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ABSTRACT 

The utilization of steady state monitoring techniques has 
become an established means of providing diagnostic and 
prognostic information for systems and equipment. This is 
mainly driven by both the wealth of available analysis 
techniques and the comparatively larger amount of data. 
However, steady state data is not the only, or in some cases, 
even the best source of information regarding the health and 
state of a system. Transient data has largely been 
overlooked as a source of system information due to the 
additional complexity in analyzing these types of signals. 
Time Distribution Mapping via the Sharp Transform allows 
for a fast, intuitive, generic quantification of deviations a 
transient signal from an established norm. Without regard to 
the type or source of the signal, referencing to an established 
Time Distribution Map can implicitly capture shifts mean, 
standard deviation, skewness, or even gross frequency shifts 
without need of additional processing. By quantifying and 
trending these shifts, an accurate measure of system heath 
can be established and utilized by prognostic algorithms. In 
fact, for some systems the elevated stress levels during 
transients can provide better, more clear indications of 
system health than those derived from steady state 
monitoring. 

1. INTRODUCTION 

Signal monitoring has advanced to the point where viable 
and accurate information regarding the health and state of a 
system can quickly and effectively be obtained using purely 
data driven techniques, Traditionally these techniques focus 
on steady state signals for both there availability and 
regularity. Transient signals however, provide a unique 
challenge and opportunity in regards to health information 
extraction. While the nature of these signals violates many 
of the assumptions necessary for steady state analysis, the 

elevated stress levels seen in these signals can provide 
faster, more accurate indications of heath in many systems. 

By definition, a transient signal undergoes some significant 
statistical shift with regards to the pertinent time frame 
being analyzed. Specifically, this paper refers to these types 
of transient signals generated from systems and equipment 
undergoing a normal operational transient such as startup, 
shut down, or a load shift. One main difficulty in analyzing 
these signals is the lack of means of generically and 
intuitively quantifying the degradation of a transient signal. 
Without these, each signal analysis necessitates a case-
specific algorithm for processing whose development 
generally relies on some engineering knowledge of the 
signal itself and its’ attributes.   

Time distribution mapping provides a generic, data driven 
means of quickly, intuitively, and accurately quantifying the 
degradation of a transient signal signature through the 
lifetime of a system. By using historical transient signatures 
to establish a nominal time distribution map, and 
transforming signatures into the same bin space as described 
in following sections, a residual can be created between 
these maps to provide measure of signature deviation which 
directly relates back to system heath. This additional 
measure of system health can be used either alone, or to 
augment existing information from steady state monitoring, 
providing more robust and accurate information regarding 
the overall state of the system. In fact, some systems, such 
as backup generators, may only have transient information 
on record as they are subjected to periodic pass/fail startup 
tests. The ability to utilize this information to better assess 
the current state of the unit, and predict future states of the 
unit could be invaluable, possibly leading to less frequent 
and more accurate decision-making regarding the unit. 

2. BRIEF REVIEW OF GENERAL TRANSIENT ANALYSIS 
METHODS 

Transient signature and signal analysis are generally thought 
to require complex, or at least specialized monitoring 
techniques due to the fact that many common statistical 
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analysis methods are built on the implicit assumption that 
the signal being processed is steady state. Specifically, the 
key difference in processing a transient signal verses a 
steady state one is the necessity of a temporal aspect to the 
analysis. This section provides a brief review of some of the 
more common methods of transient analysis. This is not 
meant to be an all-inclusive list, but merely to highlight a 
few of general-purpose techniques that can be applied to a 
wide variety of signals and equipment.  
 
The simplest techniques involve windowed tracking of 
statistical properties over the progression of the signal. 
These, along with more complicated techniques (Gabor 
Transform, Hilbert Huang Transform, Wavelet Analysis, 
etc.), capture particular aspects and features of a signal as it 
evolves over time. The general trade-off for most transient 
analysis techniques is between the resolution of the signal 
feature and time. The Gabor Transform most notably suffers 
from this trade-off. While the Hilbert Huang and to some 
degree Wavelet analysis do not directly suffer from this 
trade-off, there is some loss in direct physical meaning of 
the transforms. 
 
