 

used in discrete demand problems. 

4. PROPOSED MODEL 

This section describes the proposed model to control the 

spare parts inventory for a non-repairable item. All 

assumptions listed on section 3.3 for the [R, Q] model are 

valid for the proposed model, which also considers the 

following assumption: 

 

• The proposed model receives information from a PHM 

system that systematically monitors the health status of 

the items installed on the fleet. 

 

It can be noticed that the set of assumptions considered by 

the proposed model is very similar to the set of assumptions 

of the classical [R, Q] model presented in the previous 

section. In fact, the proposed model is essentially a [R, Q] 

model, but it differs from the classical [R, Q] model in how 

the reorder point R is calculated. 

In the classical model, reorder point R is fixed. It is only 

necessary to calculate R at the beginning of simulation 

because it does not change unless desired service level or 

demand probability distribution change during the 

simulation. 

However, in the proposed model, reorder point is obtained 

based on the information received from the PHM system. 

Since in this work PHM information is considered to be 

updated on a daily basis, the reorder point R will be also 

updated at the same rate. 

Figure 4 illustrates the procedure to calculate the reorder 

point R for the proposed model. Since the reorder point is 

systematically updated, it will called R(t). 

 

Time
Lead Time

Component 1 

Component 2

Component 3

t+LTt
Time

Lead Time

Component 1 

Component 2

Component 3

t+LTt

 

Figure 4. Reorder point definition for the proposed model 

 

Let’s assume that t is the current day and the curves showed 

in Figure 4 are the instant of failure probability density 

functions given by a PHM system for three similar 

components. The reorder point R(t) must be calculated in 

order to define whether a new order must be placed or not. 

An order placed on day t will be delivered on day t+LT, 

where LT is the lead time. The proposed model will 

calculate R(t) based on the probability that each component 

will fail before instant t+LT. These probabilities correspond 

to the gray area under each probability density function in 

Figure 4. 
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It can be seen that component 1 has a probability 80% of 

failing before instant t+LT. The probabilities for 

components 2 and 3 fail before instant t+LT are, 

respectively, 50% and 10%. 

Based on this information, the model calculates the 

probability of N components fail before instant t+LT. For 

instance, in the example above the probability of all three 

components to fail before instant t+LT is obtained by 

multiplying the probability of each component to fail before 

instant t+LT (i.e. 80% x 50% x 10% = 4%). The complete 

fail probability table for this example is shown in Table 1. 

 

Number of 

failures 

(N) 

Probability that 

exactly N failures 

will occur before 

instant t+LT  

Probability that 

at most N failures 

will occur before 

instant t+LT 

0 9% 9% 

1 46% 55% 

2 41% 96% 

3 4% 100% 

Table 1. Fail probability table 

 

The fail probability table and the desired service level are 

used to define the reorder point R(t). Let’s suppose that the 

desired service level for this example is 95%. The last 

column on the right in Table 1 shows that if there are 2 

spare parts in inventory, there will be a probability of 96% 

that stockout will not occur. In other words, having 2 spare 

parts on the inventory corresponds to a service level of 96% 

(higher than the desired 95%). Since 2 is the lowest number 

of spare parts that satisfies the service level requirements, 

the reorder point R(t) is 2. 

The EOQ formula will be used to calculate the number of 

parts to be purchased in the proposed model. The only 

difference between the proposed model and the classical [R, 

Q] model will be reorder point calculation. 

5. SIMULATION 

The spare part inventory control simulation is described in 

this section. As mentioned earlier, a comparison will be 

made between the classical [R, Q] model described in 

section 3 and the proposed model based on information 

obtained from a PHM system described in section 4. 

In order to compare the performance of both inventory 

models, two identical fleets will be simulated. The classical 

[R, Q] model will be used to control the spare part inventory 

of the first fleet, while the other fleet will have its spare part 

inventory controlled by the proposed model. 

5.1. Scenario Description 

The spare parts logistic network considered in the 

simulation is illustrated in Figure 5. There is only one 

supplier and the spare parts are held in only one warehouse. 

 

Supplier

Warehouse

Aircraft

Discard

Supplier

Warehouse

Aircraft

Discard
 

Figure 5. Spare parts logistic network 

 

Spare parts enter the system when a new order is placed. 

Supplier always delivers the spare parts to the warehouse. 

Even if there is an aircraft waiting for the part, it is sent to 

the warehouse and then to the aircraft. There is a lead time 

between when the order is placed and when the order 

quantity is received. 

When a failure occurs and a component has to be replaced, a 

spare part is supplied by the warehouse. Since components 

are considered to be non-repairable, faulty components are 

discarded. 

If a failure occurs and there is no spare parts at the 

warehouse, the aircraft with the faulty component waits the 

next spare part delivery. 

