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ABSTRACT 

This paper presents an anomaly detection module that uses 
information-theoretic measures to generate a fault indicator 
from a particle-filtering-based estimate of the posterior state 
pdf of a dynamic system. The selected measure allows 
isolating events where the particle filtering algorithm is 
unable to track the process measurements using a 
predetermined state transition model, which translates into 
either a sudden or a steady increment in the differential 
entropy of the state pdf estimate (evidence of an anomaly on 
the system). Anomaly detection is carried out by setting a 
threshold for the entropy value. Actual data illustrating 
aging of an energy storage device (specifically battery state-
of-health (SOH) measurements [A-h]) are used to test and 
validate the proposed framework. 

1. INTRODUCTION 

Anomaly detection modules (Zhang et al., 2011; Orchard et 

al., 2011) play an important role within Prognostics and 
Health Management (PHM) systems since they constitute 
the first step in the implementation of fault diagnosis and 
failure prognosis schemes (Orchard and Vachtsevanos, 
2009). In most real applications, the anomaly detector 
requires to perform its task simultaneously minimizing both 
the false alarm rate and detection time (early detection). The 
latter is of paramount importance since the setup of online 
prognostic algorithms, and particularly those based on 
particle filtering algorithms (Orchard et al., 2008; Orchard 
et al., 2009), requires a proper characterization of the initial 
state pdf to provide adequate estimate of the remaining 
useful life (RUL) of monitored equipment. 

Classical anomaly detection methods rely on a model of the 
system to measure a discrepancy between the actual 
measurements and a predetermined pattern of operation. A 
variety of techniques have been proposed to achieve this 
task, including tools from estimation theory, failure 
sensitive filters, multiple hypothesis filter detection, 
generalized likelihood ratio tests, and model-based 
approaches (Isermann and Balle, 1997; Ayhan et al., 2006; 
 

Zhou et al., 2008; Khan and Rahman, 2009). Other methods 
focused on statistical analysis techniques, reasoning tools, 
spectral methods and information theory (Tolani et al., 
2005; Zhou et al., 2008; Ibrahim et al., 2008).  

In the particular case of the battery state-of-health (SOH) 
monitoring and prognosis (Orchard et al., 2010; Orchard et 
al., 2011), there are still issues regarding the proper 
representation of regeneration (self-recharge) phenomena. 
Self-recharge phenomena are characterized by sudden, 
momentary, and occasionally considerable regeneration of 
the battery capacity that tends to fade in time faster than the 
typical SOH degradation time constant. These changes, 
related to physicochemical aspects and temperature/load 
conditions during charge and discharge cycles, are 
particularly important in the case of Li-Ion batteries because 
they often alter the trend of the SOH prediction curve, thus 
affecting the performance of prognostic modules that 
depend on Bayesian estimation algorithms to compute 
initial conditions for their associated predictive models. 

This paper presents a solution for this problem that is 
based on a combination of a PF-based state estimators and 
information-theoretic measures that allows to detect rare 
events within the evolution of the fault condition under 
analysis. The paper is structured as follows: Section 2 
introduces the basics on particle filtering (PF) anomaly 
detection modules, as well as information-theoretic 
measures applied to sequential Monte Carlo algorithms. 
Section 3 focuses on describing the case study that is used 
in this research to illustrate and validate the potential of the 
proposed detection approach, which corresponds to the 
analysis of capacity regeneration phenomena in a set of data 
depicting the battery state-of-health (SOH, [A-h]) 
degradation. Section 4 presents the proposed anomaly 
detection scheme and the results obtained for the case study 
of interest. Finally, Section 5 states the main conclusions. 

Marcos E. Orchard et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 
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2. PARTICLE FILTERING, ANOMALY DETECTION AND 

INFORMATION-THEORETIC MEASURES 

Nonlinear filtering is defined as the process of using noisy 
observation data { ,  }tY y t= ∈�  to estimate at least the first 

two moments of a state vector { ,  }tX x t= ∈�  governed by a 

dynamic nonlinear, non-Gaussian state-space model.  