Many of the traditional methods and algorithms for the 
analysis of transient signals are particularly suited for a 
specific type of signal or application. One common yet 
powerful tool, particularly in the case of oscillatory signals, 
is the Fourier transform. This method, extended by the 
Gabor Transform [Gabor 1946], can be used to identify 
evolutionary frequency shifts within a signal. Unfortunately 
when using frequency or time/frequency analysis, it is not 
always easy to discover and isolate the minute changes that 
may be significant in regards to the health of the system, but 
become over shadowed by less important but more constant 
frequencies shifts which are merely products of the 
transient. Physics models of the system can help to 
overcome this by providing a guide to the expected 
dominate degradation modes. When this type of physics 
model, or related information is not available however, the 
use of the Hilbert Huang Transform (HHT) can serve to 
help identify this same type of information [Huang 1998]. 
 
Unlike the Gabor transform, the HHT is not based on a 
preconceived parametric functional form. Whereas the 
Fourier transform can be thought of as deconstructing the 
signal into a series of sine waves to determine frequency, 
the HHT decomposes the signal into successive intrinsic 
mode functions (IMFs) based on the characteristics of the 
signal itself. By then applying the Hilbert Transform to 
these IMFs, analytic amplitude and an instantaneous 
frequency can be obtained for each IMF.Because of this, the 
HHT excels at highlighting the instantaneous dominant 
frequencies of a signal at any given point in time. By 
examining the multiple layers of Intrinsic Mode Functions 
(IMFs) and the instantaneous frequency of each, subtle 
frequency shifts which may evolve over time stand out, both 

in time and frequency over larger more dominate 
frequencies. These can be used is the form of the HHT, or as 
a guide to go back and reevaluated the simpler to calculate 
JTFS. Not only can the HHT provide frequency 
information, but information regarding power and amplitude 
as well. Though the HHT is typically computationally costly 
to calculate, the information it provides can be invaluable in 
the prognostic analysis, either from direct use or as a guide 
to identifying more simple trackable features. 
 
The problem with each of these methods is that after 
suitable features have been found and extracted, some form 
of model must be additionally developed in order to 
quantify any degradation in these features. This is not 
always a trivial task, especially when the pertinent feature is 
represented by a certain signature based on the transient 
itself such as the rate of increase for the instantaneous 
frequency of a signals second IMF over a 3000 observation 
window. Time distribution mapping, as will be shown in 
this paper, can be used either directly on a signal or on these 
extracted features to solve this problem. 

3. TIME DISTRIBUTION MAPPING 

A major drawback to all the previously discussed methods 
of transient signal analysis is the lack of widespread instant 
applicability. In other words, most techniques do not 
generalize across different systems or equipment without 
some additional knowledge and research into understanding 
the system. For example, although the Hilbert Huang 
Transform is highly adaptive and able to pick out subtle 
features in a given signal, there is no knowing in which 
level, and at what point in the decomposition an important 
feature will surface. With understanding of a system, one 
may infer, or expect to find features of interest at certain 
points, but these points will change between systems. This 
research seeks to provide and broadly examine generic 
processes for modeling and monitoring transient signals 
with the explicit goal of extracting a useable prognostic 
parameter. 
 
Time distribution mapping via the Sharp Transform  
provides a novel method for expanding single or multiple 
signals into a non-uniform matrix space, or a similar cross-
pattern space. In more general terms, this transform refers to 
taking successive measures of the empirical distribution of a 
signal throughout time and storing them in a serial 
temporally ordered fashion, thus creating a map detailing 
how the distribution of a signal evolves through time.  For 
easy of interpretation and illustration, this section explains 
the algorithm for developing a model based on a single 
signal or variable. However, there is no reason that this 
transform could not be directly extended for the cross signal 
density of two or more.  
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 The basics of this transformation rely on the 
creation and understanding of a signal’s distribution, or 
probability density. An empirical measure of a signal’s 
distribution over any given interval can easily be calculated 
by taking a simple histogram of the signal over that 
window. In order to become a true probability density, 
scaling based on the window size must be enforced, but as 
will become apparent later, this scaling can be factored out. 
All necessary processing can be accomplished with the un-
scaled discrete distribution provided by the histogram. 
Unfortunately, the full temporal complexities of a transient 
signal cannot be expressed with a single distribution. 
Consider the transient signal below: this modulated 
oscillatory signal exhibits shifts in both amplitude and 
variance over the observed transient. 
 