5.2. Simulation Parameters 

In order to run the simulation, there are some parameters 

that must be set. A list of the parameters used during the 

simulation is shown in Table 2. 
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Parameter Value  Unit 

Administrative Cost (K) 50 
Monetary Units 

(M.U.) 

Unit Cost (C) 500 M.U. 

Holding Cost (H) 1 
M.U. per day 

per unit 

Stockout Cost (P) 5 
M.U. per day 

per unit 

Fleet Size 10 Aircraft 

Lead Time 15 Days 

MTBF 180 Days 

MTBF Standard Deviation 30 Days 

Simulation Step 1 Day 

Simulated 

Period of Time 
15 Years 

Table 2. Simulation parameters 

 

5.3. Simulation Results 

Five different service levels were defined (80%, 85%, 90%, 

95% and 99%) and for each service level 15 simulations 

were run for each model (classical and proposed). 

For the classical model, the economic order quantity Q is 3 

units, calculated using Equation 4. The average demand 

used to calculate Q is the fleet size divided by the MTBF 

(Mean Time Between Failures). As mentioned earlier, the 

economic order quantity Q does not depend on the desired 

service level. 

On the other hand, the reorder point R changes according to 

the service level. Figure 6 illustrates an example of how 

inventory level changed over time for the classical [R, Q] 

model during a period of 300 days. In Figure 6, the desired 

service level is 80% and the calculated reorder point is 0.84 

units. In real systems, the reorder point is commonly 

rounded up. In this work, decimal values were kept. 

When the effective stock (dashed green) is lower than the 

reorder point R (dotted red), a new order of 3 units is placed. 

The ordered units are immediately added to the effective 

stock (dashed green). The stock on hand (solid blue), 

however, only receives the ordered units after the lead time. 

As mentioned earlier, in the proposed model the EOQ 

formula is used. So, the economic order quantity Q for the 

proposed model is also 3 units for all service levels 

considered in the simulation. The reorder point R(t) is 

updated on a daily basis according to the information 

received from the PHM system. Figure 7 shows an example 

of how inventory level changed over time for the proposed 

model during a period of 300 days. 

The desired service level in Figure 7 is 80%. When the 

effective stock (dashed green) is lower than the reorder 

point R(t) (dotted red), 3 spare parts are ordered. These 

spare parts are immediately added to the effective stock and, 

after the lead time, they are added to the stock on hand 

(solid blue). 
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Figure 6. Inventory level evolution for the classical [R, Q] model 
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Figure 7. Inventory level evolution for the proposed model 

 

For each simulation, the total cost required and the achieved 

service level were recorded for both classical and proposed 

models. Total costs are composed by ordering costs, holding 

costs and stockout costs. The results are shown in Figure 8. 

For all desired service levels, the proposed model presented 

a lower average total cost. For high service levels, the better 

performance of the proposed model is more evident. 

Figure 9 shows another comparison between the average 

total cost obtained during simulation of both classical [R, Q] 

model and the proposed model, where each cost component 

(ordering cost, holding cost and stockout cost) can be 

observed separately. For each service level in Figure 9, the 

bar on the left shows the average total cost obtained with the 

classical [R, Q] model, while the bar on the right shows the 

average total cost obtained with the proposed model. 

For all service levels considered in this work, the average 

ordering cost obtained with both classical [R, Q] model and 

the proposed model were very similar. This result was 

expected, since the EOQ formula was used by the two 

models to determine the number of spare parts to be 

ordered. The average stockout cost values obtained with the 

two models were also very similar. 

On the other hand, when the average holding costs obtained 

by simulating the two models are compared, it can be 

noticed that the proposed model allowed reducing this cost 

component in all service levels considered during the 

simulation. 
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Figure 8. Total cost comparison 

 

 

Figure 9. Average total cost components comparison 
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The proposed model differs from the classical [R, Q] model 

only in how the reorder point is calculated. This parameter 

determines when new spare parts shall be ordered and 

affects directly the average inventory level and the average 

holding cost. The information obtained by the PHM system 

allowed predicting future demands with better accuracy. 

Since parts are purchased closer to the instant when they 

will be used, the average period of time they stay in stock is 

reduced. Consequently, the average holding cost incurred is 

also reduced when compared to the classical [R, Q] model. 

6. CONCLUSIONS 

This paper presented a new inventory control model for 

non-repairable items, based on health condition data 

obtained from a PHM system. 

The results obtained by simulating the proposed model and 

a classical inventory control model showed that the 

proposed model allows satisfying a defined service level 

with a lower average total cost. For high service levels, the 

proposed model showed itself even more efficient. 

Future investigation could extend the idea presented in this 

paper by adapting the model to be used for repairable parts. 

Another opportunity to extend this work is to explore the 

performance of the proposed model when spare part 

inventories for multiple items are simultaneously controlled. 
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