From a Bayesian standpoint, a nonlinear filtering 
procedure intends to generate an estimate of the posterior 
probability density function 

1:( | )t tp x y for the state, based on 

the set of received measurements. Particle Filtering (PF) is 
an algorithm that intends to solve this estimation problem 
by efficiently selecting a set of N >>1 particles ( )

1{ }i

t i Nx =�
 

and weights ( )
1{ }i

t i Nw = �
, such that the state pdf may be 

approximated (Doucet, 1998; Doucet et al., 2001; Andrieu 
et al, 2001; Arulampalam et al., 2002) by the empirical 
distribution: 

( ) ( )
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where ( )t tq x denotes the importance sampling density 

function (Arulampalam et al., 2002; Doucet et al., 2001). 
The choice of this importance density function ( )t tq x  is 

critical for the performance of the particle filter scheme. In 
the particular case of nonlinear state estimation, the value of 
the particle weights ( )i

tw  is computed by setting the 

importance density function equal to the a priori pdf for the 
state, i.e., 

1 1( | ) ( | )t t t t tq x x p x x− −=  (Arulampalam et al., 

2002). Although this choice of importance density is 
appropriate for estimating the most likely probability 
distribution according to a particular set of measurement 
data, it does not offer a good estimate of the probability of 
events associated to high-risk conditions with low 
likelihood. In this sense, this paper explores the possibility 
of using information-theoretic measures to analyze PF-
based estimates of the state pdf in a dynamic system, with 
the purpose of detecting this type of events in a timely 
manner. 

2.1 Particle Filtering for Anomaly Detection 

PF-based anomaly detection modules (Kadirkamanathan et 

al., 2002; Verma et al., 2004; Orchard and Vachtsevanos, 
2009; Zhang et al, 2011; Orchard et al., 2011) have been 
used in the past to identify abnormal conditions in 

nonlinear, non-Gaussian dynamic systems. The objective in 
this type of implementations is to fuse the information that 
is available at a feature vector (measurements) to generate 
estimates of the a priori state pdf that could be helpful when 
determining the operating condition (mode) of a system and 
deviations from desired behavioral patterns. This 
compromise between model-based and data-driven 
techniques is accomplished by the use of a PF-based module 
built upon the nonlinear dynamic state model (3): 

( )( 1) ( ) ( )

( 1) ( ( ), ( ), ( ))

Features( ) ( ( ), ( ), ( ))

d b d

c t d c

t d c

x t f x t n t

x t f x t x t t

t h x t x t v t

ω

 + = +


+ =
 =

,        (3) 

where fb, ft and ht are non-linear mappings, xd(t) is a 
collection of Boolean states associated with the presence of 
a particular operating condition in the system (normal 
operation, fault type #1, #2), xc(t) is a set of continuous-
valued states that describe the evolution of the system given 
those operating conditions, ω(t) and v(t) are non-Gaussian 
random variables that characterize the process and feature 
noise signals, respectively. Since the noise signal n(t) is a 
measure of uncertainty associated with Boolean states, it is 
recommendable to define its probability density through a 
random variable with bounded domain. For simplicity, n(t) 
may be assumed to be zero-mean i.i.d. uniform white noise.  

PF-based detection modules provide a framework where 
customer specifications (such as false alarm rate and desired 
probability of detection) can be easily managed and 
incorporated within the algorithm design parameters. 
However, the analysis of the relationship that exists between 
the number of particles and the detection time still depends 
on general guidelines inspired in empirical experience (for 
example, “the more particles are used, the longer is the 
detection time”). 

The problem of early detection using PF-based approaches 
has also been discussed in (Orchard et al, 2008), where a 
Risk-Sensitive PF (RSPF) framework complements the 
benefits of the classic approach by representing the 
probability of rare and costly events within the formulation 
of importance density function to generate more particles in 
high-risk regions of the state–space. Mathematically, the 
importance distribution is set as: 

 ( ) ( )( ) ( )
1 1 1:, | , , ( ) , |i i

t t t t t t t t t tq d x d x y r d p d x yγ− − = ⋅ ⋅ ,        (4) 

where dt is a set of discrete-valued states representing fault 
modes, xt is a set of continuous-valued states that describe 
the evolution of the system given those operating 
conditions, r(dt) is a positive risk function that is dependent 
on the fault mode, and γt is a normalizing constant. 