 
Figure 1 - Example Transient Signal 

 
 If one were to perform a standard series of tests on 
this data they could determine that it has a mean of -0.028, a 
standard deviation of 0.059 and upper and lower limits at 
0.081 and -0.288 respectively. While most of this can be 
seen or estimated from a typical histogram such as the one  
shown below, none of this captures any of the highly 
temporal aspects of this signal.  
 

 
Figure 2 - Histogram of Example Transient Signal 

 
 However, if one were to calculate successive 
histograms of the signal through time and over smaller 
windows these temporal aspects are easily captured. Shown 
in the figure below is a series of histograms, each with 25 
bins with varying bin locations based on the amplitude of 
the signal over each observation window. The selection of 
the number of bins as well as the window size can be altered 
based on the sample rate and time frame of the transient, but 
in general, a window size of greater than five times the 
number of bins is desirable. 

 
Figure 3 - Time Distribution Map of Oscillatory Transient 

Signal 
 
 This bin space map is able to capture both 
implicitly and explicitly many aspects of the signal as they 
evolve through time. Aspects regarding the mean, variance, 
and skewness as they evolve in time are all embedded 
within this ST map. Even gross changes in frequency are 
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implicitly captured in the information of this map. That is 
not to say that by looking at this map a non-dominate 
frequency shift of five hertz in one of the upper peaks would 
be observable, but a frequency shift significant enough to 
change the distribution on the scale of the observable 
window could be detected. In fact, the most obvious, 
simplest, and yet most all encompassing statement that can 
be made is that any alterations in the localized distributions 
through time are captured with this method. 
 
Once the concept of transforming and mapping signals in 
the new bin space has been established, it is next important 
to explain how these can be used to develop prognostic 
parameters to be used in the creation of Remaining Useful 
Life (RUL) estimations. The first thing required is multiple 
“good” or nominal transient recordings. Between three and 
ten of these exemplars make a good baseline for developing 
the ideal reference case. Development of this transformed 
reference map assumes that the transients in question exhibit 
similar behavior. If they do not, then multiple reference 
maps should be made for each category or pattern of 
transient. For example, load shifts from half to full load may 
not be the same as those from one quarter to full load, but 
all startups from zero to full load may be expected to look 
the same.   
 
After the nominal transients are collected and appropriately 
grouped, they need to be divided into equally spaced 
segments based on the chosen window size. The selection of 
both the number of bins and the window size is highly 
dependent on the observed length of the transient, the 
sample rate, and the level of detail desired versus the 
robustness of the distributions. While it is intuitive that 
greater number of bins provides greater detail in the map 
itself, greater numbers of bins also require larger windows 
to develop full distributions, losing some of the time 
resolution of the map. In practice segmenting the transient 
signal into between approximately 30 and 100 windows and 
choosing a bin number about one tenth the window size 
seems to produce reliable results. Of course this is 
dependent on the available data and can be tailored to suit 
any needs. Also, in this discussion, the windows are treated 
as discrete and wholly separate from each other, there is no 
reason that the windows could not overlap or even “scroll”, 
over each observation in time. It is simply ignored for this 
discussion to simplify both computations and explanation. 
 
Once the window size and number of bins has been 
determined a “master” bin map can be created. The 
maximum and minimum values inside each window 
observed over all the exemplar cases define the range of the 
bins for that time window. Unless there is special reason not 
to, the bin edges can then easily be defined as linearly 
spaced points between these ranges. This master bin map 
will now be the bin edges that will define the new bin space 
into which all subsequent transient signatures will be 

transformed into. The transformed maps of each of the 
exemplar cases based on these bin locations will then be 
averaged together to complete the creation of the reference 
map. With this reference map, and the master bin map, it is 
possible to create progressive bin space maps throughout the 
lifetime of the equipment, which can then be compared to 
create a measure of change that is relatable to degradation. 
By monitoring the summed square of the residuals between 
any given lifetime bin space map and the reference time 
distribution map, a quantitative value relatable to the overall 
degradation of the transient can be made. This can then be 
directly translated into a measure of health of the system 
based on the original signal. This value and its progression 
through time are then directly usable as a prognostic 
parameter for models estimating RUL. 
 
It is possible for the prognostic parameter developed by this 
method to saturate if a signal experiences a mean shift 
greater than the span of the reference ST map, but this is 
easily overcome by simply developing a new reference ST 
and master bin map based on these new levels of 
degradation. In order to compare separate units, the 
residuals from the reference ST may need to be scaled by 
the residuals associated with the exemplar cases used to 
create it, but this is a trivial task and should not impair the 
results of the analysis. 
 
This generic idea of mapping the progressive aspects of a 
signal over time through windowing and comparing them to 
a reference signal is the most widely applicable method of 
monitoring transients for degradation. Similar mappings of 
Joint Time Frequency Spectra (JTFS) or similar statistical 
evolutions can also use this methodology. Mapping of 
signals transformed into an empirical bin space is presented 
as the best generic test with the broadest number of implicit 
anomaly detections possible. This is not to say it is the best 
for every given application, but its’ broad range of 
applicability make it useful in many cases. Brief case 
studies of the development and use of this STDM modeling 
technique are provided in subsequent sections. 

4. PROOF OF CONCEPT TEST CASES 

The following sections provides multiple proof of concept 
case studies that solidify the hypothesis that not only are 
these techniques valid in processing transients with the goal 
of prognostic modeling, but that transients in general are 
valid and reliable sources of degradation and system health 
information. These experiments utilize other more 
traditional analysis methods to compare and validate the 
more novel transformation techniques for transient analysis 
presented in this paper. 

4.1. Impeller Degradation Experiment 

The first of these experiments analyzed the artificially 
induced degradation of small-scale neoprene horizontal 
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pump impellers. The pumps were chosen as analogous 
representations of the large pumps found in many industry 
and power plants applications. The focus of this experiment 
was to identify correlations between monitorable features 
found during pump startup and the amount of degradation 
found in the system. Twelve separate impellers were 
degraded over time and failure was defined as the inability 
to self-prime. 
 
In order to precipitate faults in the impellers, increasingly 
large notches were cut into each impeller vane between 
regular data collection runs of the pump. These notches are 
analogous to the type of degradation an impeller might 
suffer due to a spur or defect in the impeller housing or due 
to particulates in the fluid. The pump differential pressure, 
vibration, and inrush current were recorded at ~1.6kHz for 
analysis in this experiment. 
 
The analysis of each of these signals via more traditional, 
means discovered multiple features within each that directly 
relate back to priming time of the pumps. It was discovered 
that the priming time  was an acceptable features that could 
be used as an indication of overall impeller health, and 
could be used as a prognostic parameter. 
 
For vibration, the most pronounced of these features was an 
increase in amplitude as well as a rise in the vane pass 
frequency prior to the water entering the impeller housing. 
While the rise in frequency can be viewed via a Joint Time 
Frequency Spectrum, both features are easily extracted 
using the Hilbert transform. The figure below shows how 
this rise in amplitude evolves over the life of the impeller. 
 

 
Figure 4 - Analytic Amplitude of Startup Vibration Over 

Single Impeller Lifetime 
 
This figure shows that the elevated vibration amplitude 
reflecting priming time increases from approximately 1.8 
seconds early in life, to around 3 seconds near the end of 
life. Extracting this time requires can be somewhat trivial 
task, but it still requires additional processing and model 
development. 
 