Although the approach presented offered better performance 
in terms of the detection time, it still required the definition 
of a risk importance sampling distribution. 
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In this sense, the use of information-theoretic measures 
offers an interesting alternative that complements the 
paradigm of PF-based anomaly detection modules, under 
the assumption that an anomaly should affect the qualitative 
behavior of the state pdf estimate. The following section 
focuses on the most important concepts that need to be 
taken into account when implementing these measures to 
analyze and characterize sampled versions of the posterior 
distribution.             

2.2 Information-Theoretic Measures Applied to 

Particle-filtering Algorithms 

Several examples that incorporate information-theoretic 
measures to analyze the outputs of particle filtering 
algorithms can be found in literature (Ajgl and Šimandl, 
2011; Lanz, 2007; Boers et al., 2010; Skoglar et al., 2009). 
Most of those are related to uncertainty characterization, 
optimality testing, and evaluation of control strategies. In 
particular, this research focuses on the widely known 
differential entropy measure (Cover and Thomas, 1991).  

Entropy is a measure of uncertainty that is associated to a 
probability measure. In particular, the differential entropy H 
of a probability density function p(x) is given by: 

( )( ) ( ) log ( )H p p x p x dx−∫�          (5) 

Entropy-related applications for particle filtering algorithms 
generally aim at evaluating how many i.i.d. samples does 
the filtering algorithm require to represent regions of the 
state space that accumulate the majority of the probability 
mass, for a given state pdf estimate  p(x). For example, in 
(Liverani et al., 2006) the authors propose the use of 
entropy to evaluate the pertinence of resampling procedures 
in a particle filtering algorithm aimed at estimating the 
states of a partially observed Markov chain. Instead, it is 
sought to generate an average weight for sampled particles, 
which depends on the distance that exists between the 
estimated and the actual value of the states. 

In other applications, such as in (Ryan, 2008), the authors 
formulate a control strategy for a mobile sensor that intends 
to track an object, where the merit function depends on 
particle-filtering-based estimates and information-theoretic 
measures. Basically this approach uses entropy to 
characterize the uncertainty of the estimated pdf, and 
proposes a resampling method that intends to minimize the 
conditional entropy between the state of the tracked object 
and observed data, for a given control strategy. 

Although the definition of differential entropy introduced in 
(5) allows straightforward computation in most cases, few 
considerations are required when trying to compute it in the 
case of particle-filtering-based estimates of the conditional 
state pdf’s. Indeed, using (5), the differential entropy of the 
conditional state pdf estimate, given a set of measurements 
y1,…, yt, is defined as:  

( ) ( )( | ) ( | ) log ( | )
t t t t t t t

H p x y p x y p x y dx= −∫ ,       (6) 

where the a posteriori state pdf estimate can be inferred 
from the likelihood of measurement yt, the a priori state 
estimate p(xt|yt-1), and the probability of acquiring the 
current measurement using Bayes Theorem:  

1
1

( | )
( | ) ( | )

( | )
t t

t t t t

t t

p y x
p x y p x y

p y y
−

−

= .         (7) 

Thus, replacing (7) in (6) and applying properties of the 
logarithm, it is possible to write: 

( ) ( )

( ) ( )

1

1

( | ) log ( | )

( | ) log ( | ) log ( | )

t t t t

t t t t t t t

H p x y p y y

p x y p y x p x y dx

−

−

= +

 − + ∫

�       (8) 

In addition, given that in this specific case all distributions 
correspond to particle-filtering estimates, both the a priori 
state estimate and the probability of measured data can be 
approximated by their corresponding sampled versions, as 
in (9)-(10): 