Conversely, instead of calculating this amplitude and then 
making a model for extracting the amount of the elevated 
amplitude, nearly identical information can be extracted 

without special development through time distribution 
mapping via the transform detailed above. Using several 
start of life vibration signatures to create a master bin map, 
the residual mappings from the transformed bin space come 
out as a near exact echo of that information. 
 

 
Figure 5 – Exemplar Impeller Bin Space Mapping 

Residuals 
 
Each lifetime startup vibration signature is transformed into 
the same master bin space. The summed scaled residuals 
between these and the reference bin map implicitly extract 
the difference in priming time without a need to optimizing 
towards that goal. 
 
Similar extractions can be done for both the inrush current 
and the differential pressure. Analysis shows that the current 
exhibits a drop in power prior to priming due to the lessened 
load, and unsurprisingly the differential pressure requires 
more time to reach its’ maximum value. Information 
relating to these features can quickly be gleaned from the 
respective residuals of their separate time distribution maps 
as shown in the figure below. 
 

 
Figure 6 - Exemplar Bin Space Residuals From 

Additional Signals 
Notice that despite the very different nature of the three 
signals, they all contain information related to the same 
system and as such the residuals of the bin space 
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transformation have comparable information in them. The 
additional noise associated with the pressure residuals 
comes from the signal itself which exhibited significant 
noise. This is most likely do to voids in the sensing lines. 
The figure below presents the master bin maps created as 
the nominal startup signature for each signal. 
 

 
Figure 7 - Transformed Impeller Signals' Mater Bin 

Maps 
 
Where as differential pressure exhibits a degradation of a 
significantly mean shifting signal, both the current and 
vibration signals have an alteration in their variance shifts. 
Additionally, the current signal is highly modulated on the 
60Hz electrical carrier wave, yet transformations of each of 
these signals into similarly windowed bin spaces is able to 
quickly provide the pertinent degradation information. 
 
The residuals from each of these mappings can be combined 
together to create a more robust measure of overall priming 
time, and by inference, impeller health. Due to the lack of 
available comparison data regarding the true lifetime or rate 
of wear time of these impellers, direct estimation of 
Remaining Useful Life (RUL), as would be more traditional 
in prognostic applications [Hines 2009], could not be made, 
and it would be meaningless to attempt with this data. 
Instead a percentage of current life consumption (CLC) 
model is inferred such that with the addition of a known 
lifetime run, a RUL estimate model could be made. The 
figure below represents the CLC chart with standard error 
uncertainty bounds on each calculated point. 

 
Figure 8 - Impeller Current Life Consumption Chart 
  
This figure is read by calculating the optimally weighted 
combination of the rescaled bin map residuals on the 
vertical axis, then estimating the corresponding percent of 
life consumed on the horizontal axis. It has been show that 
utilizing genetic algorithms to find an optimal linear 
combination of trendable parameters can increase both the 
robustness and accuracy of a prognostic parameter [Coble 
2011]. Using this technique to combine the residuals shows 
how the process of transforming signals into a non-uniform 
time/bin space can directly lead to trendable prognostic 
parameters. 

4.2. Motor Aging Experiment 

Another experiment conducted to verify the robustness of 
the bin space mapping technique was an accelerated 
induction motor aging experiment. In this experiment, 5HP 
motors were subjected to cyclical thermal stresses and tested 
between each cycle. Several sensors were recorded during 
each test startup to monitor the overall state and health of 
the motor. These included current, voltage, vibration and 
acoustic signals, each sampled at a frequency of just over 
10kHz.  

As these motors aged, it became apparent that the dominate 
failure mechanism was due to bearing fatigue. As there is 
much work already in the literature regarding the steady 
state quantification of bearing degradation, this experiment 
was not meant to replace those techniques, but instead to 
augment them through transient analysis and to verify the 
validity of the empirical non-uniform bin space 
transformation and the associated mapping technique. 