( )( ) ( ) ( )
1 1/ 1 1

1

( | ) |
N

i j i

t t t t t t

i

p x y w p x x− − − −
=

∑� ,         (9) 

    ( ) ( )
1: /

1

( | ) ( )
N

i i

t t t t t t

i

p x y w x xδ
=

≈ −∑ ,                           (10) 

where ( )
1/ 1

i

t tw − −

 

and ( )
/
i

t tw

 

are the a priori and posterior weight 

of the particle (i), respectively. After using (9)-(10) in (8): 
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1 /

1
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N
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−
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∑

∑

�   (11) 

The term p (yt | y1:t-1) in (11) can be computed through its 
sampled version: 

( )( ) ( )
1 / 1

1

( | ) |
N

i i

t t t t t t

i

p y y w p y x− −
=

∑� ,                    (12) 

where ( )
/ 1
i

t tw −
 are the particle weights. As a final result, the 

differential entropy of the particle-filtering estimate of the 
posterior state pdf can be computed as in (13) (Orguner, 
2009): 

( ) ( )

( ) ( )

( ) ( )
/ 1

1

( ) ( ) ( ) ( ) ( )
/ 1/ 1 1

1 1

( | ) log |

log ( | ) log |

N
i i
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i

N N
j j i j i

t t t t t t t t

j i

H p x y w p y x

w p y x w p x x

−
=

− − −
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− +  

  

∑

∑ ∑
  (13) 

The latter expression will be of use when evaluating the 
uncertainty associated to online estimates in dynamic 
processes.  
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3. CASE STUDY: PF-BASED SELF-RECHARGE 

DETECTION IN LITHIUM-ION BATTERIES 

An appropriate case study has been selected to demonstrate 
the efficacy of an anomaly detection module based on a PF 
state estimator and information-theoretic measures. 
Consider the case of energy storage devices, particularly of 
Li-Ion batteries, where continuous switching between 
charge and discharge cycles may cause momentary 
increments in the battery SOH (capacity regeneration). 
These sudden increments directly affect RUL estimates in 
classic prognostic schemes since the state pdf estimate has 
to be adjusted according to new measurements (thus 
modifying long-term predictions), while the observed 
phenomenon typically disappears after a few cycles of 
operation. Particularly in the case of Li-Ion batteries, the 
regeneration phenomena can produce an unexpected short-
term increment of the battery SOH of about 10% of the 
nominal capacity. 

The analysis of the aforementioned phenomena will be done 
using data registering two different operational profiles 
(charge and discharge) at room temperature. On the one 
hand, charging is carried out in a constant current (CC) 
mode at 1.5[A] until the battery voltage reached 4.2[V] and 
then continued in a constant voltage mode until the charge 
current dropped to 20[mA]. On the other hand, discharge is 
carried out at a constant current (CC) level of 2[A] until the 
battery voltage fell to 2.5[V]. Impedance measurements 
provide insight into the internal battery parameters that 
change as aging progresses. Repeated charge and discharge 
cycles result in aging of the batteries.  Impedance 
measurements were done through an electrochemical 
impedance spectroscopy (EIS) frequency sweep from 
0.1[Hz] to 5[kHz]. The experiments were stopped when the 
batteries reached end-of-life (EOL) criteria, which was a 
40% fade in rated capacity (from 2[A-h] to 1.2[A-h]). 

Two main operating conditions are thus distinguished: the 
normal condition reflects the fact that the battery SOH is 
slowly diminishing as a function of the number of 
charge/discharge cycles; while the anomalous condition 
indicates an abrupt increment in the battery SOH 
(regeneration phenomena). These phenomena, which are 
characterized by sudden, momentary, and occasionally 
considerable regeneration of the battery capacity, are related 
to physicochemical aspects and temperature/load conditions 
during charge and discharge cycles. In the case of Li-Ion 
batteries, the detection of such events is extremely important 
for a proper implementation of prognostic schemes since 
they often alter the trend of the SOH prediction curve, thus 
affecting the performance of prognostic modules based on 
Bayesian algorithms to estimate the initial conditions of 
their predictive models. 

The study of battery SOH involves the analysis of many 
different factors, but this research is focused on one of the 
most critical features associated to it: the life cycle. Life 

cycle models usually consider a specific term that aims to 
incorporate part of the phenomenology that is present in the 
battery degradation process. This term is the Coulomb 
efficiency, ηc, which is a measure for the amount of usable 
energy that is expected for the discharge cycle in progress, 
compared to the capacity exhibited by the battery during the 
previous discharge cycle (Orchard et al., 2010). Equations 
(14)-(15) show how this term can be included in a nonlinear 
dynamic model that can be used for SOH estimation 
purposes: 

1 1 2 1 1

2 2 2

( 1) ( ) ( ) ( 1) ( )

( 1) ( ) ( ) 
c

x k x k x k x k k

x k x k k

η ω

ω

+ = + − +


+ = +
      (14) 

1( ) ( ) ( )y k x k v k= + ,        (15) 

where k is the cycle index; 1x  is a state representing the 

battery SOH; 2x  is a state associated with an unknown 

model parameter that is required to explain minor 
differences with respect to the expected behavior (which are 
specific to the monitored battery); y(k) is the measured 
SOH; 1ω , 2ω and v  are non-Gaussian noises. 

Although model (14)-(15) enables the implementation of 
Bayesian filtering techniques to monitor degradation 
processes in Li-Ion batteries, it results inadequate when 
trying to detect and isolate the short and long-term effect of 
regeneration (self-recharge) phenomena. This fact motivates 
the development of anomaly detection modules, either based 
on PF-algorithms as in (Orchard et al., 2011), or 
information-theoretic measures as the present research 
proposes. 

4. ANOMALY DETECTION MODULE BASED ON 

INFORMATION-THEORETIC MEASURES AND 

PARTICLE FILTERING ALGORITHMS 

The primary concept behind the proposed anomaly detection 
scheme is that any sudden abnormal behavior in the system 
should affect the distribution of the PF-based posterior state 
estimate. This is caused by the fact that, under abnormal 
operating conditions, the system model no longer represents 
the best choice for the importance sampling distribution. As 
a consequence, the weights associated to particles with low-
likelihood undergo strong corrections, increasing the 
differential entropy of the aforementioned conditional state 
pdf. 

In this sense, the proposed detection module considers a 
particle filtering algorithm based on model (14)-(15), as 
state estimator module, and a stage where expression (13) is 
used to compute the differential entropy of the posterior pdf 
estimate. The resulting entropy (which is computed at each 
cycle of operation) corresponds to the output of the 
detection module. Anomaly detection is carried out by 
setting a threshold for the entropy estimate. It is of special 
interest to isolate events where the entropy increases in a 
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sudden manner, or where steadily increases since in both 
cases it evidences that the particle filtering algorithm is 
unable to track the process measurements using the 
predetermined state transition model.  

Validation of the proposed scheme is performed on SOH 
degradation data from an accelerated test at Prognostic 
Center of Excellence at NASA Ames, where it is of 
particular interest to detect the moments when battery SOH 
measurements evidence the existence of capacity 
regeneration (also known as “self-recharging”) phenomena 
(Orchard et al., 2010). Furthermore, as an additional 
contribution of the analysis, we will assess what is the 
actual impact (in terms of early detection) that is associated 
to an increment in the number of particles in the PF state 
estimator; taking into account the performance of the 
proposed entropy-based indicator as the filter uses more 
particles.     