To conserve space, not all of the signals analyzed will be 
fully illustrated here, but instead a brief overview of the 
signals is given, highlighting the different types of signals. 



Annual Conference of Prognostics and Health Management Society 2012 
 

7 

The first signal analyzed is the acoustic signature. This 
signal exhibits a shift in frequency and amplitude over the 
life of the signal. Directly and reliably extracting this 
requires both the Hilbert transform and significant filtering 
of the returned parameters. Although contain similar 
informational aspect relating to the degradation of the 
bearing itself, the more easily visually distinguished is the 
startup dominate frequency signatures which is shown in the 
figure below. 

 
Figure 9 - Acoustic Dominate Startup Frequency Over 

Motor Lifetime 
The vertical axis in this chart represents the amount of time 
after the energizing the motor, where the lifetime startup 
number is on the horizontal axis. The lighter tones represent 
the higher frequencies, and notice how these become more 
dominate towards the end of life, especially in the time 
before approximately 0.5 seconds after energizing.  
 
Now examining the residuals from the time distribution map 
of the transformed bin space, this increasing deviation is 
easily extracted. 

 
Figure 10 – Startup Acoustic Transformed Bin Space 
Residuals 
 

These residuals actually seem to reflect a combination of the 
information from the frequency as well as the amplitude 
shifts over time. This is not only to be expected, but in many 
cases desirable as it automatically combines different 
aspects of the signal degradation into a single easily 
monitored value. 
 
Another interesting signal to apply this transformation and 
mapping technique to is the supply voltage of the motor. 
This signal has properties such that, on gross inspection 
alone, make it appear to be a steady state signal, despite the 
fact that it is produced during a transient. Yet upon 
examination of the residuals for the signal, we see a similar 
clear progression as the overall motor system degrades. 
 

 
Figure 11 - Startup Supply Voltage Transformed bin 
Space Residual 
 
In order to find this same level of information about the 
deviation in this signal through traditional algorithms 
several levels of demodulation or decomposition of the 
voltage would be required. 
 
In fact, all of the signals show progressive trends as the 
motor is aged, but the degree of their increase and the noise 
level obviously are signal dependant. Again this is expected 
as the signals all relate to the same system, but are capturing 
different aspect of the system. 
 
Another useful aspect of the developed transform is that 
since the bin maps have a temporal aspect, information 
regarding when in the transient as well as what type of 
deviations occur can be obtained. The figure below shows 
the progression of the motor vibration signature’s residuals 
through the transient time. 
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Figure 12 - Startup Vibration Transformed Residuals in 
Time 
 
Here the horizontal axis represents the time from energizing 
the motor and each line represents a particular lifetime 
startup at the beginning, middle, and end of life. This 
provides information showing that in fact for vibration, the 
largest differences in startup come after the one-second 
mark. This is unlike the each of the other signals, which 
exhibit their largest changes prior to that time. The reason 
for this can be traced back to the increased steady state level 
of vibration through out the life of the motor. 
 
Each signal provides easily monitored and trended residuals 
that can be quickly implemented by a myriad of prognostic 
methodologies to create Remaining Useful Life predictions. 

5. CONCLUSION 

The work presented in this paper shows time distribution 
mapping and the transformation of a signal into a non-
uniform bin space based on the empirical aspects of a 
transient signature to be a clean and elegant method of 
generically quantifying the degradation of a transient 
signature. This method is able to simultaneously capture 
several types of statistical shifts within a signal without 
need to explicitly search for any one in particular. 
Furthermore, this transformation and subsequent mapping is 
shown to be robust over various forms of non-stationary 
signals. It is this indifference to modulation or signal source 
that allows it to quickly analyze and quantify a myriad of 
signals for a single application without the need to tailor 
individual algorithms to each specific signal. By capturing 
both statistical and temporal aspects of a signal 
simultaneously, time distribution mapping via the developed 
transform is shown to be a versatile and generically 
applicable tool to aid in transient analysis and to augment 
existing techniques. 
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