Figure 1 shows the actual SOH degradation data and the 
results obtained by the proposed detection scheme when 30 
particles are used in the implementation of the PF algorithm. 
In particular, Figure 1 a) illustrates on the difficulty the PF 
estimator undergoes when the a priori transition model 
(14)-(15) is used to track the degradation of battery capacity 
in the presence of self-recharge phenomena (for example at 
the 19th, 30th, and 47th cycles of operation). As it has been 
mentioned before, the concept behind the entropy-based 
detection module is to recognize these issues, providing in 
those cases an indicator that may be used as alarm signal.  
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Figure 1. Evolution of the entropy of the posteriori state pdf, 
using 30 particles within the implementation of the particle 

filtering algorithm 

Figure 1b) depicts the evolution in time of the entropy of the 
posterior PF-based estimate, for the case of battery SOH 
degradation. On the one hand, it is important to note that the 
entropy of the posterior state pdf, in absence of self-
recharge phenomena, tends to stabilize until it almost 
behaves like a constant function of time. This stabilization 

value directly depends on the variance of process and 
observation noise kernels in equations (14) and (15), which 
are the actual sources of uncertainty within the 
implementation of the particle-filtering-based estimator.  On 
the other hand, Figure 1b) also shows that the entropy-based 
indicator experiences strong modifications on its value in 
the event of a self-recharge phenomenon (more than eight 
times in some cases, as in the 19th, 30th and 47th cycle of 
operation). This fact validates the use of the proposed 
approach for anomaly detection purposes, triggering the 
alarm whenever the differential entropy of the posterior 
state pdf is bigger than a given threshold (e.g., twice the 
stabilization value for the entropy of the estimate in the 
absence of capacity regeneration phenomena). However, it 
is still not clear if an increment on the number of particles 
would allow computing a lower threshold for the detection 
module, while simultaneously avoiding the generation of 
false alarms.  

Figure 2 and Figure 3 provide critical information to answer 
the latter inquire. On the one hand, Figure 2 depicts the 
obtained results when using N=100 particles in the PF-based 
estimator, which implies that the computational complexity 
of the algorithm increases more than three times. On the 
other hand, Figure 3 shows the case when 500 particles are 
used. 
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Figure 2. Evolution of the entropy of the posteriori state pdf, 
using 100 particles within the implementation of the particle 

filtering algorithm 

Although an increment in the number of particles N reduces 
the amount of time that is required to reach a stabilization 
value for the entropy of the posterior pdf, it does not 
necessarily increase the capability of the filter to track the 
evolution of the system in the event of capacity 
regeneration. As a consequence, the proposed anomaly 
indicator improves its detection capability (and reduces the 
probability of false alarms) as the number of particles 
increases. Moreover, the resulting fault feature (either in the 
case of N=30 or N=100 particles) allows to easily 

a) 

b) 

a) 

b) 
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implement an anomaly detection module based a PF-based 
detection module (Orchard et al., 2011), which uses the 
entropy indicator to perform the hypothesis testing and 
declare the anomaly, for a given false alarm rate. 
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Figure 3. Evolution of the entropy of the posteriori state pdf, 
using 500 particles within the implementation of the particle 

filtering algorithm 

Finally, it is important to note that a drastic increment in the 
number of particles (as shown in Figure 3) does not 
necessarily imply equivalent improvements in the capability 
of the anomaly detector. Furthermore, this research shows 
that using less than 100 particles is enough to achieve 
adequate performance both in terms of detection capabilities 
and computational effort for the estimation algorithm.    

5. CONCLUSION 

This paper presents an anomaly detection module that is 
based on a PF state estimator and information-theoretic 
measures, which aims at isolating self-recharge phenomena 
within the SOH degradation process of an energy storage 
device (Li-Ion battery). From obtained results, we surmise 
that the proposed anomaly detection approach, which 
computes a fault indicator from the entropy of the PF-based 
posterior state pdf estimate, is capable of isolating rare and 
sudden events –such as self-recharge phenomena in the 
degradation curve– in a simple and efficient manner. 
Empirical analysis on actual data from acceleration test 
shows that  although an increment in the number of particles 
within the proposed scheme does improve the detection 
capability of the proposed approach (also reducing the 
probability of false alarms), although it does not necessarily 
compensate the raise on the computational cost of the 
estimation algorithm. As a result of the aforesaid analysis, 
an appropriate range for N (number of particles) is defined 
for the case study hereby described.  
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